Albania

Demographic and Health Survey

2008-09

REPUBLIC OF ALBANIA

Albania
 Demographic and Health Survey 2008-09

Institute of Statistics
Institute of Public Health
Tirana, Albania

ICF Macro
Calverton, Maryland, USA

March 2010

This report summarizes the findings of the 2008-09 Albania Demographic and Health Survey (2008-09 ADHS), which was conducted by the Institute of Statistics (INSTAT) and the Institute of Public Health (IPH). ICF Macro, an ICF International Company, provided technical assistance to the project through funding from UNICEF and MEASURE DHS, a USAID-funded project providing support and technical assistance in the implementation of population and health surveys in countries worldwide. Funding for the 2008-09 ADHS was provided by USAID, UNICEF, UNFPA, the Swiss Cooperation Office in Albania (SCO-A), the World Health Organization (WHO), and the Spanish Agency for International Development Cooperation (AECID). The opinions expressed herein are those of the authors and do not necessarily reflect the views of USAID, UNICEF, UNFPA, SCO-A, WHO, or the Government of Albania.

Additional information about the 2008-09 ADHS may be obtained from either:
The Institute of Statistics
Lantona Sado, ADHS Coordinator
Street address: Blvd ‘Gergj Fishta’ \#3, Tirana, Albania.
Telephone: +355 (4) 2222411, Fax: +355 (4) 2228300, Email: Isado@instat.gov.al
or
The Institute of Public Health
Elizana Petrela, ADHS Coordinator
Street address: ‘Aleksander Moisiu’ \# 80, Tirana, Albania.
Telephone: +355 (4) 2363195, Fax: +355 (4) 2370058, Email: elapetrela@ishp.gov.al
Additional information about the MEASURE DHS project may be obtained from ICF Macro, MEASURE DHS, 11785 Beltsville Drive, Suite 300, Calverton, MD 20705 USA; Telephone: 301-572-0200, Fax: 301-572-0999, Email: reports@macrointernational.com, Internet: http://www.measuredhs.com.

Recommended citation:

Institute of Statistics, Institute of Public Health [Albania] and ICF Macro. 2010. Albania Demographic and Health Survey 2008-09. Tirana, Albania: Institute of Statistics, Institute of Public Health and ICF Macro.

INTRODUCTION

In the early-mid 1990s, Albania entered a new phase of major changes, moving from a totalitarian to a democratic system and shifting gradually to the free market economy. This process led, naturally, to changes in various demographic and health characteristics of the Albanian society.

The 2008-09 Albania Demographic and Health Survey (ADHS) is a nationally representative study aimed at collecting and providing information on population, demographic, and health characteristics of the country. Population-based studies of this magnitude are a major undertaking that provide information on important indicators which measure the progress of a country.

The ADHS results help provide the necessary information to assess, measure, and evaluate the existing programs in the country. They also provide crucial information to policy-makers when drafting new policies and strategies related to the health sector and health services in Albania.

The information collected in the 2008-09 Albania Demographic and Health Survey will be used not only by local decision-makers and programme managers, but also by partners and foreign donors involved in various development areas in Albania, as well as by academic institutions to do further analysis with the collected data.

The 2008-09 ADHS is the result of hard and good quality work of many Albanian institutions as well as national and international organizations, which have shown a high level of professionalism and dedication to good quality data in the field of health and demographics in Albania.

Petrit VASILI
Minister of Health

CONTENTS

Page
INTRODUCTION iii
TABLES AND FIGURES xi
PREFACE xix
ACKNOWLEDGMENTS xxi
LIST OF CONTRIBUTORS xxiii
SUMMARY OF FINDINGS xxv
MILLENNIUM DEVELOPMENT GOAL INDICATORS xxxi
MAP OF ALBANIA xxxii
CHAPTER 1 INTRODUCTION
1.1 Geography and Population 1
1.2 History 1
1.2.1 The Albanian Language 3
1.2.2 The Albanian Flag 3
1.3 Economy 3
1.4 Characteristics of the Health System 4
1.4.1 Health Care System 4
1.4.2 Primary Health Care 5
1.4.3 Country Epidemiological Profile 6
1.4.4 Hospital Services 7
1.4.5 Pharmaceutical Services 7
1.4.6 Health Insurance Institute7
1.4.7 Human Resources 8
1.4.8 Sources of Public Financing for Health 8
1.5 Objectives and Organization of the Survey 9
1.5.1 Sample Design and Implementation 10
1.5.2 Questionnaires 10
1.5.3 Biomarkers 12
1.5.4 Field Staff and Fieldwork 13
1.5.5 Data Processing 14
1.5.6 Response Rates 14
CHAPTER 2 HOUSEHOLD POPULATION AND HOUSING CHARACTERISTICS
2.1 Household Population by Age and Sex 18
2.2 Household Composition 19
2.3 Children's Living Arrangements 20
2.4 Educational Attainment of Household Members 21
2.5 Preschool Attendance and Primary School Participation 26
2.6 Housing Characteristics 28
2.6.1 Drinking Water 30
2.6.2 Sanitation Facilities 32
2.6.3 Household Possessions 32
2.7 Wealth Quintiles 34
2.8 Birth Registration 34
CHAPTER 3 CHARACTERISTICS OF SURVEY RESPONDENTS
3.1 Background Characteristics of Respondents 37
3.2 Educational Level of Respondents 39
3.3 Literacy 41
3.4 Exposure to Mass Media 42
3.5 Employment 44
3.6 Occupation 47
3.7 Employment Characteristics 50
CHAPTER 4 FERTILITY
4.1 Current Fertility Level 53
4.2 Fertility Differentials by Background Characteristics 55
$4.3 \quad$ Fertility Trends 56
4.4 Children Ever Born and Living 57
4.5 Birth Intervals 58
4.6 Age at First Birth 60
4.7 Teenage Pregnancy and Motherhood 61
CHAPTER 5 FAMILY PLANNING
5.1 Knowledge of Contraceptive Methods 63
5.2 Ever Use of Contraception 66
5.3 Current Use of Contraceptive Methods 68
5.4 Trends in Contraceptive Use 71
5.5 Differentials in Contraceptive Use by Background Characteristics 71
5.6 Other Forms of Fertility Regulation 73
5.7 Number of Children at First Use of Contraception 73
5.8 Knowledge of the Fertile Period 74
5.9 Source of Contraception 75
5.10 Cost of Contraception 79
5.11 Informed Choice. 79
5.12 Contraceptive Discontinuation 81
5.13 Future Use of Contraception 81
5.14 Reasons for Not Intending to Use Contraception 82
5.15 Preferred Method for Future Use 83
5.16 Exposure to Family Planning Messages 83
5.17 Contact of Non-users with Family Planning Providers 84
5.18 Attitudes of Respondents Towards Family Planning 85
CHAPTER 6 OTHER PROXIMATE DETERMINANTS OF FERTILITY
6.1 Introduction 87
6.2 Marital Status 87
6.3 Age at First Marriage 88
6.4 Age at First Sexual Intercourse 93
6.5 Recent Sexual Activity 96
6.6 Post-partum Amenorrhoea, Abstinence, and Insusceptibility 98
6.7 Termination of Exposure to Pregnancy 100
CHAPTER 7 FERTILITY PREFERENCES
7.1 Desire for More Children 101
7.2 Need for Family Planning Services. 104
7.3 Ideal Number of Children 107
7.4 Wanted and Unwanted Fertility 110
7.4.1 Planning Status of Births 110
7.4.2 Wanted Fertility 111
CHAPTER 8 INFANT AND CHILD MORTALITY
8.1 Definitions and Methodology 113
8.2 Assessment of Data Quality 114
8.3 Levels and Trends in Infant and Child Mortality. 115
8.4 Socio-economic Differentials in Childhood Mortality. 117
8.5 Demographic Differentials in Childhood Mortality 118
8.6 Perinatal Mortality. 119
8.7 High-risk Fertility Behaviour 119
CHAPTER 9 MATERNAL HEALTH
9.1 Antenatal Care 124
9.1.1 Antenatal Care Provider 124
9.1.2 Number and Timing of Antenatal Care Visits 126
9.1.3 Components of Antenatal Care. 126
9.1.4 Tetanus Toxoid Immunization 128
9.2 Delivery Care 129
9.2.1 Place of Delivery 130
9.2.2 Assistance during Delivery 131
9.3 Postnatal Care 132
CHAPTER 10 CHILD HEALTH
10.1 Child's Weight and Size at Birth 135
10.2 Vaccination Coverage 137
10.3 Acute Respiratory Infections And Fever 140
10.4 Diarrhoea 142
10.5 Disposal of Stools 146
10.6 Family Support for Learning 148
10.7 Children Left Alone 150
10.8 Child Discipline 151

CHAPTER 11 NUTRITION

11.1 Breastfeeding and Supplementation 154
11.1.1 Initiation of Breastfeeding 154
11.1.2 Breastfeeding Status by Age 156
11.1.3 Duration and Frequency of Breastfeeding 158
11.1.4 Types of Complementary Foods. 159
11.1.5 Food and Liquids Consumed by Women 162
11.2 Salt lodization 163
11.3 Micronutrient Intake among Young Children 164
11.4 Micronutrient Intake among Mothers 167
11.5 Prevalence of Anaemia. 169
11.5.1 Prevalence of Anaemia in Children 169
11.5.2 Prevalence of Anaemia in Women and Men 170
11.6 Nutritional Status of Children 173
11.7 Trends in Child Nutrition 176
11.8 Nutritional Status of Women and Men 177
CHAPTER 12 HIV AIDS-RELATED KNOWLEDGE, ATTITUDES, AND BEHAVIOUR
12.1 Knowledge of HIV/AIDS. 182
12.2 Knowledge of Ways to Reduce AIDS Transmission 183
12.3 Comprehensive Knowledge about HIV/AIDS 185
12.4 Knowledge about Mother-to-Child Transmission 188
12.5 Accepting Attitudes Towards People Living with HIV/AIDS 190
12.6 Attitudes Towards Negotiating Safer Sex. 192
12.7 Adult Support of Education About Condom Use to Prevent AIDS 194
12.8 Multiple Sexual Partners and Higher-Risk Sex 195
12.9 Testing for HIV 200
12.10 Male Circumcision 202
12.11 Reports of Recent Sexually Transmitted Infections 203
12.12 Comprehensive HIV/AIDS Knowledge and Source of Condoms among Youth 205
12.13 Age at First Sexual Intercourse 207
12.14 Condom Use at First Sexual Intercourse 209
12.15 Premarital Sex and Condom Use among Young Women and Men 210
12.16 Higher-Risk Sex and Condom Use among Young Adults.... 211
12.17 Age-Mixing in Sexual Relationships 213
12.18 Drunkenness during Sexual Intercourse among Youth 214
12.19 Recent HIV Testing among Youth 215
CHAPTER 13 ADULT HEALTH
13.1 Current Health Status 217
13.2 Chronic and Acute Illnesses. 220
13.3 Knowledge of Cancer Screening 221
13.4 Use of Tobacco 223
13.5 Alcohol Consumption 227
13.6 Hypertension 229
13.6.1 Prevalence of Hypertension 229
13.6.2 Awareness of Hypertension and Treatment Status 233
13.7 Problems in Accessing Health Care 234
13.8 Utilization and Quality of Health Services 236
13.9 Health Insurance 238
13.10 Payments for Health Care 241
CHAPTER 14 MIGRATION
14.1 Households With at Least One Former Member Who Has Migrated 247
14.2 Characteristics of Migrants' Former Households 249
14.3 Migrant Population 252
14.4 Background Characteristics of Migrants 254
14.5 Reasons For Migration 256
14.6 Trends in Migration 257
14.7 Destination of Migrants 258
14.8 Children of Migrants Left Behind 264
14.9 Money or Goods Sent to Households by Migrants 267
14.10 Short-term Emigration 270
CHAPTER 15 WOMEN'S EMPOWERMENT AND DEMOGRAPHIC AND HEALTH OUTCOMES
15.1 Employment and Cash Earnings 271
15.2 Use of Earnings 272
15.3 Household Decision-making 275
15.4 Men's Attitudes about Household Decision-making 276
15.5 Attitudes toward Wife Beating 279
15.6 Attitudes towards Refusing Sexual Relations 282
15.7 Indicators of Women's Empowerment 287
15.8 Current Use of Contraception by Women's Status 288
15.9 Women's Status and Ideal Family Size and Unmet Need 289
15.10 Women's Status and Reproductive Health Care 290
REFERENCES 299
APPENDIX A SAMPLE IMPLEMENTATION
A. 1 Introduction 299
A. 2 Sampling Frame 299
A. 3 Sample Allocation. 300
A. 4 Sampling Procedure and Updating of the Sampling Frame 301
A. 5 Men's Sub-sample 302
A. 6 Sampling Probabilities 303
A. 7 Weighting And Representativeness 303
A. 8 Special Concerns 305
APPENDIX B ESTIMATES OF SAMPLING ERRORS 309
APPENDIX C DATA QUALITY TABLES 319
APPENDIX D PERSONS INVOLVED IN THE 2008-09 ALBANIA DEMOGRAPHIC AND HEALTH SURVEY 327
APPENDIX E QUESTIONNAIRES 331

TABLES AND FIGURES

Page
CHAPTER 1 INTRODUCTION
Table 1.1 Results of the household and individual interviews 15
Figure 1.1 Organization of Diagnostic and Curative Health Services in Albania 5
Figure 1.2 Distribution of Health Professionals Per 100,000 Population 8
Figure 1.3 Distribution of Health Funds According to the Type of Service 9
CHAPTER 2 HOUSEHOLD POPULATION AND HOUSING CHARACTERISTICS
Table 2.1 Household population by age, sex, and residence 18
Table 2.2 Household composition 20
Table 2.3 Children's living arrangements and orphanhood 21
Table 2.4.1 Educational attainment of the female household population 22
Table 2.4.2 Educational attainment of the male household population 23
Table 2.5 School attendance ratios 24
Table 2.6 Early childhood education 26
Table 2.7 Primary school entry 27
Table 2.8 Primary school completion 28
Table 2.9 Housing characteristics. 29
Table $2.10 \quad$ Household drinking water 31
Table $2.11 \quad$ Household sanitation facilities 32
Table $2.12 \quad$ Household possessions 33
Table 2.13 Wealth quintiles. 34
Table 2.14 Birth registration of children under age five 35
Figure 2.1 Population Pyramid 19
Figure 2.2 Age-Specific Attendance Rates for the De Facto Population Age 6 to 24 Years. 25
CHAPTER 3 CHARACTERISTICS OF SURVEY RESPONDENTS
Table 3.1 Background characteristics of respondents 38
Table 3.2.1 Educational attainment: Women. 39
Table 3.2.2 Educational attainment: Men 40
Table 3.3.1 Literacy: Women 41
Table 3.3.2 Literacy: Men 42
Table 3.4.1 Exposure to mass media: Women 43
Table 3.4.2 Exposure to mass media: Men 44
Table 3.5.1 Employment status: Women 45
Table 3.5.2 Employment status: Men. 46
Table 3.6.1 Occupation: Women 48
Table 3.6.2 Occupation: Men 49
Table 3.7 Type of employment 50
Figure 3.1 Women's and Men's Employment Status in the Past 12 Months. 46
Table 4.1 Current fertility 53
Table $4.2 \quad$ Fertility by background characteristics 56
Table 4.3 Trends in age-specific fertility rates 56
Table 4.4 Children ever born and living 58
Table 4.5 Birth intervals 59
Table 4.6 Age at first birth 60
Table $4.7 \quad$ Median age at first birth 61
Table $4.8 \quad$ Teenage pregnancy and motherhood 62
Figure $4.1 \quad$ Age-Specific Fertility Rates for the Three-Year Period Preceding the Survey, by Urban-Rural Residence 54
Figure 4.2 Trends in Age-Specific Fertility Rates for Five-Year Periods Preceding the Survey 57
CHAPTER 5 FAMILY PLANNING
Table $5.1 \quad$ Knowledge of contraceptive methods 64
Table 5.2 Knowledge of contraceptive methods by background characteristics 65
Table 5.3.1 Ever use of contraception: Women 67
Table 5.3.2 Ever use of contraception: Men 68
Table 5.4 Current use of contraception by age 69
Table $5.5 \quad$ Current use of contraception by background characteristics 72
Table 5.6 Number of children at first use of contraception 74
Table 5.7 Knowledge of the fertile period 75
Table $5.8 \quad$ Source of modern contraception methods 76
Table $5.9 \quad$ Source of modern contraception methods by background characteristics 76
Table 5.10 Use of social marketing brand condoms 78
Table 5.11 Cost of modern contraceptive methods 79
Table 5.12 Informed choice 80
Table 5.13 First-year contraceptive discontinuation rates 81
Table 5.14 Future use of contraception 81
Table 5.15 Reason for not intending to use contraception in the future 82
Table $5.16 \quad$ Preferred method of contraception for future use 83
Table $5.17 \quad$ Exposure to family planning messages 84
Table $5.18 \quad$ Contact of non-users with family planning providers 85
Table $5.19 \quad H u s b a n d / p a r t n e r ' s ~ k n o w l e d g e ~ o f ~ w o m e n ' s ~ u s e ~ o f ~ c o n t r a c e p t i o n ~$ 86
Figure 5.1 Contraceptive Use among Currently Married Women Age 15-49 70
CHAPTER 6 OTHER PROXIMATE DETERMINANTS OF FERTILITY
Table 6.1 Current marital status 88
Table 6.2 Age at first marriage 89
Table $6.3 \quad$ Early marriage 90
Table 6.4.1 Median age at first marriage: Women 91
Table 6.4.2 Median age at first marriage: Men 92
Table 6.5 Spousal age difference 93
Table 6.6 Age at first sexual intercourse 94
Table 6.7.1 Median age at first intercourse: Women 95
Table 6.7.2 Median age at first intercourse: Men 95
Table 6.8.1 Recent sexual activity: Women 96
Table 6.8.2 Recent sexual activity: Men 97
Table $6.9 \quad$ Post-partum amenorrhoea, abstinence and insusceptibility 99
Table 6.10 Median duration of amenorrhoea, post-partum abstinence and post-partum insusceptibility 99
Table 6.11 Menopause 100
CHAPTER 7 FERTILITY PREFERENCES
Table $7.1 \quad$ Fertility preferences by number of living children 101
Table 7.2.1 Desire to limit childbearing: Women 103
Table 7.2.2 Desire to limit childbearing: Men 104
Table 7.3.1 Need and demand for family planning among currently married women 105
Table 7.3.2 Need and demand for family planning for all women and for women who are not currently married 106
Table $7.4 \quad$ Ideal number of children 108
Table 7.5 Mean ideal number of children. 109
Table 7.6 Fertility planning status. 110
Table $7.7 \quad$ Wanted fertility rates 111
Figure $7.1 \quad$ Fertility Preferences among Currently Married Women and Men Age 15-49 102
Figure $7.2 \quad$ Distribution of Births in the Five Years Preceding the Survey by Fertility Planning Status 110
CHAPTER 8 INFANT AND CHILD MORTALITY
Table 8.1 Early childhood mortality rates 115
Table $8.2 \quad$ Early childhood mortality rates by socio-economic characteristics 117
Table 8.3 Early childhood mortality rates by demographic characteristics. 118
Table $8.4 \quad$ Perinatal mortality 119
Table $8.5 \quad$ High-risk fertility behaviour 120
Figure 8.1 Trends in Infant Mortality Rates, Albania, 1990-2008. 116
CHAPTER 9 MATERNAL HEALTH
Table 9.1 Antenatal care. 125
Table 9.2 Number of antenatal care visits and timing of first visit 126
Table 9.3 Components of antenatal care 127
Table 9.4 Tetanus toxoid injections 129
Table $9.5 \quad$ Place of delivery 130
Table 9.6 Assistance during delivery 132
Table 9.7 Timing of first postnatal check-up 133
Table $9.8 \quad$ Type of provider of first postnatal check-up 134
CHAPTER 10 CHILD HEALTH
Table $10.1 \quad$ Child's weight and size at birth 136
Table 10.2 Vaccinations by source of information. 138
Table $10.3 \quad$ Vaccinations by background characteristics 139
Table $10.4 \quad$ Vaccinations in first year of life 140
Table 10.5 Prevalence of symptoms of ARI and prevalence and treatment of fever 141
Table 10.6 Prevalence of diarrhoea 143
Table 10.7 Diarrhoea treatment 144
Table 10.8 Feeding practices during diarrhoea 145
Table 10.9 Knowledge of ORS packets or pre-packaged liquids 146
Table 10.10 Disposal of children's stools 147
Table $10.11 \quad$ Family support for learning 149
Table $10.12 \quad$ Children left alone or with other children 150
Table $10.13 \quad$ Child discipline 152
CHAPTER 11 NUTRITION
Table 11.1 Initial breastfeeding. 155
Table 11.2 Breastfeeding status by age 157
Table 11.3 Median duration and frequency of breastfeeding 159
Table 11.4 Foods consumed by children in the 24 hours preceding the interview 160
Table 11.5 Infant and young child feeding (IYCF) practices 161
Table $11.6 \quad$ Foods consumed by mothers in the day and night preceding the interview. 163
Table $11.7 \quad$ Presence of iodized salt in household 164
Table $11.8 \quad$ Micronutrient intake among children 166
Table 11.9 Micronutrient intake among mothers 168
Table $11.10 \quad$ Prevalence of anaemia in children 170
Table 11.11.1 Prevalence of anaemia in women 171
Table 11.11.2 Prevalence of anaemia in men. 172
Table $11.12 \quad$ Nutritional status of children 175
Table 11.13.1 Nutritional status of women 178
Table 11.13.2 Nutritional status of men 179
Figure 11.1 Among Last Children Born in the Five Years Preceding the Survey Who Received a Prelacteal Liquid, the Percentage Who Received Specific Liquids 156
Figure 11.2 Infant Feeding Practices by Age 158
Figure $11.3 \quad$ Nutritional Status of Children by Age 176
Figure $11.4 \quad$ Nutritional Status of Children Under Five, Albania 2000, 2005, and 2008-09 Based on NCHS/CDC/WHO Reference 177
CHAPTER 12 HIV/AIDS-RELATED KNOWLEDGE, ATTITUDES, AND BEHAVIOUR
Table 12.1 Knowledge of AIDS 183
Table 12.2 Knowledge of HIV prevention methods. 184
Table 12.3.1 Comprehensive knowledge about AIDS: Women 186
Table 12.3.2 Comprehensive knowledge about AIDS: Men 187
Table 12.4 Knowledge of prevention of mother to child transmission of HIV 189
Table 12.5.1 Accepting attitudes towards those living with HIV/AIDS: Women. 191
Table 12.5.2 Accepting attitudes towards those living with HIV/AIDS: Men 192
Table $12.6 \quad$ Attitudes towards negotiating safer sexual relations with husband. 193
Table 12.7 Adult support of education about condom use to prevent AIDS 194
Table 12.8.1 Multiple sexual partners and higher-risk sexual intercourse in the past 12 months: Women 196
Table 12.8.2 Multiple sexual partners and higher-risk sexual intercourse in the past 12 months: Men 198
Table $12.9 \quad$ Payment for sexual intercourse: Men 200
Table 12.10.1 Coverage of prior HIV testing: Women 201
Table 12.10.2 Coverage of prior HIV testing: Men 202
Table 12.11 Male circumcision 203
Table 12.12 Self-reported prevalence of sexually transmitted infections (STIs) and STI symptoms 204
Table 12.13 Comprehensive knowledge about AIDS and of a source of condoms among youth 206
Table 12.14 Age at first sexual intercourse among youth 208
Table 12.15 Condom use at first sexual intercourse among youth 209
Table $12.16 \quad$ Premarital sexual intercourse and condom use during premarital sexual intercourse among youth 211
Table $12.17 \quad$ Higher-risk sexual intercourse among youth and condom use at last higher-risk intercourse in the past 12 months 212
Table 12.18 Age-mixing in sexual relationships among women age 15-24 213
Table 12.19 Drunkenness during sexual intercourse among youth 214
Figure 12.1 Women and Men Seeking Advice or Treatment for STIs. 205
Figure 12.2 Abstinence, Being Faithful, and Condom Use (ABC) Among Young Women and Men Age 15-24 207
CHAPTER 13 ADULT HEALTH
Table 13.1.1 Current health status: Women 218
Table 13.1.2 Current health status: Men. 219
Table $13.2 \quad$ Current health status compared with 12 months before the survey. 220
Table $13.3 \quad$ Chronic and acute illnesses 221
Table $13.4 \quad$ Knowledge of mammogram and Pap smear 222
Table 13.5.1 Use of tobacco: Women 224
Table 13.5.2 Use of tobacco: Men 225
Table $13.6 \quad$ Median age at start of smoking and percentage who tried to stop smoking. 226
Table 13.7 Perception of health problems caused by smoking 226
Table 13.8.1 Use of alcohol: Women 227
Table 13.8.2 Use of alcohol: Men 228
Table 13.9 History of hypertension and actions taken to lower blood pressure 229
Table 13.10.1 Levels of hypertension: Women. 231
Table 13.10.2 Levels of hypertension: Men 232
Table 13.11.1 Problems in accessing health care: Women. 235
Table 13.11.2 Problems in accessing health care: Men 236
Table $13.12 \quad$ Utilization and quality of the health services 237
Table 13.13.1 Health insurance coverage: Women 239
Table 13.13.2 Health insurance coverage: Men 240
Table 13.14 Suggestion of payment at public health facilities. 241
Table $13.15 \quad$ Payment for health services 243
Table 13.16 Non-payment for health services and perceived impact on health 246
Figure $13.1 \quad$ Awareness of Hypertension and Treatment Status among Hypertensive Women and Men Age 15-49 233

CHAPTER 14
 MIGRATION

Table $14.1 \quad$ Household migration status 248
Table $14.2 \quad$ Characteristics of households from which former members have migrated 250
Table 14.3 Internal migrant population by age and sex 252
Table 14.4 Emigrant population by age and sex 253
Table 14.5 Background characteristics of migrants at time of migration 254
Table $14.6 \quad$ Current age and sex of migrants 256
Table 14.7 Main reason for migrating 257
Table $14.8 \quad$ Destination of migrants 259
Table 14.9.1 Internal migration: origin and destination prefectures 260
Table 14.9.2 Internal migration: origin and destination regions 261
Table $14.10 \quad$ Destination countries of emigrants by sex and age at time of emigration 262
Table 14.11 Emigration: destination country according to origin district, prefecture and region 263
Table $14.12 \quad$ Characteristics of households caring for children of migrants 264
Table $14.13 \quad$ Characteristics of migrants who left children behind 265
Table $14.14 \quad$ Money or goods sent by migrants to former households 268
Table 14.15 Short-term emigration 270
Figure $14.1 \quad$ Percentage of Households With at Least One Former Member Who Has Migrated, by Residence and Region 249
Figure $14.2 \quad$ Percentage of Households With Former Members Who Have Migrated Within or Outside Albania With at Least One Child of the Migrant Currently Living With the Household, by Residence and Region 251
Figure 14.3 Percentage of Females and Males Who Have Migrated Internally and Internationally 253
Figure $14.4 \quad$ Percent Distribution of Migrants by Year They First Migrated Within or Outside of Albania 257
Figure 14.5 Destination Countries of Emigrants. 259
Figure $14.6 \quad$ Age Distribution of Migrants' Children Living in Households Interviewed: Internal Migrants 266
Figure $14.7 \quad$ Age Distribution of Migrants' Children Living in Households Interviewed: International Migrants 266
CHAPTER 15 WOMEN'S EMPOWERMENT AND DEMOGRAPHIC AND HEALTH OUTCOMES
Table 15.1 Employment and cash earnings of currently married women and men 272
Table 15.2.1 Control over women's cash earnings and relative magnitude of women's earnings: Women 273
Table 15.2.2 Control over men's cash earnings 274
Table $15.3 \quad$ Women's control over her own earnings and over those of her husband 275
Table 15.4.1 Women's participation in decision-making 276
Table 15.4.2 Women's participation in decision-making according to men 277
Table 15.5.1 Women's participation in decision-making by background characteristics 278
Table 15.5.2 Men's attitudes towards wives' participation in decision-making 279
Table 15.6.1 Attitudes towards wife beating: Women 280
Table 15.6.2 Attitudes towards wife beating: Men 282
Table 15.7.1 Attitudes towards refusing sexual intercourse with husband: Women 283
Table 15.7.2 Attitudes towards refusing sexual intercourse with husband: Men 285
Table 15.7.3 Men's attitudes towards a husband's rights when his wife refuses to have sexual intercourse 286
Table 15.8 Indicators of women's empowerment 288
Table $15.9 \quad$ Current use of contraception by women's status 289
Table $15.10 \quad$ Women's empowerment and ideal number of children and unmet need for family planning 290
Table 15.11 Reproductive health care by women's empowerment 291
Figure $15.1 \quad$ Number of Household Decisions in Which Currently Married Women Participate 276
Figure 15.2 Percentage of Women Age 15-49 Who Received Postnatal Care from Health Personnel Within the First Two Days After Delivery, by Women's Empowerment Indicators 292
APPENDIX A SAMPLING IMPLEMENTATION
Table A. 1 Distribution of the enumeration areas and households in the sampling frame by region and residence, Albania 2001 300
Table A. 2 Allocation of enumeration areas to each domain and strata 301
Table A. 3 Sample implementation: Women 307
Table A. 4 Sample implementation: Men 308
APPENDIX B ESTIMATES OF SAMPLING ERRORS
Table B. 1 List of selected variables for sampling errors 311
Table B. 2 Sampling errors for National sample 312
Table B. 3 Sampling errors for Urban sample 313
Table B. 4 Sampling errors for Rural sample 314
Table B. 5 Sampling errors for Coastal sample. 315
Table B. 6 Sampling errors for Central sample 316
Table B. 7 Sampling errors for Mountain sample 317
Table B. 8 Sampling errors for Urban Tirana sample 318
APPENDIX C DATA QUALITY TABLES
Table C. $1 \quad$ Household age distribution 320
Table C.2.1 Age distribution of eligible and interviewed women 321
Table C.2.2 Age distribution of eligible and interviewed men 321
Table C. 3 Completeness of reporting 322
Table C. $4 \quad$ Births by calendar years 323
Table C. 5 Reporting of age at death in days 324
Table C. 6 Reporting of age at death in months. 324
Table C. $7 \quad$ Nutritional status of children based on NCHS/CDC/WHO International Reference Population 325

PREFACE

The 2008-09 Albania Demographic and Health Survey (ADHS) is a nationally representative sample survey designed to provide information on population and health issues in Albania. The ADHS was conducted by the National Institute of Statistics (INSTAT) and the Institute of Public Health (IPH), under the lead of the Ministry of Health of the Republic of Albania.

The ADHS received major funding support from the following international agencies: the U.S. Agency for International Development (USAID), the Swiss Cooperation Office in Albania (SCO-A), the United Nations Children’s Fund (UNICEF), the United Nations Population Fund (UNFPA), the World Health Organization (WHO), and the Spanish Government. Technical assistance to ensure survey quality and to build local capacity was provided by ICF Macro.

The 2008-09 Albania Demographic and Health Survey provides recent estimates of infant and child mortality. In addition to mortality data, the objectives of the ADHS were to collect national- and regional-level data on fertility levels and contraceptive use, maternal and child health, adult health, and HIV/AIDS and other sexually transmitted infections (STIs). The survey obtained detailed information on these topics from women of reproductive age (15-49 years) and, for certain topics, from men as well. The survey provides estimates for a variety of demographic indicators, including migration behaviour. The findings on migration behaviour will help to better understand the dynamics of this issue in the Albanian population.

The 2008-09 ADHS results contribute to the growing national and international database of demographic and health indicators.

Ines Nurja
General Director
National Institute of Statistics (INSTAT)

Alban Ylli
Director
Institute of Public Health (IPH)

ACKNOWLEDGMENTS

The Ministry of Health of the Republic of Albania and The National Institute of Statistics wish to express their appreciation to those involved in the implementation of the 2008-09 Albania Demographic and Health Survey and the preparation of this report.

Particular thanks go to:

- The Ministry of Health for its chairmanship of the Task Force of the ADHS;
- The National Institute of Statistics (INSTAT) for providing its expertise on sampling procedures, cartography, and GIS and for participating in questionnaire adaptation, data analysis and final report writing;
- The Institute of Public Health for participating in questionnaire adaptation, in data analysis and final report writing and for providing health technicians with medical background for fieldwork and training of the field staff;
- U.S. Agency for International Development (USAID/Albania), Swiss Cooperation Office in Albania (SCO-A), and the World Health Organization (WHO) for providing the funding for organizing and conducting the 2008-09 Albania Demographic and Health Survey (ADHS);
- UNICEF, Albania and UNFPA, Albania for providing funding and technical support in planning, fieldwork, preparation of the survey report, dissemination of results, and for coordinating the ADHS donor support;
- ICF Macro, for providing technical support during the survey design, fieldwork training, data processing, analysis of the data collected, and dissemination of results;
- The technical staff of the ADHS, for their input of field staff and data quality teams, and for the valuable contributions of all experts and organizations whose joint efforts ensured the effective implementation of the survey. Also, to the households whose participation made it possible to obtain the reliable information collected in the survey; and
- Nesmark Foundation for carrying out the financial and administrative procedures.

National Coordinators of the Project

Lantona SADO (INSTAT) Elizana PETRELA (IPH)

CONTRIBUTORS TO THE REPORT

Specialists Who Contributed to the ADHS Final Report

Albanian Staff:

Dr. Elizana Petrela - Deputy Director, Institute of Public Health
Lantona Sado - Programme Coordinator, Institute of Statistics
Dr. Alban Ylli - Director, Institute of Public Health
Dr. Ines Nurja - Director, Institute of Statistics
Nedime Ceka - Head of the Reproductive Sector, Ministry of Health
Nurie Caushi - Head of the Health Statistics Sector, Institute of Statistics
Dr. Mariana Bukli - Health Programme Officer, UNICEF
Flora Ismaili - Programme Analyst, UNFPA
Emira Galanxhi - Demographer, Institute of Statistics
Dr. Bukurije Dumani - Professor, Faculty of Economics, University of Tirana
Klodjan Rrepaj - Director of the Cabinet, Ministry of Health
Prof. Eduard Kakarriqi - Head, Department of Epidemiology, Health indicators, and Health Policy, Institute of Public Health

Sonela Xinxo - Specialist, Institute of Public Health
Gazmend Bejtja - Director, Public Health, Ministry of Health
Ledia Thomo - Deputy Director, Institute of Statistics
Roland Bani - Specialist, National Coordinator for HIV/AIDS, Institute of Public Health
Rovena Daja - Specialist, Institute of Public Health
Rudina Baboci - Specialist, Institute of Public Health
Fationa Pupuleku - Specialist, Institute of Statistics
Pranvera Elezi - Specialist, Institute of Statistics
Teranda Jahja - Specialist, Institute of Statistics

ICF Macro Staff:
Trevor Croft - Demographer/Data Processing Specialist
Zhuzhi Moore - Demographer
Sri Poedjastoeti - Demographer
Jasbir Sangha - Biomarker Specialist
Sidney Moore - Managing Editor
Kaye Mitchell - Document Production/Graphics Specialist
Chris Gramer - Graphics Specialist

SUMMARY OF FINDINGS

The Albania Demographic and Health Survey (2008-09 ADHS) is a nationally representative survey of 7,584 women and 3,013 men age 15-49. Survey fieldwork was conducted during the period of October 2008 to April 2009.

The 2008-09 ADHS was conducted by the Institute of Statistics and the Institute of Public Health of the Republic of Albania. ICF Macro provided technical support for the survey. The U.S. Agency for International Development (USAID), the Swiss Cooperation Office in Albania (SCO-A), the United Nations Children's Fund (UNICEF), the United Nations Population Fund (UNFPA), and the World Health Organization (WHO), and the Spanish Agency for International Development Cooperation (AECID) provided funding for the survey.

Characteristics of Respondents

Albania is an ethnically homogeneous country; virtually all respondents are Albanian. The majority, approximately 55 percent, live in rural areas, with one-sixth of respondents in Urban Tirana. The average household size in Albania is 3.8 persons. Sixteen percent of households are headed by women. Three percent of households have orphans or foster children living with them. Ninety-four percent of households use an improved source of drinking water and 92 percent of households have improved sanitation facilities. More than half of Albanian households (52 percent) own agricultural land.

Almost all women and men in the sample have attended school. About half of women (47 percent) have completed primary education, while about one-fourth (24 percent) have completed secondary education. Four in ten men (37 percent) have completed primary education, while three in ten (30 percent) have completed secondary education. Thirteen percent of women and 12 percent of men have some university or higher education. Literacy is almost universal.

Thirty percent of women and 66 percent of men were employed in the seven days preceding the interview.

EDUCATION

The net attendance ratio is 95 percent for primary education and 56 percent for secondary education and the gender parity index is 0.99 and 0.96 , respectively. Fifty-five percent of children age 36-59 months attend an early childhood education programme.

Fertility

Fertility rates. The total fertility rate (TFR) indicates the number of children a woman would have if she passed through the childbearing years at the current age-specific fertility rates. For the three years preceding the survey, the estimated TFR was 1.6 children per woman, which is below replacement level.

The TFR for rural areas (1.8 births) is higher than that for urban areas (1.3 births). This urbanrural difference in childbearing rates can be attributed almost exclusively to fertility patterns among younger age groups. Although peak fertility occurs at age 25-29 in both urban and rural areas, the greatest absolute difference by urbanrural residence is in age group 20-24; agespecific fertility for women age 20-24 in urban areas is 64 per 1,000 live births, compared with 120 per 1,000 live births in rural areas.

Time trends. Comparing the results of the 2002 Albania Reproductive Health Survey and the 2008-09 ADHS shows a decline in the total fertility rate from 2.6 children per woman in 1999-2002 to 1.6 children per woman in 2006-2008, or a decline of one child per woman in the space of only about six years.

Age at first birth. Childbearing begins relatively late in Albania; three-fourths (75 percent) of women age 20-24 years have never given birth. Only 2 percent of young women age 15-19 have had a birth. Among women age 25-49 who have had a birth, the median age at first birth is 23.4 years.

Birth intervals. Research has shown that children born too soon after a previous birth (short birth interval), especially those born less than
two years after a previous birth, have an increased risk of morbidity and mortality. The median birth interval in Albania is 47 months; only 15 percent of births in the five years preceding the survey occurred within 24 months of a previous birth. Children in the Mountain region have the shortest birth interval (41 months).

Fertility preferences. Almost three-fourths (73 percent) of currently married women reported that they do not want to have another child, or are sterilized, while one in five (20 percent) want to have another child. The remaining 7 percent are either undecided whether to have another child or reported that they are unable to have another child (infecund).

Contraception

Knowledge and ever use. Knowledge of family planning is nearly universal in Albania, with 99 percent of women and almost 100 percent of men age 15-49 knowing at least one method of contraception. On average, married women reported knowing six methods of contraception while married men reported knowing four methods. Ninety-one percent of married women have used a method of contraception at some time, although only one in three (33 percent) have used a modern method.

Current use. More than two-thirds (69 percent) of married women are currently using a contraceptive method: modern methods (11 percent) and traditional methods (59 percent). By far the most common method used by currently married women is withdrawal (58 percent), followed by the male condom (4 percent), female sterilization (3 percent), and the pill (2 percent).

Women in urban areas are more likely to use contraception than women in rural areas (74 and 66 percent, respectively); they are also more likely to use modern methods than women in rural areas (12 and 10 percent, respectively). Contraceptive use increases with level of educa-tion-a larger proportion of university-educated women use modern methods (18 percent) than women with some secondary, professional, or technical education (12 percent), or primary 8 -year education (9 percent).

Trends in current use. Overall, contraceptive use has declined since the 2002 Reproductive Health Survey, from 75 to 69 percent, but the
proportion of currently married women age 15-44 using modern methods increased from 8 to 11 percent. The 2008-09 ADHS results indicate a decrease in the use of traditional methods, principally withdrawal.

Method discontinuation. Twenty-seven percent of family planning users in Albania discontinue using a contraceptive method within 12 months of starting its use. Discontinuation rates are high for pill users (43 percent) and condom users (32 percent), but lower for users of withdrawal (19 percent).

Future use. Among currently married non-users, about one in five (19 percent) reported that they intend to use family planning in the future, while 69 percent do not intend to use contraception in the future, and 12 percent are unsure. Among currently married non-users who intend to use contraception in the future, the majority reported withdrawal as their preferred method (56 percent), while 18 percent cited male condoms, and 12 percent favour the pill.

Reason not to use contraception. Of those who do not intend to use contraception in the future, the most common reasons given are fertilityrelated reasons (40 percent), followed by meth-od-related reasons (31 percent), particularly fear of side effects (19 percent). Respondent's opposition to using contraception (18 percent) was also a common response and, for those under age 30, fear of side effects (33 percent) and husband's opposition to using contraception (15 percent) were major reasons for not using a method in the future.

Source of supply. Public facilities provide contraceptive methods to the majority (53 percent) of users of modern methods, while 40 percent of users are supplied through private medical sources, and 7 percent get their methods through other sources such as shops.

Unmet need for contraception. Overall, 13 percent of currently married women in Albania have an unmet need for family planning: 3 percent for spacing births and 9 percent for limiting births. If women with unmet need for family planning were combined with women with met need for family planning, i.e., already using a family planning method (69 percent), the total demand for family planning would be 82 percent among currently married women.

Childhood Mortality

Childhood mortality levels. For the most recent five-year period, the level of under-five mortality in Albania is 22 deaths per 1,000 live births and infant mortality is 18 deaths per 1,000 live births.

Trends in childhood mortality. Results from the 2008-09 ADHS indicate that there has been a decline in childhood mortality over the five years preceding the survey. For example, infant mortality has declined from 26 deaths per 1,000 live births for the period 1992-2002 to 18 deaths per 1,000 live births for the period 2005-2009. There has been a similar decline in under-five mortality from 32 to 22 deaths per 1,000 live births.

Differentials in infant mortality. Infant mortality is higher in rural areas (24 deaths per 1,000 live births) than in urban areas (12 deaths per 1,000 live births). Infant mortality levels are also higher among children of poorer women (21 deaths per 1,000 live births) than among children of women in the higher wealth quintiles (15 deaths per 1,000 live births).

Maternal Health

Antenatal care. Albania has a well-developed health system with an extensive infrastructure of facilities that provide maternal care services. Overall, levels of antenatal care (ANC) and delivery assistance are high. Almost all pregnant women (97 percent) in Albania receive antenatal care from a skilled provider at least once during their pregnancy; 67 percent of women had the recommended four or more ANC visits during pregnancy. The proportion of women who had four or more ANC visits is substantially lower in rural areas than in urban areas (57 and 82 percent, respectively).

Regarding content of care, eight in ten pregnant women were weighed, while about nine in ten underwent other basic tests; 91 percent of women had their blood pressure measured, 88 percent had a urine sample taken, 87 percent of had a blood sample taken, and 95 percent had an ultrasound examination. However, less than half (48 percent) of pregnant women were informed about pregnancy complications.

Delivery care. Virtually all deliveries (99 percent) in Albania are attended by a skilled health provider and take place at health facilities
(97 percent). Twenty-two percent of births occur at home. Eighty-six percent of deliveries in health facilities are attended by an OB/GYN and 14 percent are attended by a nurse or midwife. The percentage of births delivered by C-section has increased from 13 percent in 2002 to 19 percent in the 2008-09 ADHS.

Postnatal care. Eighty-eight percent of all women with a birth in the past five years received a post-natal check-up. Fifty-nine percent received a medical check-up less than four hours after delivery and 13 percent received a check-up within the first day.

Child Health

Childhood vaccinations. The health cards maintained at health facilities are the primary source of vaccination information. At least 97 percent of children have received BCG vaccine, all three doses of DPT, polio and hepatitis B vaccines, and measles vaccine. Overall, 95 percent of children age 18-29 months are fully vaccinated and less than 1 percent have never received any vaccines.

Prevalence and treatment of ARI, fever and diarrhoea. Five percent of children under five had symptoms of acute respiratory infection (ARI) in the two weeks preceding the survey. Eight percent of children under five had fever in the two weeks preceding the survey and 71 percent of these children were taken to a health facility or provider for advice or treatment. Five percent of children under age five had diarrhoea in the two weeks preceding the survey. Six in ten children with diarrhoea (61 percent) were taken to a health care facility or provider for advice or treatment, and three-fourths (75 percent) received oral rehydration therapy (ORT) or increased fluids. Fluid intake was curtailed in onefourth (26 percent) of children with diarrhoea, a practice that increases the risk of dehydration. The vast majority (81 percent) of women who gave birth in the five years preceding the survey know about a solution prepared from packets of oral rehydration salts (ORS) that are effective in treating diarrhoea in children.

Child discipline. Sixty-eight percent of children age 2-14 who misbehaved experienced some form of psychological punishment in the month preceding the survey. Minor physical punishment was reported for 58 percent of children, while

14 percent were subjected to severe physical punishment.

Nutrition

Breastfeeding. Ninety-six percent of children under age five were breastfed at some time (ever breastfed), however, only 43 percent of last-born children ever breastfed began breastfeeding within one hour of birth (as recommended). Thirty-nine percent of children age 0-5 months were exclusively breastfed. The median duration of any breastfeeding is 15 months.

Infant and young child feeding (IYCF). Appropriate infant and young child feeding (IYCF) practices include timely initiation of feeding solid/semi-solid foods from the age of six months and increasing the amount of food and frequency of feeding as the child gets older while maintaining frequent breastfeeding. Only 19 percent of children age 6-23 months are fed according to all three IYCF practices. Girls (16 percent) are less likely than boys (21 percent) to be fed according to all three recommended IYCF practices.

Micronutrient intake. The results indicate that 88 percent of children age 6-35 months consume foods rich in vitamin A and 84 percent consume foods rich in iron on a daily basis. Only a small proportion (5 percent) of children age 6-59 months received iron supplements in the 7 days preceding the survey. Thirty-five percent of women with a birth in the five years preceding the survey reported taking iron tablets or syrup during the pregnancy for their last live birth. Among women reporting that they took iron supplements, the majority said that they took the supplements for less than 60 days.

Three-fourths (76 percent) of households were found to be using adequately iodized salt.

Anaemia. Overall, 17 percent of children age 6-59 months have some level of anaemia, including 11 percent of children who are mildly anaemic (10.0-11.9 g/dl) and 6 percent who are moderately anaemic ($7.0-9.9 \mathrm{~g} / \mathrm{dl}$). The prevalence of anaemia is substantially higher in rural areas than in urban areas, but decreases with increasing level of mother's education and wealth quintile.

Nineteen percent of women and 5 percent of men were found to be anaemic. Sixteen percent of women are mildly anaemic and 3 percent are moderately anaemic.

Nutritional status. Overall, the 2008-09 ADHS found that 19 percent of children under age five are stunted (height-for-age less than -2SD) and 11 percent are severely stunted (height-for-age less than -3SD); 9 percent are wasted (weight-for-height less than -2SD) and 6 percent are severely wasted (weight-for-height less than -3SD); and 5 percent are underweight for their age (weight-for-age less than -2SD) and 2 percent are severely underweight (weight-for-age less than -3SD). Twenty-two percent of children under five years are overweight or obese (weight-forheight greater than +2SD).

The nutritional status of Albanian children has improved gradually over the past decade. Stunting among children under five has declined from 32 percent in 2000 to 22 percent in 2005 to 16 percent in 2008-09. The proportion of children who are wasted has dropped from 11 percent in 2000 to 7 percent in 2005 to 7 percent in 2008-09. Finally, the percentage of underweight children has decreased from 14 percent in 2000 to 8 percent in 2005 to 6 percent in 2008-09.

Just over 3 percent of women in Albania have a Body Mass Index (BMI) below 18.5, indicating nutritional deficiency. In contrast, 39 percent of women are overweight or obese- 30 percent are overweight and 10 percent are obese. Levels of overweight and obesity increase substantially with age, but are lower in women with higher levels of education. The percentage overweight is higher for men (53 percent) than for women (39 percent) but men are slightly less likely to be obese than women (9 and 10 percent, respectively).

HIV/AIDS and Other Sexually Transmitted Infections

The current low level of HIV infection in Albania provides a unique window of opportunity for early targeted interventions to prevent further spread of the disease. Most cases of HIV in Albania have been diagnosed among women and men age 25-44. Since 2000, however, the proportion of women who have contracted HIV/AIDS has increased.

Knowledge and attitudes. Knowledge of HIV/AIDS is high in Albania, with 93 percent of women and 94 percent of men reporting that they have heard of AIDS. Using condoms (74 and 83 percent, respectively), limiting sexual inter-
course to one partner who is HIV negative and has no other partners (78 and 81 percent, respectively), and abstaining from sex (72 and 76 percent, respectively) were each recognized by about three-fourths of women and men as ways to reduce the risk of getting HIV. The results of the 2008-09 ADHS indicate that many Albanian adults lack accurate knowledge about the ways in which the AIDS virus can and cannot be transmitted. Less than three in ten women (28 percent) and just one in five men (20 percent) in Albania have comprehensive knowledge of HIV/ AIDS transmission and prevention.

Stigma surrounding AIDS is widespread in Albania. While 86 percent of women and 85 percent of men said they would be willing to care for a family member sick with AIDS in their home, only 27 percent of women and 23 percent of men said that they would not want to keep secret that a family member had the AIDS virus. Likewise, only 29 percent of women and 31 percent of men would buy fresh vegetables from a shopkeeper with the AIDS virus, and 41 percent of women and 31 percent of men said that an HIV-positive female teacher should be allowed to continue teaching. The percentage expressing accepting attitudes on all four measures is low: just 6 percent of women and men.

Sexual behaviour. Among respondents who had sexual intercourse in the 12 months preceding the survey, only 8 percent of men and a negligible proportion of women reported having had more than one sexual partner in the past 12 months and just over one-fourth of men (27 percent) and 7 percent of women reported having sexual intercourse with a non-marital, non-cohabiting partner (higher-risk sex).

Condom use. More than half of men (51 percent) and one-fourth of women (25 percent) reported using a condom at the most recent higherrisk sexual intercourse. Half (50 percent) of young men age 15-24 used a condom the first time they had sexual intercourse, compared with one-fifth (19 percent) of young women the same age.

Sexually transmitted infections. Eleven percent of women and 5 percent of men reported having an STI, an abnormal genital discharge, or a genital sore or ulcer in the 12 months preceding the survey. Twelve percent of men reported having an STI or other symptoms of STIs including painful urination and painful intercourse.

Adult Health

The major causes of death in Albania are similar to those in industrialized countries (cardiovascular diseases, cancer, and accidents).

Smoking. Survey results show that smoking is relatively rare among women (4 percent) but quite common among men (43 percent). The rate of smoking among women is highest for those age 20-24 (7 percent) and age 25-29 (10 percent). Among men, smoking rates increase with age to a peak of 56 percent among men age $30-34$, thereafter remaining steady at similar levels. Among women, smoking is concentrated among women living in Urban Tirana (14 percent), women with university or higher education (15 percent), and women in the highest wealth quintile (12 percent). Among current smokers, more than six in ten women (61 percent) and nine in ten men (93 percent) reported smoking 10 or more cigarettes in the past 24 hours.

Alcohol consumption. One-third of women (32 percent) and two-thirds of men (65 percent) reported ever drinking alcohol, and most drank alcohol in the 12 months preceding the survey30 percent of women and 63 percent of men. Less than 1 percent of women and 16 percent of men drank alcohol five or more days per week, and 5 percent of women and 23 percent of men reported drinking 1-4 days per week.

Hypertension. The 2008-09 ADHS included blood pressure measurement for consenting adults age 15-49. Overall, the results indicate that one in five women (20 percent) and 28 percent of men in Albania have hypertension (high blood pressure). As expected, hypertension is more common at older ages; among those age $45-49,40$ percent of women and 45 percent of men have hypertension, indicating that the disease is a serious health problem among older Albanians. Seventy-nine percent of women and 90 percent of men with high blood pressure are unaware that they are hypertensive.

Problems in accessing health care. Almost nine in ten women (87 percent) and four in five men (80 percent) age $15-49$ reported at least one problem in accessing health care. The most common problems reported by women and men are 'getting money to go' (56 and 62 percent, respectively), 'concern that no supplies or equipment are available’ (63 and 55 percent, respectively), 'concern that no drugs are available' (54 and

52 percent, respectively), and 'concern that no provider is available' (50 and 45 percent, respectively). Three in four women and men (79 and 71 percent, respectively) are not covered by any type of health insurance.

Out-of-pocket payments for health care are said to be widespread in Albania. Almost three in ten women and men (29 percent of women and 26 percent of men) who visited a public health facility were suggested to make an informal payment for the health care. Seven in ten women and men (72 percent and 68 percent, respectively) reported paying for medical care in the 12 months preceding the survey that they could have received for free. Among those who paid for medical care, the reason most commonly reported is to have better quality services (57 percent of women and 53 percent of men). Thirteen percent of women and men think that their health has declined 'very much' or 'some' in the past 12 months because of problems in paying for medical care; another 14 percent of women and 9 percent of men think that their health has declined ‘a little.'

Women's Status

Two in three women (66 percent) reported that they make decisions about their health care jointly with their husband or partner and 61 percent participate jointly in decisions about major household purchases. Fifty-seven percent of married women said they mainly make decisions about daily household purchases, while 63 percent decide jointly with their husband about visits to family or relatives.

The 2008-09 ADHS gathered information on women's and men's attitudes towards wife beating, a proxy for perceptions of women's status. Women and men were asked whether a husband is justified in beating his wife under certain circumstances: wife burns the food, wife argues with him, wife goes out without telling him, wife neglects the children, and wife refuses sexual relations. Men are more likely than women to agree with at least one of the reasons justifying a husband beating his wife: 36 percent of men compared with 30 percent of women.

The 2008-09 ADHS survey included questions on whether respondents think that a wife is justified in refusing to have sexual intercourse with her husband under three specific circumstances: she knows her husband has a sexually transmitted disease (STD); she knows her husband has sexual intercourse with other women; and she is tired or not in the mood. Overall, 63 percent of women agree that a woman is justified in refusing to have sexual intercourse with her husband for all three of the specified reasons; only 8 percent of women do not agree that a wife is justified in refusing sexual intercourse with her husband for any of the specified reasons. Men are less likely than women to agree with all three of the reasons justifying a wife refusing sexual intercourse with her husband (49 percent compared with 63 percent, respectively).

MILLENNIUM DEVELOPMENT GOAL INDICATORS

ALBANIA

1.1 Geography and Population

The Republic of Albania is a small country located on the Balkan Peninsula in south-eastern Europe. It has a surface area of 28,748 square kilometres. It shares a 172 km border with Montenegro to the north-west, a 115 km border with Kosovo to the north-east, a 151 km border with Macedonia to the north and east, and a 282 km border with Greece to the south and south-east. Its coastline is 487 km long. The lowlands of the west face the Adriatic Sea and the strategically important Strait of Otranto, which puts less than 100 km of water between Albania and the heel of the Italian 'boot' and links the Adriatic Sea to the Ionian and the Mediterranean Sea. Albania has coastline on the Adriatic Sea and the Ionian Sea. The country is characterized by three geographic areas-mountainous areas, mostly to the north and east, a central area, and a coastal area of lower lying land. Mount Korab is the highest point in Albania at 2,753 metres, located in the district of Dibra in the northeast of the country. The climate is considered a continental climate characterized by cold winters and hot summers.

Albania has 12 prefectures (or counties), under which there are 36 districts. The third-level administrative divisions, municipalities in urban areas or communes in rural areas, are below the prefectures and districts. The larger municipalities are called bashki in Albanian. The capital of Albania is Tirana.

Albania is a parliamentary democracy with a unicameral Parliament which is the legislative branch of government. In the executive branch, the president is elected by the Parliament for a fouryear term and eligible for a second term.

Albania's official population count registered in the 2001 Population and Housing Census was $3,069,275$ (INSTAT, 2002b). In 2008 the population of Albania was estimated at $3,170,048$ and the density was about 110 people per square kilometre. Compared with the population count in the 2001 Population and Housing Census, Albania's population has increased by approximately 106,748 people. The average life expectancy at birth for the period 2005-2008 was 72.1 years for males and 78.6 years for females. Life expectancy is higher in urban areas than rural areas-both women and men in urban areas live approximately 3 years longer than those in rural areas (INSTAT, 2008g). More than 98 percent of the population are ethnic Albanians with small groups of Greeks, Macedonians, Vlachs, Roma, Bulgarians and Serbs. Although religion was banned during the communist period and a majority of Albanians do not practice any religion, the population are nominally of three main religions-Muslims are found throughout the country, while Catholics are mostly in the north and Orthodox Christians are concentrated in the south.

1.2 History

The history of Albania as a region began over three millennia ago with certain tribes residing in the area. In the early times, much of the area was inhabited by the ancient Illyrians, possible ancestors of the Albanians. In the Middle Ages, the nucleus of the Albanian state was formed and the region was named Arberia. By the early $15^{\text {th }}$ century most of the Balkan Peninsula was under the control of the Ottoman Empire, with the exception of a coastal area that makes up much of presentday Albania. Albanian resistance throughout the mid- $15^{\text {th }}$ century kept the Ottoman Turks from controlling the region but led to an almost continuous state of warfare. Much of this resistance against the Ottomans was led by Gjergj Kastrioti Skenderbeg from 1443 to 1468 . After his death the resistance continued until 1478, but once the alliances created by Skanderbeg failed, the Ottomans
conquered the territory and Albania became part of the Ottoman Empire and remained so for the next 400 years.

The weakening of the Ottoman Empire and the growth of a nationalist movement that started around 1878 ultimately led to a series of popular uprisings against attempts to spread Turkish culture and customs in Albania. These uprising that started around 1910 culminated in the Declaration of Independence on $28^{\text {th }}$ November 1912. Independence was recognized by the major European powers in 1913, but the delineation of the borders left many Albanian communities outside Albania. The new state collapsed shortly after the outbreak of World War I in 1914 and was under the influence of various powers, including Italians, Serbians, and Greeks until the 1920s.

In 1924 Ahmet Zogu overthrew the republican government of Fan Noli and became president. In 1928 Albania was declared a kingdom crowning Zogu as King Zog I. In the early years of his reign, King Zog signed numerous accords with Italy in an attempt to stabilize and modernize the country. Later, King Zog tried to reduce his country's economic and military dependence on Italy, but on $7{ }^{\text {th }}$ April 1939 Mussolini invaded Albania. King Zog fled Albania, and the Italian King Victor Emmanuel III was declared King over Albania. During this period a policy of forced Italianization was imposed on the Albanian population. When the government of Mussolini collapsed with the allied invasion of Italy, Germany occupied Albania in September 1943. On November $28^{\text {th }} 1944$, the resistance movements liberated Albania from German occupation, with the communist partisans as the main resistance force. The Communist partisans, led by Enver Hoxha, had fought against the fascist domination of their country since November 1941.

The country became the People’s Republic of Albania on 11 January 1946, with Enver Hoxha as the country's president. The country successively allied itself with the communist world, first with Yugoslavia until September 1948, and then with the USSR, when it became a Stalinist state. This status continued until 1960 when strained relations over de-Stalinization led to the break off of diplomatic relations in 1961. Albania left the Warsaw Pact in 1968 following the Soviet invasion of Czechoslovakia. With the loss of these political ties, the country re-oriented itself towards the People's Republic of China. Following the death of Mao Zedong in 1976 and changes that took place in China, this phase ended in 1977. This was followed by a period of isolation during which the country was without any allies.

Enver Hoxha remained in power until his death in 1985. His successor, Ramiz Alia, gradually introduced reforms, relaxed restrictions and moved the country away from its international isolation. Democratic reforms were introduced with the formation of the Democratic Party of Albania in 1990. The multi-party elections held in 1991 were won by the former communists.

The former communists were overthrown in the elections of March 1992, when the Democratic Party of Albania, led by Sali Berisha, took power. Economic and democratic reforms were introduced under Berisha's rule but the economy remained weak, and the collapse of pyramid schemes in late 1996 and early 1997 led to unrest. In the elections of June 1997 the Socialist Party of Albania came to power; Berisha resigned and was replaced by Rexhep Mejdani as President of Albania. Over the past decade, a period of economic recovery has set in motion that has led the country towards closer relations with the European Union. Albania has since seen two presidential elections, with Bamir Topi becoming President in 2007. The general elections of 2005 saw Berisha elected as Prime Minister, a position to which he was re-elected in 2009, leading a coalition government.

Albania became a full member of NATO in 2009. The country made its application for the status of European Union (EU) candidate country on $28^{\text {th }}$ April 2009.

1.2.1 The Albanian Language

The language of Albania is Albanian, with two principal dialects-Gheg and Tosk. It is an Indo-European language, and like Greek, it does not belong to any of the major language subgroups (Germanic, Latin, or Slavic). Some scholars believe that the Albanian language derives from Illyrian. The modern Latin-based Albanian alphabet is the result of long evolution. Before the creation of the unified alphabet, Albanian was written in six different alphabets, with several sub-variants. The history of the Albanian alphabet is closely linked to the influence of religion among Albanians. The writers from the North under the influence of the Catholic Church used the Latin alphabet; those from the South under the influence of the Greek Orthodox Church used the Greek alphabet, while other regions under the influence of Islam used the Arabic alphabet.

1.2.2 The Albanian Flag

The national flag of Albania is red with a black two-headed eagle in the centre. It is claimed to be derived from the seal of Gjergj Kastriot Skenderbeg, the $15^{\text {th }}$ century Albanian hero who led the revolt against the invasion of the Ottoman Empire. The National Assembly of Vlora, which proclaimed Albanian Independence from the Ottoman Empire on $28^{\text {th }}$ November 1912, approved the flag as a symbol of the Albanian nation. The current flag was officially adopted on $7^{\text {th }}$ April 1992 by the first multi-party Albanian Parliament after the communist collapse.

1.3 ECONOMY

Over the past two decades, the economy of Albania has changed from a centralized to a free market economy and the country has experienced slow but steady economic progress. During this transition, many questions related to privatization, and proper business practices and regulations have remained unresolved.

The end of communism occurred later in Albania than in most of the rest of Eastern Europe. It was accompanied by economic turmoil and extensive emigration, particularly to Italy and Greece. Since the arrival of democracy, the government has made economic reform a key policy and has led the country towards becoming a market economy. As part of the reforms, most agriculture, government-owned housing, and small industry were privatized. This was followed by the privatization of transport, public services, and small and medium-sized enterprises. As a result of the economic reforms and transition, Albania is experiencing a development boom as the country's telecommunication system and infrastructure (such as transportation and utilities) are being revamped.

Agriculture has long been the backbone of the Albanian economy and in 1990 agriculture employed more than half of the work force and was responsible for one-third of the country's net material products. That same year, domestic farm products, which accounted for two-thirds of household expenditures, made up one-quarter of all exports. Following the collapse of the communist regime in 1991 and the abandonment of central planning, collective farms struggled or failed and the agricultural sector shrank by more than 20 percent. The country's farms were no longer able to supply adequate amounts of food to urban areas, nor were they able to meet the needs of Albanian factories for raw materials. In 1992, land privatization and free market measures, including the elimination of fixed prices, saw the agricultural sector rebound. In 2007, just over half of the economically active population was in the agricultural sector (INSTAT, 2008f).

Tourism in Albania is still in its infancy having started only since the fall of communism. Albania is a country of great natural beauty which includes sandy white Mediterranean beaches, mountains and highlands, fertile plains, lakes and rivers, and natural monuments. Historical attractions include Illyrian, Greek and Roman ruins, castles and other structures from the Middle Ages, as well as world heritage sites at Butrint, Gjirokaster and Berat. Albania's natural resources include petroleum, natural gas, bauxite, chromate, copper, iron, gold, nickel, salt, timber, and water used for producing hydropower.

The efficient social policies launched over the past several years, combined with the promotion of economic development, have enabled large numbers of people to overcome poverty. However, poverty remains a concern of the Albanian government; the poverty level in Albania is one of the highest in Europe. The high gross domestic product (GDP) growth rates, and wage and pension increases have caused a reduction in poverty. The proportion of the population whose monthly per capita consumption is below 4,891 Lek (in 2002 prices), fell from 25 percent in 2002 to 19 percent in 2005 to 12 percent in 2008. This means that roughly 200,000 out of about 575,000 poor people were lifted out of poverty by 2005. The 'extremely poor' population, defined as those with difficulty meeting basic nutritional needs, decreased from about 5 percent in 2002 to 4 percent in 2005 to 1 percent in 2008 (INSTAT, 2009b).

1.4 Characteristics of the Health System

1.4.1 Health Care System

The health system in Albania is mainly public. The state is the major provider of health services, health promotion, prevention, diagnosis and treatment. The private sector, which is still developing, covers most of the pharmaceutical and dental services, as well as some clinics for highly specialized diagnosis, mostly in Tirana and one or two other major cities. The Ministry of Health (MoH) is the leader in health policy development and planning and in the implementation of health strategies.

Diagnostic and curative health services in Albania are organized in three levels: primary health care, secondary hospital services, and tertiary hospital services (Figure 1.1). The public health services are provided within the framework of primary health care and are coordinated and supervised by the Institute of Public Health. Other national health institutions that report to the MoH and that provide specific services are: the National Centre for Blood Transfusion, the Centre for Child Development and Growth, the National Centre for the Quality, Safety and Accreditation of Health Institutions, the National Centre for Drug Control, the Centre the Continuing Education, and the National Centre of Biomedical Engineering.

Figure 1.1 Organization of Diagnostic and Curative Health Services in Albania

1.4.2 Primary Health Care

The main mission of the Primary Health Care (PHC) system in Albania is to ensure that the population has the best possible health conditions, in accordance with the main goal of the MoH , 'Health for All'. PHC services at the community level represent the first level of access to health care. The PHC system places high priority on the hygiene and epidemiological situation of the population and on the population's need for health services. Integrated PHC services are especially cost effective and efficient in responding to emergency health situations. In December 2006, the MoH introduced the Reform of Primary Health Care with the main goal of redirecting the PHC system into a single-source setting. The reform is based on the Decision of the Council of Ministers (No. 857), 20 December, 2006 'Financing of the Primary Health Care Services.' The implementation of the Reform of Primary Health Care started in January 2007. Its main elements are:

- Pooling all PHC funds at the Health Insurance Institute;
- Payment for PHC services based on facility's performance (i.e., quality of PHC services provided)
- Autonomy of health centres to set their own objectives and to manage their own resources according to the services provided;
- Health services provided in accordance with the package of services approved by MoH;
- Combining public and private funding by expanding services to include those financed through the PHC insurance scheme;
- Improved planning of PHC services at the regional level to better meet population needs.

1.4.3 Country Epidemiological Profile

The infant mortality rate (IMR) and under-five mortality rate (U5MR) in Albania are relatively high compared with other European countries even though both rates have decreased steadily over the years (see Chapter 8 for more details).

Maternal mortality in Albania is also high compared with other European countries. The maternal mortality rate (MMR) in Albania was estimated at 17 deaths per 100,000 live births in 2006 (UNDP, 2007). With about 35,000 live births per year in Albania, there were 6 maternal deaths in 2006.

Albania presents some peculiarities concerning its epidemiological profile. While the mortality patterns are similar to those observed in other developed European countries, the morbidity patterns are more similar to those of developing countries. There is a high prevalence of infectious diseases such as diarrhoeal diseases that are related to poor environmental conditions, while, at the same time, vaccinepreventable diseases such as diphtheria, measles, rubella, and neonatal tetanus are well on their way to being eliminated from the population or, like polio, have already been eliminated. While the burden of communicable diseases is generally decreasing, cases of HIV infection and tuberculosis (TB) are increasing. There are 0.7 new cases of HIV infection and 18 new cases of tuberculosis per 100,000 population per year. Overall, the incidence rates of sexually transmitted infections, such as syphilis and gonococcus, are generally low compared with European Union countries. Brucellosis has remained stable during the past two years after more than 10 years of an apparent epidemic increase. The relatively high incidence of Hepatitis A infections is related to the main route of transmission, person to person (the faecal-oral route) and the high prevalence of diarrhoeal diseases in Albania. The incidence rate of Hepatitis B is more than 8 new cases per 100,000 population per year, which puts Albania in the 'high endemic' category. However, there has been a steady decrease in the incidence and morbidity related to Hepatitis B since the mid-1990s due to the mandatory vaccination of all children starting in 1994, as well as the ongoing significant improvements in the medication procedures. Communicable diseases cause about 1 percent of all deaths in Albania (Kakarriqi, 2002).

The prevalence of cardiovascular diseases and cancer are increasing in the country. Cardiovascular diseases are the leading cause of death, accounting for 52 percent of all deaths. Within this group, the leading cause of morbidity and mortality is ischemic heart disease, accounting for 7 percent of the disease burden and 15 percent of all deaths (128 deaths per 100,000 population per year). These rates are lower than those reported by other Central and Eastern European countries but higher than Western European countries.

The breast cancer incidence rate in Albania is 20 new cases per 100,000 population per year, which is lower than in European Union (EU) countries. However, the incidence rate is increasing and the increase cannot be explained by recent demographic changes alone. Furthermore, there are 13 new cases of lung cancer and 4 new cases of cervical cancer per 100,000 population per year in the country, a rate slightly higher than that observed in EU countries.

Mental health is another important component of health affected by recent demographic, social and economic changes in Albania. The suicide rate is 4 suicides or self-inflicted injuries per 100,000 population per year, which is lower than in other EU countries; however, the rate is increasing. Neuropsychiatric disorders account for 20 percent of the total disease burden and 3 percent of all deaths.

Unintentional injuries are responsible for 43 deaths per 100,000 population per year, a figure much higher than the rates reported in Western European countries. In Albania, injuries from traffic accidents cause 12 deaths per 100,000 per year.

Respiratory diseases cause 6 percent of all deaths, or 47 deaths per 100,000 population. Smoking alone accounts for 22 percent of the disease burden.

Alcohol consumption causes 6 percent of the disease burden, obesity causes an estimated 10 percent, and physical inactivity causes 5 percent of the disease burden (Albanian Ministry of Health, 2009; Instituti Shendetit Publik, 2004).

1.4.4 Hospital Services

In Albania the second level of health care is provided by hospitals. There are over forty public hospitals in the country, including 22 District Hospitals, 11 Regional Hospitals, 4 University Hospitals, 1 University Trauma Centre, 2 Psychiatric Hospitals, and 1 National Centre for Child Development and Growth.

With continuous support from both the government and donors, hospital infrastructure and medical equipment and supplies have improved substantially in recent years. It is imperative that hospitals use standardized treatment protocols that not only ensure the quality of services, but also the efficient use of financial resources. The MoH is in the process of approving a Law on 'Financing of Hospital-Based Health Care Provided in Public Hospitals from the Obligatory Scheme of Health Insurance'. Considering hospitals a priority, the MoH will continue to finance the Psychiatric Hospitals, the National Service of Blood Transfusion, the Electro-medical Repair Services Centre, and the Helicopter Emergency Transport Unit from the government budget (Albanian Ministry of Health, 2009; Albanian Ministry of Health, 2002; Albanian Ministry of Health, 2004).

1.4.5 Pharmaceutical Services

The pharmaceutical services in Albania are mainly private. Some of the most essential elements of this network of services are: 3 local private manufacturers, 216 pharmaceutical warehouses, 1,020 individual pharmacies, 210 pharmaceutical private agencies, and 42 hospital pharmacies, which are the only public pharmaceutical institutions. The main goals of the pharmaceutical services are to use rationally, effectively, and safely a great number of available, good quality drugs and to provide drugs that are not only safe and high quality, but also affordable for by the population. Although the pharmaceutical services are mostly private, they are monitored rigorously by the MoH and the National Centre for Drug Control. There are currently a large number of registered drugs in Albania (3,400 drugs) and the number has been increasing steadily.

Two commissions were established by the Council of Ministers within the MoH structure to cover pharmaceutical services:

- Drug Commission for Drafting and Reviewing the Reimbursement List. Once a year this commission selects the drugs that are going to be reimbursed by the Health Insurance Institution.
- Drug Pricing Commission. Once a year this commission approves the maximum cost, insurance, and freight prices for imported and locally manufactured drugs.

The MoH and other institutions in charge work closely with various European drug agencies to ensure that the Albanian Pharmaceutical Legislation follows closely the European pharmaceutical guidelines (Albanian Ministry of Health, 2009; Albanian Ministry of Health. 2002; Albanian Ministry of Health, 2004).

1.4.6 Health Insurance Institute

Health insurance in Albania has been institutionalized in accordance with the law 'On Health Insurance in the Republic of Albania’ (No. 7870), 13 October, 1994. This is a Bismarck-type health insurance scheme which started in March 1995. The institutionalization of health insurance is an important element of the health system reform and is crucial to financing health care, increasing health resources, and ensuring improvements in the quality of health services.

The health insurance scheme covers primary health care services, hospital care and part of the medication costs of a list of 405 approved and registered drugs. The Health Insurance Institute (HII) will have a growing role in development of the health insurance scheme because it is responsible for covering primary health care and hospital care.

1.4.7 Human Resources

One of the main priorities of the MoH is capacity building of human resources in the health sector. In Albania, there are 2,039 general practitioners (GPs), 1,587 specialized physicians and 12,746 nurses. Figure 1.2 shows the percent distribution of health professionals per 100,000 population by type of health professional (Albanian Ministry of Health, 2009).

Figure 1.2 Distribution of Health Professionals Per 100,000 Population

1.4.8 Sources of Public Financing for Health

After the initiation of health sector reform in 1995, Albania moved from direct government funding of the health sector to a new funding mechanism that is a combination of general taxation, payroll taxes, and contributions from international donors (Albanian Ministry of Health, 2003; Nuri, 2002).

The main funding mechanisms of the health sector are:

- General taxes, the portion of the state budget allocated to health care expenditure (90 percent)
- Payroll taxes, that go to the Health Insurance Institute (HII) for non-budgetary employers and employees (7 percent)
- International donors (3 percent)

The major public health sector financing agents are the MoH, which covers two-thirds of the overall budget, and the HII, which covers about one-fourth of the overall budget. The other agents are the Ministry of Defence (financing the Military Hospital) and local government units responsible for the building and maintenance of primary health care facilities (Albanian Ministry of Health, 2003; Albanian Ministry of Health, 2009). Figure 1.3 shows the distribution of health funds in Albania according to the type of services.

Figure 1.3 Distribution of Health Funds According to the Type of Service

Note: Total for 2008: 30,348 million Lek

1.5 Objectives and Organization of the Survey

The 2008-09 Albania Demographic and Health Survey (ADHS) is the first DHS survey carried out in Albania. It was implemented by the Institute of Statistics (INSTAT) and the Institute of Public Health (IPH), of the Ministry of Health. ICF Macro provided technical assistance to the ADHS through funding from the United Nations Children’s Fund (UNICEF) and the United State Agency for International Development (USAID)-funded MEASURE DHS programme. Local costs of the survey were supported by USAID, the Swiss Cooperation Office in Albania (SCO-A), UNICEF, the United Nations Population Fund (UNFPA), and the World Health Organization (WHO).

Data collection was conducted from 28 October, 2008 to 26 April, 2009 using a nationally representative sample of almost 9,000 households. All women age 15-49 in these households and all men age 15-49 in half of the households were eligible to be individually interviewed. In addition to the data collected through interviews with these women and men, capillary blood samples were collected from all children age 6-59 months and all eligible women and men age 15-49 for anaemia testing. All children under five years of age and eligible women and men age 15-49 were weighed and measured to assess their nutritional status. Finally, blood pressure (BP) was measured for eligible women and men in the households selected for the men's interview to estimate the prevalence of hypertension in the adult population.

The 2008-09 ADHS is designed to provide data to monitor the population and health situation in Albania. Specifically, the 2008-09 ADHS collected information on fertility levels, marriage, sexual activity, fertility preferences, knowledge and use of family planning methods, breastfeeding practices, nutritional status of women and young children, childhood mortality, maternal and child health, and
awareness and behaviour regarding AIDS and other sexually transmitted infections. Additional features of the 2008-09 ADHS include the collection of information on migration (out-migration, returning migrants and internal migration), haemoglobin testing to detect the presence of anaemia, blood pressure (BP) measurements among the adult population, and questions related to accessibility and affordability of health services. The information collected in the 2008-09 ADHS provides updated estimates of an array of demographic and health indicators that will assist in the development of appropriate policies and programmes to address the most important health issues in Albania.

The purpose of this report is to present a comprehensive analysis and presentation of the results of the 2008-09 ADHS survey. Where possible, information on trends is presented using indicators from previous surveys, namely, the 2002 Reproductive Health Survey (RHS) and the 2000 and 2005 Multiple Indicator Cluster Surveys (MICS). However, the reader should bear in mind that there is a 3 to 9-year interval between these surveys and the 2008-09 ADHS.

1.5.1 Sample Design and Implementation

The 2008-09 Albania Demographic and Health Survey is based on a representative probability sample of almost 9,000 households. This sample was selected in such a manner as to allow separate urban and rural, as well as regional-level estimates for key population and health indicators, e.g., fertility, contraceptive prevalence, and infant mortality for children under five.

The 2008-09 ADHS utilized a two-stage sample design. The first stage involved selection of a sample of primary sampling units (PSUs) from the PSUs used for the 2008 Living Standards Measurement Study (LSMS). In total, 450 PSUs were selected for the ADHS sample, including 245 urban PSUs and 205 rural PSUs, covering 4 geographic domains-mountains, central, coastal, and urban Tirana. A listing of each of the selected PSUs was carried out in preparation for the LSMS. The ADHS survey selected 20 households from the updated household listing in each PSU, excluding those households selected for the LSMS. In two PSUs, numbers 27 (13 households) and 172 (17 households), there were less than 20 households in the re-listed PSU—all households were selected in those cases. In a further 6 PSUs there were less than 20 households after the LSMS households were excluded. In these PSUs some of the households from the LSMS sample were included to bring the number of households selected up to 20. After selection of the households, the sample selection forms were printed and the list of selected households was adapted for use in a Personal Digital Assistant (PDA).

All women age 15-49 in the total sample of households, and all men age 15-49 in the subsample of half of the households, who were either usual residents of the households or visitors present in the household on the night before the survey were eligible to be interviewed.

1.5.2 Questionnaires

Three questionnaires were used for the 2008-09 ADHS: the Household Questionnaire, the Women's Questionnaire and the Men's Questionnaire. The content of these questionnaires was based on model questionnaires developed by the MEASURE DHS programme.

Consultations with partners were held in Tirana to obtain input from various national and international experts on a broad array of issues. Based on these consultations, the DHS model questionnaires were modified to reflect issues relevant in Albania concerning population, women and children's health, family planning, and other health issues. After approval of the final content by the Steering and the Technical Committees, the questionnaires were translated from English into Albanian.

The Household Questionnaire was used to list all the usual members and visitors in the selected households and to identify women and men who were eligible for the individual interview. Basic information was collected on the characteristics of each person listed, including their age, sex,
education, and relationship to the head of the household. In addition, a separate listing and basic information on former household members who had emigrated abroad was collected. The Household Questionnaire also collected information on characteristics of the household's dwelling unit, such as the source of water, type of toilet facilities, materials used for the floor and roof of the house, and ownership of various durable goods. A module was included to obtain information about methods used in the household for disciplining children; the information was gathered concerning one selected child in the age range 2-14 years. Finally, height and weight measurements, and the results of haemoglobin measurements for consenting women and men age 15-49 years and children age 6 to 59 months were recorded in the Household Questionnaire. The haemoglobin testing procedures are described in detail in the next section.

The Women's Questionnaire was used to collect information from all women age 15-49. These women were asked questions on the following topics:

- Background characteristics (education, residential history, media exposure, etc.);
- Reproductive history;
- Knowledge and use of family planning methods;
- Fertility preferences;
- Antenatal and delivery care;
- Breastfeeding and infant feeding practices;
- Vaccinations and childhood illnesses;
- Marriage and sexual activity;
- Woman's work and husband's background characteristics;
- Infant and child feeding practices;
- Childhood mortality; and
- Awareness and behaviour about AIDS and other sexually transmitted infections (STIs).

The Women's Questionnaire had a number of important additions not present in the DHS model questionnaire. First, the BP readings were taken for all women age 15-49 that lived in the households selected for the men's survey. Secondly, a vaccination module was added for each child under the age of five years to be completed at the local health clinic or centre. As indicated by the 2005 MICS survey findings and according to child health experts, immunization information in Albania is more frequently kept at the health clinics or centres than on an immunization card or child health book in the mother's possession. The purpose of this module was, therefore, to collect information on immunizations from the local health clinics or centres in addition to that collected during the woman's interview. The vaccination module provides better quality immunization indicators because information gathered during the interview is augmented with information from the local health facilities. Additionally, a series of questions were asked to assess the occurrence of chronic illnesses or disabilities and acute illnesses or injuries among eligible women. Finally, eligible women were asked a number of questions aimed at assessing the accessibility and affordability of health services in the country.

The Men's Questionnaire was administered to all men age 15-49 living in every second household in the ADHS sample. The Men's Questionnaire collected much of the same information as the Women's Questionnaire, but was shorter because it did not contain questions on reproductive history, maternal and child health, and nutrition.

An innovative aspect of the 2008-09 ADHS was the use of Personal Digital Assistants (PDAs) for the data collection, rather than paper questionnaires. The survey used Hewlett Packard iPAQ 212 PDAs with the Windows Mobile 6 operating system. The full Household, Women’s and Men's Questionnaires were programmed in the PDAs using the software package CSPro (Census and Survey Processing). Full survey and data management, range, skip and consistency checking were built into the data capture system. Data were backed up to a secondary storage in the PDAs as soon as the interview was completed and were copied to the supervisor's PDA at the end of each day. Data
were sent back to the central office at INSTAT electronically on a regular basis, typically every one or two weeks. Paper questionnaires were available to interviewers in case of equipment failure.

All aspects of the ADHS data collection were pre-tested in June-July, 2008. A total of 19 trainees drawn from INSTAT and IPH staff were trained for two weeks by staff from ICF Macro. The trainees were then dispatched to the field to conduct the ADHS pre-test. The pre-test provided the opportunity to review the questionnaire content and language, logistics, equipment needs, PDA software, and general protocols for the survey. In total, approximately 120 households in urban and rural areas were interviewed with 100 women's interviews and 30 men's interviews. The lessons learned from the pre-test were used to finalize the survey instruments and logistical arrangements.

1.5.3 Biomarkers

The 2008-09 ADHS included the collection of three types of biomarkers: (1) anthropometric measurements; (2) capillary blood samples for anaemia testing; and (3) blood pressure measurements. Each interviewer and team supervisor was trained to perform all three types of measurements.

Anthropometric measurements

Weight and height measures were collected for all children listed in the Household Questionnaire born since January 2003 and all women age 15-49. In households selected for the Men's Questionnaire (half of all households), all men age 15-49 were also measured. Weight data were obtained using Seca 881 scales with digital screens, as recommended by UNICEF, and were capable of collecting mother-and-baby measurements as well as individual measurements. For measuring height (or length), two separate pieces of equipment were used. Seca 416 Infantometres were used to measure recumbent length of infants and children less than 24 months of age. For children 24 months of age or older, as well as adult women and men, Sec 214 Stadiometres were used.

Haemoglobin testing

Haemoglobin testing is the primary method of anaemia diagnosis. Reliable measures are obtained using the HemoCue system. In all households selected for the 2008-09 ADHS survey, women age 15-49 and children age 6 to 59 months were tested for anaemia; in the households selected for the men's survey (half of all households), men age 15-49 were tested for anaemia. A consent statement was read to the eligible respondent or to the parent or responsible adult for children and young unmarried women and men age $15-17$. This statement explained the purpose of the test, informed them that the results would be made available as soon as the test was completed, and requested permission for the test to be carried out.

Before taking any blood, the finger was wiped with an alcohol swab and allowed to air dry. Then, the palm side of the end of the third or fourth finger was punctured with a sterile, non-reusable, self-retractable lancet. A drop of blood was collected on a HemoCue microcuvette, which serves as a measuring device, and placed in a HemoCue photometer where the results were displayed. An informative brochure was given to each household explaining what anaemia is, its symptoms, and measures to prevent anaemia. Each person whose haemoglobin level was tested was given their results. In addition, each person whose haemoglobin level was lower than the recommended cut-off point was given a written referral recommending immediate follow up with a health professional.

Blood pressure measurements

Blood pressure was measured for all women and men interviewed in the households selected for the men's survey (half of all households). Interviewers were provided with the Omron HEM711ac blood pressure monitor-a fully automatic, digital oscillometric blood pressure measuring device with automatic upper-arm inflation and automatic pressure release. Three measurements of systolic and diastolic blood pressure (measured in millimetres of mercury (mmHg)) were taken during
the survey interview with an interval of at least 10 minutes between measurements. At the end of the interview, respondents were provided information about their average blood pressure reading and advised to see a medical provider for further screening if that reading fell outside normal ranges according to internationally recommended guidelines (WHO, 1999).

1.5.4 Field Staff and Fieldwork

Fieldwork training was conducted between 1 October and 24 October, 2008 in Durres. A total 82 trainees (47 female and 35 male trainees) took part in the main survey training. IPH and INSTAT selected the trainees from a large pool of approximately 200 candidates. The trainees were recruited on the basis of their education, prior experience as interviewers or supervisors in other household surveys, interest and ability to work with PDAs, any other related experience and their performance during the selection interview. Trainees were divided into two classrooms due to the large number of trainees; the second group received the same training as the first group and from the same trainer, but with a half day delay. Interviewer training was conducted mostly in Albanian by a team of trainers. The training team consisted of two consultants from ICF Macro and staff from INSTAT and IPH. Several guest lecturers from the Ministry of Health and IPH made presentations on Albania's family planning, maternal and child health, and HIV/AIDS programmes. All participants were trained on interviewing techniques and the content of the ADHS questionnaires. In addition, participants were also trained to conduct anthropometry measurements, perform haemoglobin testing, and take blood pressure measurements.

The training was conducted following the standard DHS training procedures, including class presentations, mock interviews, and written tests. All of the participants were trained on how to complete the Household Questionnaire, the Women's Questionnaire and the Men's Questionnaire. The training first focused on a particular module of the questionnaire using the paper questionnaire, covering the details of the subject matter and data collection issues, and explaining how to complete the questionnaire on paper. This was followed by training on the same module using the PDA, with mock interviews, one-on-one interviews, and small group practices.

In addition to in-class training, participants practiced taking anthropometric measures and conducting anaemia testing on children at local kindergartens. Trainees also conducted three rounds of field practice to gain more experience in interviewing, anthropometry, anaemia and blood pressure measurements, and fieldwork logistics and team dynamics. While both female and male interviewers interviewed respondents for the Household Questionnaire, only female interviewers interviewed women eligible for the Women's Questionnaire and only male interviewers interviewed men eligible for the Men's Questionnaire. Participants selected as field supervisors were given an additional two days of training on how to supervise fieldwork and ensure the collection of good quality data.

Twelve teams were constituted for the fieldwork. Each team was made up of a supervisor, three female interviewers, two male interviewers, and a driver. Interviewers and supervisors were selected on the basis of in-class participation, field practice, and eight theoretical assessment tests. The most experienced trainees, those who had participated in the pre-test, and those who did extremely well in the practices and the tests were selected to be supervisors.

IPH and INSTAT supervised all aspects of fieldwork activities. For this purpose, four quality control (QC) teams were formed with one staff person from each institution in each team. The quality control teams were responsible for between two and four interviewing teams (depending on the locality and the difficulty of accessing the teams). Selection of the quality controls teams was based on full participation in the pre-test training or the main survey training and practice, thorough experience with the full ADHS questionnaire, and ability to use and resolve problems on the PDA. ICF Macro followed the progress of fieldwork by receiving approximately every two weeks a standard set of quality control tables generated from the most recently collected data. In addition, ICF Macro staff visited 6 of the 12 interviewing teams and, along with the QC team members, observed fieldwork, reviewed progress, and checked the quality of fieldwork.

Data collection took place over six months, from late October 2008 to April 2009. On average, each team took about three days to complete one PSU, taking advantage of early mornings and late evenings to find respondents at home.

1.5.5 Data Processing

Because the 2008-09 ADHS used PDAs for data collection, data processing activities were an integral part of all survey activities. Throughout data collection, range and consistency checks were applied to the data collected, and interviewers reviewed and corrected the data as needed. At the end of each interview the data collected were backed up to secondary storage within the PDA. As soon as data collection for the day ended, the data for the completed interviews were transferred via Bluetooth from the interviewer's PDA to the supervisor's PDA, and the household, women's and men's questionnaires were reconciled and automatically checked against the list of selected households.

After all interviewing was completed for the PSU, and the supervisor had received all data for that PSU, all questionnaires were checked for completeness before being prepared for transfer to the central office at INSTAT in Tirana. The data recorded in the PDAs from the completed PSUs were downloaded to desktop computers and sent from the field to INSTAT headquarters in Tirana on a regular basis, typically every one to two weeks. The data received at INSTAT were checked for completeness and edited by data processing personnel who were specially trained for this task. All programs for processing the ADHS were prepared using the Census and Survey Processing System (CSPro). On a weekly basis, a set of data quality tables was prepared based on the data received; these were used to provide feedback to the interviewing teams on their performance and to advise them of any problems detected.

Following the completion of fieldwork, additional data processing was performed to aggregate all data, complete secondary data editing and date imputation, compute sampling weights and prepare the data files for analysis. This phase of the survey was completed in late May 2009.

1.5.6 Response Rates

Table 1.1 shows response rates for the 2008-09 ADHS. A total of 8,994 households were selected in the sample, of which 8,168 were occupied at the time of fieldwork. This difference between selected and occupied households is largely due to structures found to be vacant or nonexistent. The number of households successfully interviewed was 7,999, yielding a household response rate of 98 percent.

In the households interviewed in the survey, a total of 7,733 eligible women were identified; interviews were completed with 7,584 of these women, yielding a response rate of 98 percent. In a sub-sample of half of the households in the ADHS sample, a total of 3,144 eligible men were identified; interviews were completed with 3,013 of these men, yielding a men's survey response rate of 96 percent. Household response rates are slightly lower in urban areas than in rural areas, while the opposite is seen for individual response rates. The response rates for women and men in urban areas (99 and 98 percent, respectively) are slightly higher than the response rates for their counterparts in rural areas (98 and 94 percent, respectively). Response rates vary little by region, although urban Tirana has slightly lower response rates for households (97 percent), and slightly higher response rates for eligible women and men (99 percent).

The principal reason for non-response among both eligible women and men was the failure to find individuals at home despite repeated visits to the household.

Table 1.1 Results of the household and individual interviews
Number of households, number of interviews, and response rates, according to residence and region (unweighted),
Albania 2008-09

Result	Residence		Region				Total
	Urban	Rural	Coastal	Central	Mountain	Urban Tirana	
Household interviews							
Households selected	4,894	4,100	2,501	2,499	2,493	1,501	8,994
Households occupied	4,514	3,654	2,256	2,322	2,185	1,405	8,168
Households interviewed	4,401	3,598	2,209	2,282	2,142	1,366	7,999
Household response rate ${ }^{1}$	97.5	98.5	97.9	98.3	98.0	97.2	97.9
Interviews with women age 15-49							
Number of eligible women	3,898	3,835	2,001	2,165	2,416	1,151	7,733
Number of eligible women interviewed	3,846	3,738	1,961	2,115	2,366	1,142	7,584
Eligible women response rate ${ }^{2}$	98.7	97.5	98.0	97.7	97.9	99.2	98.1
Interviews with men age 15-49							
Number of eligible men	1,695	1,449	784	923	909	528	3,144
Number of eligible men interviewed	1,655	1,358	753	874	866	520	3,013
Eligible men response rate ${ }^{2}$	97.6	93.7	96.0	94.7	95.3	98.5	95.8
${ }^{1}$ Households interviewed/households occupied							

This chapter presents information on the social, economic, and demographic characteristics of the household population, focusing mainly on such background characteristics as age, sex, educational attendance and attainment, place of residence, and socio-economic conditions of households. The information provided is intended to facilitate interpretation of the key findings in the 2008-09 ADHS as well as to assist in assessing the representativeness of the survey.

A household is defined as a person or group of related and/or unrelated persons who live together in the same dwelling unit, or in connected premises, who acknowledge one adult member as head of the household, and who have common arrangements for preparing and eating their food. The questionnaire for the ADHS distinguishes between the de jure population (persons who usually live in a selected household) and the de facto population (persons who stayed in the household the night before the interview). The survey results indicate that the difference between these populations is small. Tabulations presented in this chapter that are based on household data include both de jure and de facto populations, whereas tabulations in the remainder of the chapters are based primarily on the de facto population.

In accordance with the sample design, weighting procedures were used to ensure that the results presented in the report are nationally representative and representative for each study domain (see Appendix A). The numbers in the tables, therefore, reflect weighted numbers. However, the statistical precision of results depends on the actual number of cases covered in the survey, or the unweighted number of cases. When unweighted numbers are insufficient to ensure a high degree of statistical reliability, the values calculated from these numbers are flagged: for example, percentages or proportions based on 25 to 49 unweighted cases are shown in parentheses, and percentages based on fewer than 25 unweighted cases are suppressed and replaced with an asterisk.

One of the background characteristics used in many tables in this report is an index of socioeconomic status, presented as a wealth quintile. This index was developed and tested in a large number of countries in relation to inequities in household income, use of health services, and health outcomes (Rutstein et al., 2000). It is an indicator of the level of wealth that is consistent with expenditure and income measures (Rutstein, 1999). The wealth index was constructed by employing a principal components analysis using household asset information. In the 2008-09 ADHS, the asset information was collected using the Household Questionnaire and covers information on household ownership of selected consumer items such as a television, a bicycle or a car, and dwelling characteristics such as source of drinking water, type of sanitation facilities, and type of material used for flooring.

Each asset was assigned a weight (factor score), generated from the principal components analysis, and the resulting asset scores were standardized in relation to a normal distribution with a mean of zero and standard deviation of one (Gwatkin et al., 2000). Each household was then assigned a score for each asset, and the scores were summed for each household; individuals were ranked according to the total score of the household in which they resided. The sample was then divided into quintiles from one (lowest) to five (highest). A single asset index was developed for the whole sample; separate indices were not prepared for urban and rural populations.

2.1 Household Population by Age and Sex

Age and sex variables are the primary basis of demographic classification in vital statistics, censuses, and surveys. Table 2.1 presents the distribution of the de facto population by five-year age groups, according to urban-rural residence and sex. The information is used to construct the population pyramid shown in Figure 2.1.

The total de facto population in households included in the ADHS is 30,291. The survey results show that 52 percent of the population is female. In absolute numbers, males outnumber females up to age 15, then between ages 25 and 44, females outnumber males, and from age 45 onwards, males usually outnumber females. The reasons for this imbalance may be attributed to the out-migration of men who are in the most economically productive age groups, since the early 1990s (see Chapter 14 on Migration), as well as the generally higher mortality rates among adult men compared with adult women.

Table 2.1 shows that 65 percent of household members are in the economically active population (age 15-64). This proportion is somewhat higher in urban areas (67 percent) than in rural areas (63 percent). The disparity is at least partially explained by rural to urban migration of youth in search of higher education and better job prospects in the city. The remainder of the population, which includes persons less than 15 years of age and those age 65 and older, constitutes the economically dependent population. Children under age 15 make up 23 percent of the population. Lower fertility in the cities has resulted in a smaller proportion of children in urban areas than in rural areas (20 and 25 percent, respectively). In addition to low fertility, other factors that may influence the low proportion of children age 0-14 years are out-migration of people of reproductive age, economic reasons such as the cost associated with having many children, the increase in the age at marriage, and use of family planning methods. Elderly people age 65 and older make up 12 percent of the population. There is no difference in the proportion of women and men in the elderly population.

Table 2.1 Household population by age, sex, and residence									
Percent distribution of the de facto household population by five-year age groups, according to sex and residence, Albania 2008-09									
		Urban			Rural			Total	
Age	Male	Female	Total	Male	Female	Total	Male	Female	Total
<5	4.8	4.3	4.5	6.1	5.6	5.8	5.5	5.0	5.2
5-9	7.5	6.4	6.9	9.5	7.1	8.2	8.6	6.8	7.6
10-14	9.7	8.4	9.0	12.0	10.9	11.4	10.9	9.8	10.3
15-19	8.7	7.9	8.3	10.6	10.9	10.8	9.8	9.5	9.6
20-24	7.1	6.5	6.8	5.7	6.1	5.9	6.3	6.3	6.3
25-29	4.5	6.0	5.3	3.8	5.1	4.5	4.1	5.5	4.8
30-34	4.5	5.8	5.2	3.7	5.3	4.5	4.0	5.5	4.8
35-39	5.8	7.0	6.4	5.1	7.1	6.2	5.4	7.0	6.3
40-44	6.5	7.7	7.1	7.0	8.1	7.6	6.8	7.9	7.4
45-49	8.2	7.4	7.8	7.6	6.5	7.0	7.9	6.9	7.4
50-54	8.4	8.4	8.4	7.0	6.4	6.7	7.6	7.3	7.5
55-59	6.8	6.1	6.5	5.1	4.7	4.9	5.9	5.4	5.6
60-64	5.0	5.2	5.1	4.8	4.4	4.6	4.9	4.8	4.8
65-69	4.2	4.8	4.5	4.5	4.1	4.3	4.4	4.4	4.4
70-74	3.9	3.3	3.6	3.4	2.9	3.1	3.6	3.1	3.3
75-79	2.4	2.6	2.5	2.3	2.2	2.2	2.3	2.4	2.4
$80+$	1.9	2.1	2.0	1.8	2.5	2.1	1.8	2.3	2.1
Don't know	0.0	0.1	0.0	0.1	0.1	0.1	0.1	0.1	0.1
Total	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Number	6,559	7,110	13,669	7,950	8,672	16,622	14,508	15,782	30,291

Figure 2.1, the population pyramid, shows a couple of noteworthy patterns. First, among resident women and men there is a sharp decline in those age 25-34; this is likely caused by the large proportion of women and men in this age bracket who have emigrated (see Chapter 14). If emigrants in the respective age groups are added to the population pyramid, the feature disappears. The second notable pattern is the smaller base and less tapered top of the population pyramid, which results in more of a rectangular form than a pyramid. The low proportion of children age $0-14$ is caused by low fertility rates in Albania and the fact that a considerable number of children are born outside of the country to parents who have emigrated. The shape of the Albania population pyramid is being transformed into that of an aging population, which is a trend seen in most European countries, especially in Eastern Europe. Given persistent low fertility (below replacement level) and, to a lesser extent, increases in the average life expectancy-from 71.4 years in 1990-1995 to 75.4 years in 2001$2005^{1}$ —it is likely that the proportion of elderly persons in the population will continue to increase and eventually surpass the proportion of young persons. The effect of out-migration-which is selective of young people in their reproductive years-serves to speed the aging process of the overall population still further. This phenomenon of an aging population structure makes it imperative that the Government of Albania begin looking at measures that will provide housing and care for the older generation. Such measures include improving health care for the elderly, especially in hospitals, establishment of nursing homes, and training of geriatric personnel.

Figure 2.1 Population Pyramid

ADHS 2008-09

2.2 Household Composition

Table 2.2 presents the distribution of households by sex of the head of household and by the household size, for urban and rural areas. The characteristics are of interest because they are often associated with differences in household socio-economic levels. For example, female-headed households are frequently poorer than households headed by males. In addition, the size and composition of the household affects the allocation of financial and other resources among household members, which in turn influences the overall well-being of these individuals. Household size is also associated with crowding in the dwelling, which can lead to unfavourable health conditions.

[^0]The results from the 2008-09 ADHS show that, overall, the vast majority of households in Albania are headed by males (84 percent), with 16 percent of households being headed by women. Male headed households are more common in rural areas than urban areas (87 and 82 percent, respectively), while female headed households are more common in urban areas than rural areas (18 and 13 percent, respectively). The average household size in Albania is 3.8 persons, with rural households being larger than urban households (4.1 and 3.5 members, respectively).

Table 2.2 indicates that 2 percent of households have orphans, almost all being single orphans, i.e. children with one parent dead or with one parent dead and survival status of other parent unknown. One percent of households include foster children.

2.3 Children's Living Arrangements

Children not living with their natural parents are more likely to be disadvantaged compared with those who reside with their parents; they may be at increased risk of impoverishment, deprived of property rights and other rights, and at increased risk of abuse, neglect, and exploitation. The ADHS collected detailed information on children's living arrangements. Table 2.3 shows the percent distribution of children under age 18 by their living arrangements and survival status of parents, according to background characteristics.

Of the 8,995 children under age 18 reported in the 2008-09 ADHS, more than four in five (86 percent) live with both parents. One in ten (10 percent) children live with their mother although their father is alive, less than 1 percent live with their father although their mother is alive, and 1 percent live with neither parent although both are alive; these children are "social orphans," that is, their biological parents are still alive but they have been voluntarily left in the care of another person or persons ${ }^{2}$. Results show that 2 percent of children under age 18 have their father only dead, 1 percent have their mother only dead, and only a small fraction have both biological parents dead. Altogether, 3 percent of children under age 18 have at least one parent who died.

Differentials by background characteristics in the proportion of children not living with a biological parent and the proportion orphaned are not large. As expected, older children are less likely than younger children to live with both parents, and more likely than younger children to have one or both parents dead. There are small differences in children's living arrangements by urban-rural residence and region. Children in urban areas and those living in Urban Tirana are somewhat more likely to live with both parents than children in rural areas and children living in other regions. Table 2.3 shows that children's living arrangements vary somewhat by household wealth status; the percentage of children living with both parents is highest among those in the highest wealth quintile.

[^1]On the other hand, the percentage of children with at least one parent dead is highest among those in the lowest wealth quintile and lowest among children in the highest wealth quintile.

Table 2.3 shows the extent of orphanhood among children under age 15 to allow comparison with children under age 18. Negligible differences in living arrangements were found between the two groups.

Table 2.3 Children's living arrangements and orphanhood

Percent distribution of de jure children under age 18 by living arrangements and survival status of parents, the percentage of children not living with a biological parent, and the percentage of children with one or both parents dead, according to background characteristics, Albania 2008-09

Background characteristic	Living with both parents	Living with mother but not father		Living with father but not mother		Not living with either parent				Total	Percentage not living with a biological parent	Percentage with one or both parents dead	Number of children		
					Only	On									
		Father alive	Father dead			Mother alive	Mother dead	Both alive	father alive					mother alive	Both dead
Age															
0-4	84.4	14.3	0.4	0.2	0.0	0.7	0.1	0.0	0.0	100.0	0.7	0.4	1,595		
<2	84.8	14.4	0.2	0.1	0.0	0.3	0.2	0.0	0.0	100.0	0.5	0.4	557		
2-4	84.2	14.2	0.5	0.2	0.0	0.9	0.0	0.0	0.0	100.0	0.9	0.5	1,039		
5-9	86.1	11.0	0.9	0.4	0.2	1.1	0.2	0.1	0.0	100.0	1.4	1.4	2,328		
10-14	86.9	8.4	2.6	0.5	0.8	0.5	0.1	0.1	0.0	100.0	0.7	3.7	3,140		
15-17	87.0	6.8	2.8	0.6	0.9	1.3	0.1	0.1	0.2	100.0	1.8	4.1	1,933		
Sex															
Male	86.3	9.7	2.0	0.4	0.5	0.8	0.1	0.0	0.0	100.0	1.0	2.7	4,563		
Female	86.2	9.9	1.6	0.4	0.5	0.9	0.2	0.1	0.1	100.0	1.3	2.5	4,432		
Residence															
Urban	88.5	7.6	1.8	0.4	0.6	0.9	0.2	0.1	0.0	100.0	1.2	2.7	3,544		
Rural	84.8	11.3	1.9	0.5	0.5	0.9	0.1	0.1	0.1	100.0	1.1	2.6	5,451		
Region															
Coastal	82.3	13.6	1.7	0.6	0.3	1.0	0.1	0.0	0.1	100.0	1.3	2.4	2,522		
Central	87.6	8.4	1.9	0.3	0.6	1.0	0.2	0.1	0.0	100.0	1.3	2.7	4,257		
Mountain	84.3	11.9	1.9	0.4	0.5	0.6	0.1	0.1	0.1	100.0	0.9	2.6	1,148		
Urban Tirana	92.4	4.3	1.7	0.4	0.8	0.2	0.1	0.1	0.0	100.0	0.3	2.7	1,068		
Wealth quintile															
Lowest	85.3	9.9	2.3	0.7	0.4	1.0	0.1	0.1	0.1	100.0	1.3	3.1	2,117		
Second	83.9	12.5	1.9	0.3	0.4	0.7	0.2	0.0	0.0	100.0	1.0	2.5	1,932		
Middle	84.9	11.1	1.5	0.3	0.8	1.1	0.1	0.0	0.1	100.0	1.3	2.5	1,884		
Fourth	86.5	9.5	2.1	0.2	0.6	0.9	0.1	0.0	0.1	100.0	1.1	2.8	1,634		
Highest	92.4	4.6	1.1	0.6	0.5	0.6	0.2	0.1	0.0	100.0	0.9	1.8	1,428		
Total < 15	86.1	10.6	1.6	0.4	0.4	0.7	0.1	0.0	0.0	100.0	0.9	2.2	7,063		
Total <18	86.3	9.8	1.8	0.4	0.5	0.9	0.1	0.1	0.1	100.0	1.1	2.6	8,995		

Note: Table is based on de jure members, i.e., usual residents.
${ }^{1}$ Includes children with father dead, mother dead, both dead, and one parent dead but information missing on survival status of the other parent.

2.4 Educational Attainment of Household Members

The educational attainment of household members is an important determinant of their opportunities and behaviours. Many phenomena such as use of health facilities, reproductive behaviour, health of children, and proper hygienic practices are associated with the level of education of household members, especially women.

Beginning in 1990, Albania's education system has undergone a series of reforms. Education reform has consisted of development of new curricula, modernization of teaching methodologies and institutions, training of teachers on the most up-to-date teaching concepts and more. The main goal of the education reform has been to improve the quality of education process and curricula. Furthermore, it must be noted that Albania has adopted the International Standard Classification for Education
(ISCED, 97). Basically, Albania's educational system has three tiers. The first, primary compulsory or basic education has two levels: lower primary education is composed of grades 1-4 (usually children age 6 to 10) and upper primary education is composed of grades 5-8 (usually children age 11 to 13). Students who have completed a total of 8 grades are considered to have completed compulsory primary education. The second tier, secondary education, is composed of grades 1-4 following completion of 8 years of primary school. Students who have successfully completed a total of 12 years of schooling (primary and secondary education) are qualified to attend university, or tertiary education. Beginning with the academic year 2004-2005, changes were made to the education system, mostly affecting primary basic education. Lower primary education now consists of grades 1-5 (usually children age 6 to 11) while upper primary education consists of grades 6-9 (usually children age 12 to 14). In this report, the education indicators are based on the system before the 2004-2005 changes.

Tables 2.4.1 and 2.4.2 show the percent distribution of the female and male household population age six and older, by highest level of education attained and according to background characteristics. Virtually all Albanians have attended school. Only 6 percent of women and 4 percent of men have no education. Overall, males are slightly more highly educated than females. Sixty-one percent of women have attended or completed primary education, compared with 55 percent of men, while 25 percent of women have attended or completed secondary education, compared with 31 percent of men. About one in ten respondents (9 percent of women and 10 percent of men) have at least some university education. The median number of years of schooling is 7.5 for women and 7.7 for men.

Table 2.4.1 Educational attainment of the female household population										
Percent distribution of the de facto female household populations age six and over by highest level of schooling attended or completed and median number of years completed, according to background characteristics, Albania 2008-09										
Background characteristic	No education	Some primary	Completed primary ${ }^{1}$	Some secondary	Completed secondary ${ }^{2}$	More than secondary	Don't know	Total	Number	Median years completed
Age										
6-9	14.2	85.8	0.0	0.0	0.0	0.0	0.0	100.0	895	0.8
10-14	1.0	84.4	14.4	0.1	0.0	0.0	0.0	100.0	1,541	5.2
15-19	0.8	3.1	37.4	46.8	8.0	4.0	0.0	100.0	1,506	8.5
20-24	1.8	5.3	45.0	3.3	12.0	32.6	0.0	100.0	995	8.0
25-29	1.8	4.8	51.9	5.0	14.5	22.0	0.0	100.0	871	7.8
30-34	0.9	2.6	50.5	7.9	23.8	14.3	0.0	100.0	874	7.9
35-39	0.7	1.9	49.1	11.1	26.3	11.0	0.0	100.0	1,110	8.0
40-44	1.4	1.9	50.4	15.2	22.1	9.0	0.1	100.0	1,252	7.9
45-49	0.9	3.2	47.8	15.5	26.6	5.9	0.0	100.0	1,086	8.0
50-54	1.2	11.8	39.6	18.8	19.9	8.7	0.1	100.0	1,155	7.9
55-59	3.4	33.0	27.2	13.1	14.4	8.9	0.0	100.0	845	7.5
60-64	3.3	56.5	15.9	8.6	8.6	7.1	0.0	100.0	753	6.4
65+	27.1	55.1	7.5	4.0	4.1	2.1	0.1	100.0	1,926	3.5
Don't know	*	*	*	*	*	*	*	*	11	*
Residence										
Urban	4.0	24.0	19.5	15.7	20.3	16.6	0.1	100.0	6,729	9.0
Rural	6.9	32.2	42.8	9.3	6.9	1.9	0.0	100.0	8,090	7.3
Region										
Coastal	6.4	30.3	33.3	12.8	11.1	6.0	0.0	100.0	4,308	7.4
Central	5.8	30.0	36.1	11.4	11.6	5.1	0.0	100.0	6,698	7.4
Mountain	6.2	31.7	39.5	10.0	9.8	2.8	0.0	100.0	1,461	7.3
Urban Tirana	2.9	18.5	14.6	14.5	22.5	26.9	0.1	100.0	2,353	11.3
Wealth quintile										
Lowest	8.6	35.4	44.6	6.1	4.9	0.5	0.0	100.0	2,976	7.1
Second	6.5	34.1	42.5	9.7	5.9	1.3	0.0	100.0	2,947	7.2
Middle	5.6	30.6	36.6	12.0	11.4	3.8	0.0	100.0	2,931	7.4
Fourth	4.8	25.1	25.7	15.4	19.9	9.1	0.1	100.0	2,967	7.8
Highest	2.3	17.3	12.0	17.5	22.7	28.0	0.1	100.0	2,999	11.3
Total	5.6	28.5	32.2	12.2	13.0	8.6	0.0	100.0	14,820	7.5

[^2]By age group 10-14, virtually all females and all males have attended or completed primary education, while by age group 15-19, about six in ten females and males have attended or completed secondary education. Looking at higher education, the proportion of the population with more than secondary education is highest for age group 20-24 (one in three females and one in four males). In the oldest age groups, age 65 and above, about six in ten persons have attended or completed only primary education. Furthermore, 27 percent of women and 10 percent of men age 65 and above have no education. This finding-that education is substantially lower amongst persons age 65 and above-highlights the rapid improvement in the education system following the Second World War.

Individuals residing in urban areas are much more likely to have university education than those in rural areas. Twenty-seven percent of women and 30 percent of men living Urban Tirana have attended university, compared with 3 to 7 percent in other regions.

Wealth status has a strong positive relationship with education; 28 percent of women and 31 percent of men in the highest wealth quintile have at least some university education, compared with less than 1 percent of women and men in the lowest quintile.

Table 2.4.2 Educational attainment of the male household population										
Percent distribution of the de facto male household populations age six and over by highest level of schooling attended or completed and median number of years completed, according to background characteristics, Albania 2008-09										
Background characteristic	No education	Some primary	Completed primary ${ }^{1}$	Some secondary	Completed secondary ${ }^{2}$	More than secondary	Don't know	Total	Number	Median years completed
Age										
6-9	15.6	84.3	0.1	0.0	0.0	0.0	0.0	100.0	1,036	0.7
10-14	0.6	87.7	11.3	0.4	0.0	0.0	0.0	100.0	1,585	5.2
15-19	1.5	3.8	32.4	51.9	8.1	2.4	0.0	100.0	1,415	8.7
20-24	2.0	4.5	35.2	10.0	23.5	24.7	0.0	100.0	920	11.0
25-29	2.4	5.9	43.6	6.4	22.9	18.6	0.2	100.0	594	8.0
30-34	2.1	4.8	43.0	11.3	26.5	12.0	0.3	100.0	586	8.0
35-39	2.0	2.7	41.3	15.1	24.3	14.6	0.0	100.0	789	10.6
40-44	0.8	3.5	40.3	18.8	27.0	9.6	0.0	100.0	986	10.0
45-49	0.6	2.1	39.1	20.6	27.5	10.1	0.1	100.0	1,144	11.1
50-54	1.0	6.3	34.6	20.7	24.1	13.4	0.0	100.0	1,109	11.1
55-59	0.9	17.4	26.5	17.9	20.8	16.5	0.0	100.0	851	11.0
60-64	1.8	30.1	21.8	17.6	12.9	15.7	0.0	100.0	716	7.8
65+	10.3	47.5	14.3	9.3	8.4	10.0	0.1	100.0	1,763	6.3
Don't know	*	*	*	*	*	*	*	*	8	*
Residence										
Urban	2.7	21.9	18.0	18.8	19.9	18.6	0.1	100.0	6,160	10.2
Rural	4.3	33.0	34.7	13.5	11.6	2.7	0.0	100.0	7,344	7.4
Region										
Coastal	4.3	28.6	28.1	18.0	13.8	7.1	0.0	100.0	3,760	7.6
Central	3.6	30.3	30.3	15.5	14.3	6.0	0.0	100.0	6,297	7.5
Mountain	3.8	34.0	31.6	13.1	13.0	4.3	0.2	100.0	1,303	7.4
Urban Tirana	2.1	16.3	13.3	15.3	22.7	30.1	0.0	100.0	2,143	11.4
Wealth quintile										
Lowest	5.6	38.6	38.3	9.5	7.4	0.6	0.1	100.0	2,628	7.2
Second	4.5	32.9	34.0	15.4	11.1	2.2	0.0	100.0	2,677	7.4
Middle	4.0	29.5	30.7	16.0	14.7	5.1	0.0	100.0	2,697	7.5
Fourth	2.9	23.4	23.3	19.5	21.0	9.7	0.1	100.0	2,735	8.2
Highest	1.2	16.1	10.1	18.8	22.3	31.4	0.0	100.0	2,766	11.4
Total	3.6	28.0	27.1	15.9	15.4	10.0	0.0	100.0	13,503	7.7
Note: An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed. ${ }^{1}$ Completed 8 years at the primary level ${ }^{2}$ Completed 4 years at the secondary level										

Data on net attendance ratios (NARs) and gross attendance ratios (GARs) by sex, level of schooling, residence, region, and wealth quintile are shown in Table 2.5. The NAR indicates participation in primary school for the population age 6-14 and secondary school for the population age 15-18. The GAR measures participation at each level of schooling among those of any age from 6 to 24 . The GAR is nearly always higher than the NAR for the same level because the GAR includes participation by those who may be older or younger than the official age range for that level ${ }^{3}$. A NAR of 100 percent would indicate that all children in the official age range for the level are attending school at that level. The GAR can exceed 100 percent if there is substantial over age or under age participation at a given level of schooling.

Table 2.5 School attendance ratios									
Net attendance ratios (NAR) and gross attendance ratios (GAR) for the de facto household population by sex and level of schooling; and the gender parity index (GPI), according to background characteristics, Albania 2008-09									
	Net attendance ratio ${ }^{1}$				Gross attendance ratio ${ }^{2}$				
Background characteristic	Male	Female	Total	Gender Parity Index (GPI) ${ }^{3}$	Male	Female	Total	Gende Parity Ind (GPI)	
PRIMARY SCHOOL									
Residence									
Urban	95.7	95.0	95.4	0.99	98.6	97.4	98.0	0.99	
Rural	95.3	94.9	95.1	1.00	99.0	96.4	97.7	0.97	
Region									
Coastal	95.3	95.4	95.3	1.00	99.4	96.5	97.9	0.97	
Central	95.3	94.3	94.8	0.99	98.4	96.1	97.3	0.98	
Mountain	95.0	94.4	94.7	0.99	98.6	97.3	98.0	0.99	
Urban Tirana	96.8	97.3	97.0	1.00	99.4	99.8	99.6	1.00	
Wealth quintile									
Lowest	93.5	92.9	93.2	0.99	97.0	94.9	96.0	0.98	
Second	96.8	95.1	96.0	0.98	102.9	96.9	100.0	0.94	
Middle	94.1	96.2	95.1	1.02	96.0	97.9	96.9	1.02	
Fourth	96.4	95.6	96.0	0.99	98.7	97.8	98.3	0.99	
Highest	97.4	95.6	96.5	0.98	100.1	97.1	98.6	0.97	
Total	95.4	94.9	95.2	0.99	98.8	96.8	97.8	0.98	
SECONDARY SCHOOL									
Residence									
Urban	66.8	69.6	68.1	1.04	73.8	74.4	74.1	1.01	
Rural	50.7	46.4	48.4	0.91	57.4	50.7	53.9	0.88	
Region									
Coastal	55.0	55.7	55.4	1.01	60.7	58.9	59.7	0.97	
Central	57.6	53.0	55.3	0.92	65.9	58.6	62.2	0.89	
Mountain	48.7	44.1	46.3	0.91	52.1	48.5	50.2	0.93	
Urban Tirana	68.3	74.6	71.2	1.09	75.3	78.0	76.5	1.04	
Wealth quintile									
Lowest	39.1	33.3	36.0	0.85	42.6	36.9	39.5	0.87	
Second	52.3	48.7	50.5	0.93	55.9	53.1	54.5	0.95	
Middle	56.8	55.8	56.3	0.98	69.1	59.7	64.1	0.86	
Fourth	63.8	66.4	65.1	1.04	72.4	72.1	72.2	1.00	
Highest	79.7	81.6	80.7	1.02	86.7	87.1	86.9	1.00	
Total	57.3	55.0	56.1	0.96	64.1	59.5	61.7	0.93	
${ }^{1}$ The NAR for primary school is the percentage of the primary-school-age (6-14 years) population at the start of the school year (September 1, 2008) that is attending primary school. The NAR for secondary school is the percentage of the secondary-school-age (15-18 years) population at the start of the school year that is attending secondary school. By definition the NAR cannot exceed 100 percent. ${ }^{2}$ The GAR for primary school is the total number of primary school students, expressed as a percentage of the official primary-school-age population. The GAR for secondary school is the total number of secondary school students, expressed as a percentage of the official secondary-school-age population. If there are substantial numbers of over age and under age students at a given level of schooling, the GAR can exceed 100 percent. ${ }^{3}$ The Gender Parity Index for primary school is the ratio of the primary school NAR(GAR) for females to the NAR(GAR) for males. The Gender Parity Index for secondary school is the ratio of the secondary school NAR(GAR) for females to the NAR(GAR) for males.									

[^3]In Albania, school attendance by school-age household members is high. The overall NAR for primary school education is 95 and the GAR is 98 . A comparison of the NAR and GAR indicates that approximately 3 percent of students are either under age or over age. The NAR and GAR for primary school do not vary much by residence or wealth.

The overall NAR for secondary school education is 56 and the GAR is 62, much lower than those for primary school. This suggests that there has been a decrease in over age or under age participation in secondary school level. Indeed, a comparison of the NAR and GAR indicates that approximately 6 percent of students are either under age or over age. The NAR and GAR in the rural areas (48 and 54 percent, respectively) are lower than in urban areas (68 and 74 , respectively). Secondary school attendance is lowest among children in the Mountain region (46) and highest among children in Urban Tirana (71). Secondary school attendance increases steadily with increasing wealth status, from 36 among those in the lowest wealth quintile to 81 among those in the highest wealth quintile.

The gender parity index (GPI), or the ratio of the female to the male NAR/GAR at the primary and complete secondary school levels, indicates the magnitude of the gender gap in attendance ratios. If there is no gender difference, the GPI will be equal to one. The GPI will be closer to zero if the disparity is in favour of males. If the gender gap favours females, the GPI will exceed one. Table 2.5 shows the GPI for NAR is 0.98 in primary school and 0.93 in secondary school. The GPIs for primary school do not vary much by background characteristics, while the GPIs for secondary school varies somewhat by residence; it is lower for rural areas than urban areas, and it is lowest for Central region and highest for Urban Tirana.

Figure 2.2 presents the age-specific attendance ratios (ASAR) for the population age 6-24 years by sex. The ASAR indicates participation in schooling at any level, from primary through higher education. The closer the ASAR is to 100 percent, the higher the proportion of the population a given age attending school.

In Albania, almost all youths of basic secondary age (6-14) attend school and there are no significant differences by gender. Among the high-school-age population (15-18), attendance ratios begin to decline, both among males and females. It should be noted that among youths age 13 to 18, a higher proportion of males than females is attending school. At age 19, the ratio is reversed and the proportion of females attending school exceeds the proportion of males.

Figure 2.2 Age-Specific Attendance Rates for the De Facto Population Age 6 to 24 Years

2.5 Preschool Attendance and Primary School Participation

Participation of children in preschool education through an organized early childhood education programme is important for the readiness of children to attend primary school. Table 2.6 shows the percentage of children age 36-59 months who are attending some form of organized early childhood education programme and the percentage of children in first grade who attend preschool.

The ADHS results show that more than half (55 percent) of Albanian children age 36-59 months attend an early childhood education programme. Older children age 48-59 months (67 percent), females (58 percent), urban children (69 percent), and children in the Coastal (60 percent) and Central (56 percent) regions are more likely than other children to attend early childhood education. The percentage of children age 36-59 months who attend early childhood education increases substantially with mother's level of education and household wealth quintile. For example, 51 percent of children of mothers with primary 8 -year education attend early childhood education, compared with 83 percent of children of mothers with university or higher education. Early childhood education attendance increases from 31 percent among children in the lowest wealth quintile to 64 and 65 percent in the fourth and highest wealth quintiles.

Table 2.6 Early childhood education				
Percentage of de facto children age 36-59 months who are attending some form of organized early childhood education programme and percentage of de facto children in first grade who attended preschool, Albania 2008-09				
Background characteristic	Percentage of children age 36-59 months currently attending early childhood education	Number of children age 36-59 months	Percentage of children attending first grade who attended preschool programme in previous year	Number of children attending first grade
Age at start of school year				
36-47 months	42.9	352	na	na
48-59 months	67.1	373	na	na
6 years	na	na	45.1	279
7 years	na	na	44.5	74
Sex				
Male	52.2	355	43.3	205
Female	58.3	370	47.3	147
Residence				
Urban	68.6	282	54.7	154
Rural	46.9	443	37.4	198
Region				
Coastal	59.8	215	57.6	102
Central	56.3	335	44.0	146
Mountain	46.5	91	15.3	48
Urban Tirana	49.6	85	49.8	56
Mother's education				
No education/Primary 4-year	*	20	*	6
Primary 8-year	50.6	441	45.1	205
Secondary, professional, technical	62.4	201	37.3	106
University+	82.9	50	(66.9)	33
Missing	*	13	*	4
Wealth quintile				
Lowest	31.2	156	36.3	78
Second	61.1	155	39.8	66
Middle	59.3	171	43.1	82
Fourth	64.7	141	47.3	60
Highest	63.6	102	60.6	66
Total	55.3	725	45.0	352

Note: An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed. Figures in parentheses are based on 25-49 unweighted cases. na $=$ Not applicable

The proportion of Albanian children age 36-59 months attending organized preschool education has increased over the past three to four years from 40 percent in 2005, according to the 2005 MIC survey (INSTAT, 2008b), to 55 percent in 2008-09.

Table 2.6 shows the proportion of children in the first grade of primary school who attended preschool the previous year, an important indicator of school readiness. Overall, 45 percent of children who are currently attending the first grade of primary school attended a preschool programme the previous year. Females are slightly more likely than males to have attended preschool the previous year (47 percent compared with 43 percent). Fifty-five percent of children in urban areas attended a preschool programme the previous year, compared with 37 percent of children in rural areas. The percentage of children attending first grade who attended preschool the previous year ranges from 15 percent in the Mountain region to 58 percent in the Coastal region. Socio-economic status appears to have a positive correlation with school readiness-children in households in the lowest wealth quintile who are in the first grade are less likely than their counterparts in households in the highest wealth quintile to have attended preschool the previous year (36 and 61 percent, respectively).

The results of the ADHS indicate that the proportion of Albanian children attending first grade who attended preschool the previous year has decreased from 70 percent in 2005-as reported by the 2005 MIC survey (INSTAT, 2008b) -to the current level of 45 percent. However, it appears that the ADHS underestimated the percentage of children who attended preschool the previous year because the term 'preschool' was not specifically mentioned in the question and some respondents may not have regarded preschool as part of schooling and did not reported it as such. In contrast, the term 'preschool' was explicitly mentioned in the question in the 2005 MICS.

Access to and completion of basic primary education is an important goal for the education system of a country. Table 2.7 shows the percentage of children of primary school entry age who are currently attending the first grade. In Albania, 85 percent of children of primary school entry age (typically age 6 or 7) are attending the first grade of primary school. There are no significant differentials in the primary school entry rates by background characteristics.

There has been a slight increase in the percentage of children of primary school entry age attending the first grade of primary school, from 82 percent in 2005 (INSTAT, 2008b) to 85 percent in 2008-09.

Table 2.8 shows the primary school completion rate. Overall, about nine in ten (88 percent) children of primary school completion age (14 years) have completed the primary 8-year education. There are only small variations in the completion of primary 8 -year education by background characteristics. The net school completion rate is somewhat lower among children in rural areas (87 percent) than children in urban areas (91 percent), and it is lowest among children living in the

Mountain region (82 percent). The net primary school completion rate is highest among children of more educated women and children in the higher wealth quintiles.

The proportion of children of primary school completion age who have completed the primary 8 -year education has decreased somewhat from 95 percent in 2005 (INSTAT, 2008b) to 88 percent in 2008-09.

Table 2.8 Primary school completion		
Primary school completion rate, Albania 2008-09		
Background characteristic	Net primary school completion rate ${ }^{1}$	Number of children of primary school completion age
Sex		
Male	88.6	311
Female	88.1	358
Residence		
Urban	90.5	252
Rural	87.0	417
Region		
Coastal	87.2	207
Central	88.8	303
Mountain	82.1	84
Urban Tirana	96.6	75
Mother's education		
No education/Primary 4-year	*	23
Primary 8-year	83.7	347
Secondary, professional, technical	96.2	244
University+	(98.1)	40
Missing	*	16
Wealth quintile		
Lowest	81.8	155
Second	86.2	137
Middle	90.1	154
Fourth	91.7	108
Highest	94.1	114
Total	88.3	669

Note: An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed. Figures in parentheses are based on 25-49 unweighted cases.
1 The net primary completion rate is the total number of students of primary graduation age who are completing the final year of primary education, expressed as a percentage of the population of the official primary school graduation age (14). It is calculated as: primary completion rate $=100$ * (number of children of primary graduation age in last primary grade - repeaters) / (number of children of primary school graduation age).

2.6 Housing Characteristics

To assess the socio-economic conditions under which the population lives, respondents were asked to give specific information about their household environment. A number of the characteristics for which information was collected (e.g., source of drinking water, type of sanitation facilities, and flooring material of dwelling) affect the health status of household members, particularly children. Tables 2.9 through 2.12 present major housing characteristics by urban-rural residence both for the households interviewed in the survey and for the de jure population living in the households.

Table 2.9 Housing characteristics						
Percent distribution of households and de jure population by housing characteristics and percentage using solid fuel for cooking; and among those using solid fuel, percent distribution by type of fire/stove used, according to residence, Albania 2008-09						
Housing characteristic	Households			Population		
	Urban	Rural	Total	Urban	Rural	Total
Flooring material						
Earth, sand	0.1	0.8	0.4	0.1	0.7	0.4
Wood/planks	2.0	9.0	5.6	2.1	8.7	5.7
Parquet or polished wood	1.3	1.3	1.3	1.4	1.4	1.4
Vinyl or asphalt strips	0.2	0.4	0.3	0.4	0.5	0.5
Ceramic tiles	78.9	39.7	58.8	78.4	39.3	56.9
Cement	15.5	47.3	31.9	15.9	47.8	33.4
Carpet	1.9	1.4	1.6	1.8	1.5	1.6
Total	100.0	100.0	100.0	100.0	100.0	100.0
Rooms used for sleeping						
One	26.2	15.5	20.7	18.9	10.9	14.5
Two	56.6	54.9	55.7	58.2	54.2	56.0
Three or more	17.3	29.5	23.6	23.0	34.9	29.5
Total	100.0	100.0	100.0	100.0	100.0	100.0
Place for cooking						
In the house	97.5	88.5	92.9	97.7	88.6	92.7
In a separate building	1.3	8.4	5.0	1.4	8.4	5.3
Outdoors	0.7	3.1	1.9	0.8	3.0	2.0
No food cooked in household	0.4	0.1	0.2	0.1	0.0	0.1
Total	100.0	100.0	100.0	100.0	100.0	100.0
Cooking fuel						
Electricity	20.0	5.4	12.5	18.2	4.9	10.9
LPG/natural gas	67.3	44.7	55.7	67.9	43.2	54.3
Kerosene	0.0	0.0	0.0	0.0	0.0	0.0
Charcoal	0.0	0.2	0.1	0.0	0.2	0.1
Wood	12.3	49.6	31.5	13.7	51.7	34.6
No food cooked in household	0.4	0.1	0.2	0.1	0.0	0.1
Total	100.0	100.0	100.0	100.0	100.0	100.0
Percentage using solid fuel for cooking ${ }^{1}$	12.3	49.7	31.6	13.7	51.9	34.8
Number of households/population	3,887	4,112	7,999	13,710	16,812	30,522
Type of fire/stove in households using solid fuel						
Closed stove with chimney	97.4	94.2	94.8	97.4	94.0	94.6
Open fire/stove with chimney	0.5	3.3	2.8	0.3	3.3	2.8
Open fire/stove without chimney or hood	2.1	2.4	2.4	2.3	2.6	2.6
Total	100.0	100.0	100.0	100.0	100.0	100.0
Number of households/population using solid fuel	480	2,045	2,525	1,884	8,724	10,608
LPG = Liquid petroleum gas ${ }^{1}$ Includes charcoal and wood						

Table 2.9 shows that, when looking at flooring material, the majority of households in urban areas (79 percent) have floors made of ceramic tile, and 16 percent have cement floors. In rural areas, 40 percent of households have floors made of ceramic tile, while 47 percent have cement floors. Two percent of urban households and 9 percent of rural households have wood plank floors.

About four in five (79 percent) households have at least two rooms for sleeping (56 percent have two rooms and 24 percent have three or more rooms), while about one in five (21 percent) have only one room for sleeping. Urban households are more likely to have one room for sleeping than rural households (26 percent compared with 16 percent), while rural households are more likely to have three or more rooms for sleeping than urban households (30 percent compared with 17 percent). Most households (93 percent) have a specific place within the dwelling for cooking, with urban households more likely than rural households to have these cooking arrangements (98 and 89 percent,
respectively). Only 7 percent of households in Albania cook their meals in a separate building or outdoors.

Overall, more than half of households (56 percent) use gas as the main cooking fuel, about one in three (32 percent) use wood for cooking, while more than one in ten (13 percent) use electricity. Urban households are much more likely to use gas (67 percent) and electricity (20 percent) for cooking than rural households (45 and 5 percent, respectively). On the other hand, rural households are more likely than urban households to use wood for cooking (50 percent compared with 12 percent). About one-third of households in Albania (32 percent) use biomass (solid) fuel for cooking, with rural households being more likely to use solid fuel (50 percent) than urban households (12 percent). Table 2.9 shows that, among households cooking with biomass fuels, more than nine in ten (95 percent) have a closed stove with chimney, 3 percent cook on an open fire or stove with a chimney, and 2 percent cook on an open fire or stove without a chimney.

2.6.1 Drinking Water

Table 2.10 provides information on the source of drinking water, time to obtain the drinking water, the age and sex of the person who usually collects the drinking water, and the method used (if any) to treat drinking water. The results are presented for households and for the de jure population in the households.

The source of drinking water is an indicator of whether or not it is suitable for drinking. Overall, more than nine in ten households in Albania (94 percent) use an improved source for drinking water (including bottled water safe for drinking), with urban households (97 percent) being more likely than rural households (92 percent) to use an improved source for drinking water.

More than six in ten (62 percent) households in Albania have drinking water that is piped directly into their house, yard, or plot. Urban households (70 percent) are more likely than rural households (54 percent) to have piped water in their house, yard, or plot. In urban areas, water piped into the house, yard, or plot is the main source of drinking water. In rural areas, about one in ten households obtain their drinking water from a protected well (11 percent) or protected spring (10 percent), and 8 percent obtain drinking water from a tubewell or borehole. Overall, 5 percent of households use a non-improved source for drinking water, with rural households (7 percent) being more likely to use such a source than urban households (3 percent).

Almost all urban households (94 percent) and about eight in ten rural households (79 percent) have drinking water available on the premises. Fourteen percent of rural households spend less than 30 minutes to fetch water, compared with 4 percent of urban households. Overall, only 4 percent of Albanian households spend 30 minutes or more to fetch drinking water, with rural households being more likely than urban households to do so (6 percent compared with 2 percent). In rural areas, water fetched from off the premises is most frequently collected by an adult woman age 15 or older (12 percent) followed by an adult man (8 percent), while in urban areas it collected equally by an adult woman or man (3 percent each).

Most Albanian households (92 percent) do not treat their drinking water. The most frequently used treatment for water is boiling (4 percent), followed by treatment with bleach or chlorine (3 percent).

Table 2.10 Household drinking water

Percent distribution of households and de jure population by source of drinking water, time to collect drinking water, and person who usually collects drinking water; and percentage of households and the de jure population that apply specific water treatment methods to water prior to drinking, according to residence, Albania 2008-09

Characteristic	Households			Population		
	Urban	Rural	Total	Urban	Rural	Total
Source of drinking water						
Improved source	73.4	88.0	80.9	74.7	88.0	82.1
Piped water into dwelling/yard/plot	69.9	54.1	61.8	70.6	53.6	61.2
Public tap/standpipe	0.7	4.5	2.7	0.8	4.4	2.8
Tube well or borehole	0.4	8.1	4.4	0.6	8.2	4.8
Protected dug well	0.8	11.1	6.1	0.9	11.5	6.7
Protected spring	1.6	10.1	5.9	1.7	10.4	6.5
Rainwater	0.0	0.1	0.0	0.0	0.1	0.1
Non-improved source	2.7	7.0	4.9	2.6	7.2	5.1
Unprotected dug well	0.0	1.5	0.8	0.1	1.2	0.7
Unprotected spring	0.6	2.8	1.7	0.5	3.3	2.1
Tanker truck/cart with small tank	2.1	2.6	2.3	2.0	2.6	2.3
Surface water	0.0	0.1	0.0	0.0	0.0	0.0
Bottled water, improved source for cooking/washing ${ }^{1}$	23.2	3.5	13.1	22.1	3.3	11.7
Bottled water, non-improved source for cooking/washing ${ }^{1}$	0.3	0.7	0.5	0.2	0.6	0.4
Other sources	0.4	0.8	0.6	0.4	0.9	0.7
Total	100.0	100.0	100.0	100.0	100.0	100.0
Percentage using any improved source of drinking water	96.7	91.5	94.0	96.8	91.3	93.8
Time to obtain drinking water (round trip)						
Water on premises	94.3	79.0	86.4	94.1	78.4	85.5
Less than 30 minutes	4.0	14.3	9.3	3.9	14.5	9.8
30 minutes or longer	1.7	6.4	4.1	1.9	6.8	4.6
Don't know	0.1	0.3	0.2	0.1	0.3	0.2
Total	100.0	100.0	100.0	100.0	100.0	100.0
Person who usually collects drinking water						
Adult female 15+	3.0	11.5	7.3	2.9	11.7	7.7
Adult male 15+	2.5	8.3	5.5	2.7	8.4	5.8
Female child under age 15	0.1	0.4	0.3	0.2	0.5	0.4
Male child under age 15	0.0	0.4	0.2	0.0	0.6	0.3
Other	0.1	0.4	0.2	0.1	0.4	0.3
Water on premises	94.3	79.0	86.4	94.1	78.4	85.5
Total	100.0	100.0	100.0	100.0	100.0	100.0
Water treatment prior to drinking ${ }^{2}$						
Boil water	4.9	3.2	4.1	5.3	3.1	4.1
Add bleach or chlorine to water	0.3	5.0	2.7	0.3	5.1	3.0
Strain water through cloth	0.2	0.9	0.5	0.2	1.0	0.6
Use ceramic, sand or other filter	1.2	0.4	0.8	1.2	0.4	0.7
Solar disinfection of water	0.0	0.0	0.0	0.0	0.0	0.0
Other	1.0	0.3	0.7	1.1	0.2	0.6
No treatment	92.7	90.9	91.7	92.4	90.9	91.5
Percentage using an appropriate treatment method ${ }^{3}$	6.2	8.3	7.3	6.5	8.3	7.5
Number	3,887	4,112	7,999	13,710	16,812	30,522

${ }^{1}$ Because the quality of bottled water used by households as drinking water is not known, the "source of drinking water" for households using bottled water is determined by the source of water used for cooking and washing (improved or non-improved).
${ }^{2}$ Respondents may report multiple treatment methods so the sum of treatment may exceed 100 percent.
${ }^{3}$ Appropriate water treatment methods include boiling, bleaching, straining, filtering, and solar disinfecting.

2.6.2 Sanitation Facilities

Table 2.11 shows the proportion of households and the proportion of the de jure household population with access to hygienic sanitation facilities. A household's toilet/latrine facility is classified as hygienic if it is used only by household members (i.e., not shared) and the facility separates human waste from human contact effectively. The types of facilities most likely to accomplish this are toilets that flush or pour flush into a piped sewer system/septic tank/somewhere else, or ventilated improved pit (VIP) latrines, or pit latrines with a slab.

Ninety-two percent of households in Albania use improved sanitation facilities that are not shared with another household. About six in ten households (57 percent) use a flush toilet connected to piped sewer system, one in five (20 percent) use a flush toilet that pours into a pit latrine, and one in seven (14 percent) use a flush toilet that pours into a septic tank. Flush toilets connected to a piped sewer system are the most common type of sanitation facility in urban areas (90 percent), while flush toilets that pour into a pit latrine are the most common type in rural areas (35 percent). Six percent of households use a non-improved toilet, and 2 percent share facilities with another household.

Table 2.11 Household sanitation facilities
Percent distribution of households and de jure population by type of toilet/latrine facilities, according to residence, Albania 2008-09

	Households			Population		
Type of toilet/latrine facility	Urban	Rural	Total	Urban	Rural	Total

Improved, not shared facility Flush/pour flush to piped sewer system
Flush/pour flush to septic tank

89.8	26.5	57.3	88.4	26.6	54.4
3.7	23.5	13.9	4.1	23.3	14.7
3.6	35.3	19.9	4.3	35.4	21.4
0.0	0.4	0.2	0.0	0.4	0.2
0.1	0.6	0.3	0.1	0.6	0.4
0.3	1.0	0.6	0.4	1.1	0.8

Non-improved facility

Non-improved facility Any facility shared with other households	1.5	2.7	2.1	1.7	2.2	2.0
Flush/pour flush not to sewer/septic	0.9	6.4	3.7	1.0	6.7	4.1
\quad tank/pit latrine	0.1	3.7	1.9	0.1	3.6	2.0
Pit latrine without slab/open pit	0.0	0.2	0.1	0.0	0.1	0.1
Bucket	0.0	0.0	0.0	0.0	0.0	0.0
No facility/bush/field	100.0	100.0	100.0	100.0	100.0	100.0
	3,887	4,112	7,999	13,710	16,812	30,522
Total						
Number						

2.6.3 Household Possessions

The availability of durable goods is a proximate measure of household socio-economic status. Moreover, particular goods have specific benefits. Having access to a radio or a television exposes household members to innovative ideas; a refrigerator prolongs the wholesomeness of foods; and a means of transport allows greater access to services away from the local area. Table 2.12 provides information on household ownership of durable goods and modes of transportation.

Overall, practically all Albanian households have a television (99 percent) and armoire (98 percent). More than nine in ten of the Albanian households have a refrigerator (95 percent), mobile telephone (94 percent), and sofa (91 percent). A large majority of households, three-quarters or more, have a watch, washing machine, or water boiler, and about half have a radio, video or DVD player, electric radiator, or a satellite dish or cable receiver. Urban households are more likely than rural households to possess most of the durable goods shown in Table 2.12.

About three in ten households in Albania (29 percent) have a car or truck, about one in five (21 percent) have a bicycle, and one in ten own a motorcycle or scooter. Car or truck ownership is higher in urban areas than in rural areas (35 percent compared with 24 percent), while motorcycles or scooters are more common in rural areas than in urban areas (13 percent compared with 7 percent). As expected, rural households are more likely than urban households to own an animal-drawn cart or a tractor (9 percent compared with less than 1 percent).

More than half of the Albanian households (52 percent) own agricultural land; the proportion is substantially higher for households in rural areas than those in urban areas (89 percent and 14 percent, respectively). Forty-two percent of Albanian households own farm animals, with about eight in ten rural households owning farm animals compared with just 4 percent of households in urban areas.

About four in ten households (38 percent) reported having a bank account, with more than twice as many households in urban areas as in rural areas having bank accounts (54 percent and 24 percent, respectively).

Table 2.12 Household possessions
Percentage of households and de jure population possessing various household effects, means of transportation, agricultural land and livestock/farm animals, by residence, Albania 2008-09

Possession	Households			Population		
	Urban	Rural	Total	Urban	Rural	Total
Household effects						
Radio	54.9	40.5	47.5	54.5	40.6	46.8
Television	99.5	98.4	98.9	99.6	98.8	99.2
Mobile telephone	94.3	94.0	94.1	96.7	95.9	96.2
Non-mobile telephone	61.9	10.7	35.6	59.1	10.5	32.3
Video/DVD player	63.7	42.2	52.6	65.5	43.3	53.3
Tape/CD player	72.5	55.0	63.5	73.9	55.6	63.8
Refrigerator	98.2	91.5	94.8	98.1	92.2	94.9
Freezer	4.9	5.0	4.9	5.1	5.2	5.2
Washing machine	93.7	69.4	81.2	94.0	70.0	80.8
Dishwasher	8.8	1.5	5.1	8.5	1.4	4.6
Microwave	31.3	7.4	19.0	31.3	7.0	17.9
Sofa	95.9	87.0	91.3	96.3	87.1	91.3
Armoire	98.5	96.6	97.5	98.5	96.7	97.5
Electric radiator	67.6	34.3	50.5	67.9	33.9	49.2
Generator	5.7	6.2	6.0	6.1	6.6	6.4
Sewing/knitting machine	29.8	19.8	24.6	30.8	20.9	25.3
Air conditioner	25.9	3.9	14.6	25.6	3.9	13.6
Water boiler	91.3	59.0	74.7	91.0	58.8	73.2
Computer	29.5	5.0	16.9	31.1	5.2	16.8
Satellite dish or cable receiver	69.1	38.9	53.6	71.0	40.2	54.1
Watch	91.7	80.5	86.0	92.5	82.3	86.9
Means of transport						
Bicycle	22.9	20.0	21.4	26.0	22.0	23.8
Animal drawn cart	0.3	9.4	5.0	0.3	10.3	5.8
Motorcycle/scooter	6.8	13.0	10.0	8.3	14.3	11.6
Car/truck	35.0	23.6	29.1	39.3	26.2	32.1
Tractor	0.5	6.0	3.3	0.5	6.2	3.6
Boat with a motor	0.6	0.6	0.6	0.5	0.7	0.6
Ownership of agricultural land	14.2	88.6	52.4	15.5	88.6	55.8
Ownership of farm animals ${ }^{1}$	4.0	78.1	42.1	4.8	80.6	46.6
Ownership of a bank account	54.0	23.5	38.3	55.8	24.1	38.4
Number	3,887	4,112	7,999	13,710	16,812	30,522

Cattle, cows, bulls, horses, donkeys, goats, sheep, chickens or pigs

2.7 Wealth Quintiles

The wealth index is a recently developed measure that has been tested in a number of countries in relation to inequities in household income, use of health services, and health outcomes (Rutstein et al., 2000). The wealth index is constructed by assigning a weight or factor score to each household asset through principal components analysis. These scores are summed by household, and individuals are ranked according to the total score of the household in which they resided. The sample is then divided into population quintiles-five groups with the same number of individuals in each. At the national level, approximately 20 percent of the population is in each wealth quintile.

Table 2.13 shows the distribution of the Albanian population across the wealth quintiles, according to urban-rural residence and region. The distribution indicates the degree to which wealth is evenly (or unevenly) distributed in geographic areas. For example, about eight in ten (79 percent) persons living in urban households are in the two highest wealth quintiles while seven in ten (69 percent) persons living in rural households are in the two lowest wealth quintiles. Looking at regional variation, Urban Tirana has the largest proportion of population in the highest wealth quintile (64 percent) while Mountain region has the largest proportion of population in the lowest wealth quintile (46 percent).

Also included in Table 2.13 is the Gini Coefficient, which indicates the level of concentration of wealth, 0 being an equal distribution and 100 a totally unequal distribution. Most developed European nations tend to have Gini Coefficients between 24 and 36 percent (http://en.wikipedia.org/wiki/Gini_coefficient). The Gini coefficient shown places Albania near the lower end of the scale in comparison with other countries in Europe, indicating that wealth is more evenly distributed in Albania than in most other European countries. Wealth is more evenly distributed in urban areas (9 percent) than in rural areas (24 percent). The results also show that wealth is most evenly distributed in Urban Tirana (5 percent) and least evenly distributed in the Mountain region (33 percent).

Table 2.13 Wealth quintiles								
Percent distribution of the de jure population by wealth quintiles, and the Gini Coefficient, according to residence and region, Albania 2008-09								
Residence/region	Wealth quintile					Total	Number of population	Gini coefficient
	Lowest	Second	Middle	Fourth	Highest			
Residence								
Urban	0.8	3.7	16.3	36.2	43.0	100.0	13,710	8.8
Rural	35.8	33.3	23.0	6.7	1.2	100.0	16,812	24.2
Region								
Coastal	15.0	24.5	24.1	21.5	14.9	100.0	8,642	23.8
Central	24.4	23.0	23.8	17.6	11.3	100.0	14,062	26.9
Mountain	45.7	24.7	11.9	11.8	6.0	100.0	3,052	32.7
Urban Tirana	0.0	0.2	6.7	29.5	63.6	100.0	4,766	4.6
Total	20.0	20.0	20.0	20.0	20.0	100.0	30,522	26.4

2.8 Birth Registration

According to Article 7 of the Convention on the Rights of the Child (UN General Assembly, 1989) to which Albania is a party, a child shall be registered immediately after birth. Registration is the State's first official acknowledgement of the child's existence; it represents recognition of each child's individual importance to the State and of the child's status under the law. The registration of births is the inscription of the facts of the birth into an official log kept at the registrar's office. A birth certificate is issued at the time of registration, or later, as proof of the registration of the birth. In the 2008-09 ADHS, for all children born since January 2003, mothers were asked if the child was
registered. Table 2.14 shows the percentage of children under five whose births were officially registered and the percentage who had a birth certificate at the time of the survey. Not all children reported as registered at the time of the survey had a birth certificate seen by the interviewer because some certificates may have been lost or were never issued. However, all children with a certificate have been registered.

Birth registration is almost universal in Albania, with 99 percent of births in the five years preceding the survey registered, and only small variations by background characteristics. This pattern is likely due to the fact that the vast majority of Albanian women give birth in a health facility or are assisted at delivery by trained health personnel. Seventy-eight percent of children included in the ADHS have a birth certificate, with urban children, children living in the Mountain region, and those in the two lowest wealth quintiles being less likely than other children to have a birth certificate.

The percentage of children whose births are registered has increased very slightly from 98 percent in 2005 as reported by the MICS (INSTAT, 2008b) to 99 percent in the 2008-09 ADHS.

[^4]
CHARACTERISTICS OF SURVEY RESPONDENTS

The purpose of this chapter is to provide a demographic and socioeconomic profile of the 2008-09 ADHS sample. Information on the basic characteristics of women and men interviewed in the survey is essential for the interpretation of findings presented later in the report and also can provide an indication of the representativeness of the survey. For tables in this report that relate to the general adult population, the base population includes women and men age 15-49.

3.1 Background Characteristics of Respondents

Table 3.1 shows the percent distribution of interviewed women and men age 15-49 by background characteristics including age, marital status, residence, region, education, wealth status, religion, and ethnicity. As noted in Chapter 1, all women age 15-49 who were usual residents or who were present in the household on the night before the interviewer's visit were eligible to be interviewed in the 2008-09 ADHS. Men age 15-49 meeting the same criteria were interviewed in half of the households. In order not to double count respondents, the tables in this report are based on the de facto population, that is, all persons who stayed in the household the previous night.

The largest proportion of both women and men are in age group 15-19 (20 percent of women and 22 percent of men). An additional 16 percent of women are in age group 40-44 and 18 percent of men are in age group 45-49. Conversely, the smallest proportions of respondents are in the middle age groups 25-29 and 30-34 (11 percent each for women and 9 percent each for men). This U-shaped pattern of distribution of the Albanian population is likely to be a reflection of the higher rates of emigration among people in their twenties and thirties.

The majority of both women and men are married or living together, with a larger proportion of women (66 percent) than men (57 percent) being currently married or cohabiting with a partner. Because men tend to marry later in life than women, the proportion of never-married men (43 percent) is higher than the proportion of never-married women (31 percent). Divorce and widowhood are infrequent in Albania, but women are slightly more likely than men to be widowed, divorced, or separated (3 and 1 percent, respectively).

Overall, more Albanians live in rural areas than urban areas (55 percent of women and 54 percent of men). By region, the smallest proportion-about one in ten women and men (10 percent and 9 percent, respectively)—live in the Mountain region, while the largest proportion-about half of women and men (46 and 48 percent, respectively)—live in the Central region.

Women and men in Albania are universally well educated, with only about 2 percent of respondents having no education or only primary 4 -year education. ${ }^{1}$ More women (49 percent) than men (39 percent) have attended primary 8 -year schooling; however, more men (47 percent) than women (36 percent) have secondary, professional, or technical education beyond primary 8-year education. Women are as likely as men to have university and higher education (13 and 12 percent, respectively).

The distribution of women and men by household wealth quintile indicates that women are equally distributed in each wealth quintile (20 to 21 percent), while a smaller proportion of men live in households in the lowest wealth quintile (16 percent) than in other wealth quintiles (20 to 22 percent).

[^5]| Table 3.1 Background characteristics of respondents | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Percent distribution of women and men age 15-49 by selected background characteristics, Albania 2008-09 | | | | | | |
| | Women | | | Men | | |
| Background characteristic | Weighted percent | Weighted | Unweighted | Weighted percent | Weighted | Unweighted |
| Age | | | | | | |
| 15-19 | 19.5 | 1,478 | 1,518 | 22.2 | 670 | 672 |
| 20-24 | 12.9 | 976 | 953 | 13.0 | 393 | 383 |
| 25-29 | 11.2 | 848 | 826 | 8.9 | 269 | 274 |
| 30-34 | 11.4 | 866 | 862 | 9.0 | 273 | 275 |
| 35-39 | 14.5 | 1,097 | 1,125 | 12.3 | 372 | 363 |
| 40-44 | 16.2 | 1,232 | 1,239 | 16.6 | 501 | 496 |
| 45-49 | 14.3 | 1,088 | 1,061 | 17.8 | 536 | 550 |
| Marital status | | | | | | |
| Never married | 31.1 | 2,357 | 2,412 | 42.8 | 1,291 | 1,310 |
| Married | 64.7 | 4,910 | 4,878 | 55.4 | 1,671 | 1,650 |
| Living together | 1.2 | 91 | 89 | 1.1 | 32 | 30 |
| Divorced/separated | 1.4 | 109 | 93 | 0.5 | 15 | 18 |
| Widowed | 1.5 | 116 | 112 | 0.1 | 4 | 5 |
| Residence | | | | | | |
| Urban | 44.6 | 3,380 | 3,846 | 46.2 | 1,391 | 1,655 |
| Rural | 55.4 | 4,204 | 3,738 | 53.8 | 1,622 | 1,358 |
| Region | | | | | | |
| Coastal | 28.1 | 2,129 | 1,961 | 26.5 | 800 | 753 |
| Central | 45.8 | 3,477 | 2,115 | 47.9 | 1,443 | 874 |
| Mountain | 10.2 | 777 | 2,366 | 9.2 | 277 | 866 |
| Urban Tirana | 15.8 | 1,201 | 1,142 | 16.3 | 493 | 520 |
| Education | | | | | | |
| No education/Primary 4-year | 1.7 | 127 | 127 | 1.8 | 55 | 58 |
| Primary 8-year | 48.9 | 3,712 | 3,579 | 39.3 | 1,183 | 1,138 |
| Secondary, professional, technical | 36.1 | 2,740 | 2,904 | 47.0 | 1,415 | 1,460 |
| University+ | 13.3 | 1,005 | 974 | 12.0 | 361 | 357 |
| Wealth quintile | | | | | | |
| Lowest | 19.9 | 1,513 | 1,622 | 15.8 | 475 | 513 |
| Second | 19.6 | 1,486 | 1,314 | 19.9 | 600 | 498 |
| Middle | 20.2 | 1,533 | 1,341 | 21.9 | 661 | 558 |
| Fourth | 19.5 | 1,480 | 1,737 | 20.7 | 625 | 736 |
| Highest | 20.7 | 1,573 | 1,570 | 21.6 | 652 | 708 |
| Religion | | | | | | |
| Muslim | 78.2 | 5,933 | 6,187 | 77.9 | 2,346 | 2,474 |
| Orthodox | 7.8 | 593 | 528 | 7.9 | 238 | 212 |
| Catholic | 10.5 | 793 | 581 | 10.4 | 313 | 225 |
| Bektashi | 1.5 | 115 | 161 | 1.6 | 47 | 48 |
| Other | 0.7 | 50 | 45 | 0.3 | 8 | 4 |
| Atheist | 1.3 | 100 | 82 | 2.0 | 60 | 50 |
| Ethnicity | | | | | | |
| Albanian | 97.9 | 7,428 | 7,432 | 97.5 | 2,939 | 2,947 |
| Greek | 0.2 | 14 | 15 | 0.5 | 14 | 8 |
| Roma | 1.3 | 101 | 105 | 1.3 | 39 | 41 |
| Macedonian | 0.2 | 15 | 11 | 0.2 | 6 | 6 |
| Montenegrin | 0.2 | 13 | 8 | 0.4 | 12 | 7 |
| Other | 0.2 | 12 | 13 | 0.1 | 3 | 4 |
| Total | 100.0 | 7,584 | 7,584 | 100.0 | 3,013 | 3,013 |

Note: Education categories refer to the highest level of education attended, whether or not that level was completed.

More than three-fourths of respondents are Muslim (78 percent of both women and men), followed by about one in ten who are Catholic (11 percent of women and 10 percent of men), and about one in twelve who are Orthodox (8 percent of both women and men).

The overwhelming majority of respondents are ethnic Albanians (98 percent of both women and men).

3.2 Educational Level of Respondents

Tables 3.2 .1 and 3.2 .2 show the educational level of female and male respondents, respectively, by selected background characteristics. The results reflect the fact that education has been almost universal in Albania for some time. Overall, very few respondents (less than 1 percent) have never attended school and the majority have completed at least a primary 8-year or higher education. The median years of schooling completed is 8.0 years for women and 9.6 years for men.

Table 3.2.1 Educational attainment: Women									
Percent distribution of women age 15-49 by highest level of schooling attended or completed, and median years completed, according to background characteristics, Albania 2008-09									
	Highest level of schooling							Median years completed	Number of women
Background characteristic	$\begin{gathered} \hline \text { No } \\ \text { education } \end{gathered}$	Some primary	Completed primary ${ }^{1}$	$\begin{gathered} \text { Some } \\ \text { secondary } \end{gathered}$	Completed secondary ${ }^{2}$	More than secondary	Total		
Age									
15-24	0.4	3.7	40.4	29.4	10.3	15.9	100.0	8.5	2,454
15-19	0.3	3.0	36.5	47.2	8.9	4.0	100.0	8.5	1,478
20-24	0.5	4.7	46.2	2.3	12.4	34.0	100.0	8.0	976
25-29	0.5	5.3	53.0	3.7	14.9	22.7	100.0	7.8	848
30-34	0.4	2.1	50.2	5.4	27.3	14.5	100.0	7.9	866
35-39	0.0	1.6	50.4	3.2	33.9	10.8	100.0	8.0	1,097
40-44	0.3	1.9	50.6	5.0	33.0	9.2	100.0	7.9	1,232
45-49	0.4	2.9	49.4	5.7	35.7	5.9	100.0	7.9	1,088
Residence									
Urban	0.4	1.9	24.2	13.5	34.2	25.8	100.0	11.3	3,380
Rural	0.3	3.8	65.9	11.9	14.9	3.2	100.0	7.7	4,204
Region									
Coastal	0.1	2.4	51.5	13.5	22.9	9.6	100.0	7.9	2,129
Central	0.4	3.9	53.2	13.4	21.1	8.1	100.0	7.9	3,477
Mountain	0.7	3.8	58.4	11.7	20.9	4.5	100.0	7.8	777
Urban Tirana	0.5	0.9	15.6	9.3	33.2	40.5	100.0	11.7	1,201
Wealth quintile									
Lowest	0.5	7.1	72.2	8.8	10.4	1.0	100.0	7.6	1,513
Second	0.4	2.9	68.2	12.5	13.7	2.3	100.0	7.7	1,486
Middle	0.4	2.9	53.8	14.1	22.8	6.0	100.0	7.9	1,533
Fourth	0.4	1.6	33.1	14.5	35.1	15.2	100.0	11.0	1,480
Highest	0.0	0.4	10.6	13.2	35.1	40.6	100.0	11.7	1,573
Total	0.3	3.0	47.3	12.6	23.5	13.3	100.0	8.0	7,584
${ }^{1}$ Completed 8 years at the primary level ${ }^{2}$ Completed 4 years at the secondary level									

About half of women (47 percent) have completed primary 8-year education, while about one-fourth (24 percent) have completed secondary education. There are marked differences across subgroups of the population in the proportions who have gone beyond secondary education. For example, Table 3.2 .1 shows that 26 percent of women in urban areas have more than secondary education, compared with only 3 percent of women in rural areas. There is significant variation in educational attainment by region, with the largest proportion of university-educated women in Urban Tirana (41 percent) and the smallest proportion in the Mountain region (5 percent). Attainment of more than secondary education is closely related to wealth status; 41 percent of women in the highest wealth quintile have more than secondary education, compared with only 1 and 2 percent, respectively, of women in the lowest and second quintiles. Overall, the median number of years of
schooling is higher for women in urban areas (11.3 years), women in Urban Tirana (11.7 years), and women in the two highest wealth quintiles (11.0 and 11.7 years) than for other women

Table 3.2.2 shows that almost four in ten men (37 percent) have completed primary education, while three in ten (30 percent) have completed secondary education. The pattern of educational attainment among men is similar to that of women; 22 percent of men in urban areas have some university-level education, compared with only 4 percent of men in rural areas. Respondents in the Urban Tirana region have an educational advantage over the rest of the country: 34 percent of men in Urban Tirana are university-educated, compared with 6 percent in the Mountain region. Wealth status is positively associated with level of education; less than 1 percent of men in the lowest wealth quintile have more than secondary education, compared with 34 percent of men in the highest wealth quintile. Like women, men in the wealthiest households have, on average, four more years of schooling (11.6 years) than those in the poorest households (7.7 years).

Table 3.2.2 Educational attainment: Men
Percent distribution of men age 15-49 by highest level of schooling attended or completed, and median years completed, according to background characteristics, Albania 2008-09

Background characteristic	Highest level of schooling						Total	Median years completed	Number of men
	$\begin{gathered} \hline \text { No } \\ \text { education } \end{gathered}$	Some primary	Completed primary ${ }^{1}$	Some secondary	Completed secondary ${ }^{2}$	More than secondary			
Age									
15-24	0.4	2.8	32.9	38.0	14.6	11.4	100.0	9.1	1,062
15-19	0.1	3.2	30.8	55.2	8.1	2.6	100.0	8.9	670
20-24	0.9	2.1	36.4	8.5	25.7	26.4	100.0	11.1	393
25-29	1.4	2.6	42.2	6.0	27.9	19.9	100.0	9.8	269
30-34	1.5	5.9	40.9	5.3	33.3	13.1	100.0	8.7	273
35-39	1.5	2.9	40.6	4.6	35.9	14.4	100.0	11.0	372
40-44	0.1	2.9	39.5	8.0	41.5	8.0	100.0	10.8	501
45-49	0.0	2.7	37.9	5.0	43.8	10.7	100.0	11.1	536
Residence									
Urban	1.2	2.3	23.4	16.8	34.5	21.7	100.0	11.2	1,391
Rural	0.1	3.8	49.4	17.5	25.7	3.6	100.0	7.9	1,622
Region									
Coastal	0.4	3.2	41.9	18.1	28.8	7.6	100.0	8.7	800
Central	0.7	3.3	40.5	17.8	29.6	8.2	100.0	9.1	1,443
Mountain	0.4	5.0	45.4	17.2	26.4	5.6	100.0	8.0	277
Urban Tirana	0.7	1.4	16.4	14.0	33.8	33.7	100.0	11.5	493
Wealth quintile									
Lowest	0.2	9.0	61.9	12.1	16.3	0.4	100.0	7.7	475
Second	0.4	3.3	50.9	19.2	23.4	2.8	100.0	7.9	600
Middle	1.1	3.6	39.4	18.5	30.4	7.0	100.0	9.1	661
Fourth	1.0	0.9	30.8	18.1	37.8	11.4	100.0	10.8	625
Highest	0.1	0.1	11.4	16.9	37.1	34.4	100.0	11.6	652
Total	0.6	3.1	37.4	17.2	29.8	12.0	100.0	9.6	3,013

[^6]
3.3 Literacy

Basic literacy, i.e., the ability to read and write, is fundamental to the ability of individuals to fully participate in and take advantage of socioeconomic development and health and nutritional advancements. In the 2008-09 ADHS, respondents who had completed primary 8 -year education or less were tested for literacy. Each respondent was given a card with pre-printed sentences and asked to read a sentence. According to their performance on this reading test, respondents were assigned to one of three categories: cannot read at all; able to read only parts of sentence; or able to read whole sentence. Persons who were visually impaired were excluded from the test. In a few cases, an individual could not be tested because there was no sentence in the required language. Accordingly, in this report, literate persons are defined as those respondents who have either completed secondary school or higher, or passed the literacy test by being able to read all or part of a sentence on the test card.

Tables 3.3.1 and 3.3.2 show the percent distribution of women and men by level of schooling attended and level of literacy, and the percentage literate, by background characteristics. Overall, literacy is almost universal in Albania, with 99 percent of women and 98 percent of men being classified as literate. There were no substantial variations in the level of literacy by age, residence, region, or wealth status among both women and men.

Table 3.3.1 Literacy: Women
Percent distribution of women age 15-49 by level of schooling attended and level of literacy, and percentage literate, according to background characteristics, Albania 2008-09

Background characteristic	Secondary school or higher	Primary school or no schooling					Total	Percentage literate ${ }^{1}$	Number of women
		Can read a whole sentence	Can read part of a sentence	Cannot read at all	```No card with required language```	Blind/ visually impaired			
Age									
15-19	60.2	35.2	3.6	1.0	0.0	0.0	100.0	99.0	1,478
20-24	48.7	42.6	6.6	2.0	0.2	0.0	100.0	97.9	976
25-29	41.3	48.5	8.6	1.5	0.0	0.0	100.0	98.5	848
30-34	47.3	44.2	7.3	1.2	0.0	0.0	100.0	98.8	866
35-39	48.0	42.9	8.2	0.9	0.0	0.0	100.0	99.1	1,097
40-44	47.2	41.2	10.0	1.5	0.0	0.1	100.0	98.4	1,232
45-49	47.2	39.7	10.4	2.5	0.2	0.0	100.0	97.4	1,088
Residence									
Urban	73.4	22.5	3.1	1.0	0.0	0.0	100.0	99.0	3,380
Rural	30.0	56.7	11.3	1.9	0.1	0.0	100.0	98.0	4,204
Region									
Coastal	46.0	45.8	6.7	1.5	0.0	0.0	100.0	98.5	2,129
Central	42.6	46.6	9.1	1.6	0.1	0.0	100.0	98.3	3,477
Mountain	37.1	47.4	13.2	2.3	0.0	0.0	100.0	97.7	777
Urban Tirana	83.0	14.8	1.5	0.7	0.0	0.0	100.0	99.3	1,201
Wealth quintile									
Lowest	20.2	58.8	17.8	3.1	0.1	0.0	100.0	96.8	1,513
Second	28.5	59.4	10.3	1.7	0.1	0.0	100.0	98.2	1,486
Middle	42.9	48.3	6.8	1.9	0.0	0.1	100.0	98.0	1,533
Fourth	64.9	31.4	3.1	0.7	0.0	0.0	100.0	99.3	1,480
Highest	89.0	10.4	0.5	0.1	0.0	0.0	100.0	99.9	1,573
Total	49.4	41.4	7.7	1.5	0.0	0.0	100.0	98.5	7,584
${ }^{1}$ Refers to women who attended secondary school or higher and women who can read a whole sentence or part of a sentence									

Table 3.3.2 Literacy: Men								
Percent distribution of men age 15-49 by level of schooling attended and level of literacy, and percentage literate, according to background characteristics, Albania 2008-09								
		Primary school or no schooling					Percentage literate ${ }^{1}$	Number of men
Background characteristic	Secondary school or higher	$\begin{gathered} \hline \text { Can read a } \\ \text { whole } \\ \text { sentence } \\ \hline \end{gathered}$	Can read part of a sentence	Cannot read at all	\qquad	Total		
Age								
15-19	65.8	27.0	4.9	2.3	0.0	100.0	97.7	670
20-24	60.6	27.4	9.4	2.6	0.0	100.0	97.4	393
25-29	53.8	38.3	6.7	1.2	0.0	100.0	98.8	269
30-34	51.6	40.1	6.9	1.3	0.0	100.0	98.7	273
35-39	54.9	36.9	6.0	2.0	0.3	100.0	97.8	372
40-44	57.5	33.4	7.6	1.5	0.0	100.0	98.5	501
45-49	59.4	33.0	6.6	1.0	0.0	100.0	99.0	536
Residence								
Urban	73.0	20.2	5.2	1.5	0.1	100.0	98.5	1,391
Rural	46.8	43.2	8.0	2.0	0.0	100.0	98.0	1,622
Region								
Coastal	54.5	38.1	6.3	1.1	0.0	100.0	98.9	800
Central	55.5	34.7	7.5	2.3	0.0	100.0	97.7	1,443
Mountain	49.3	38.8	9.8	2.1	0.0	100.0	97.9	277
Urban Tirana	81.5	14.1	3.4	0.9	0.2	100.0	98.9	493
Wealth quintile								
Lowest	28.8	49.6	15.5	6.1	0.0	100.0	93.9	475
Second	45.4	44.9	8.7	0.9	0.0	100.0	99.1	600
Middle	55.9	36.4	6.0	1.7	0.0	100.0	98.3	661
Fourth	67.3	27.4	4.3	0.9	0.2	100.0	98.9	625
Highest	88.4	10.0	1.6	0.0	0.0	100.0	100.0	652
Total	58.9	32.6	6.7	1.7	0.0	100.0	98.2	3,013

3.4 Exposure to Mass Media

The 2008-09 ADHS collected information on the exposure of women and men to both broadcast and print media. Access to information is essential for increasing people's knowledge and awareness of what is taking place around them, and may eventually affect their perceptions and behavior. Exposure to mass media is also important because it can help program managers plan the dissemination of information on health, family planning, nutrition, and other programs. In the 2008-09 ADHS, exposure to media was assessed by asking respondents how often they read a newspaper, watch television, and listen to the radio.

Tables 3.4.1 and 3.4.2 show the percentage of women and men who are exposed to specific media on a weekly basis, by background characteristics. Nearly all Albanian women (98 percent) watch TV at least once a week; 34 percent read a newspaper once a week; and 36 percent listen to the radio once a week. Twenty-two percent are exposed to all three media on a weekly basis. Only 2 percent of women do not regularly have exposure to any of the three media.

Percentage of women age $15-49$ who are exposed to specific media on a weekly basis, by background characteristics, Albania 2008-09						
Background characteristic	Reads a newspaper at least once a week	Watches television at least once a week	Listens to the radio at least once a week	All three media at least once a week	No media at least once a week	Number of women
Age						
15-19	43.6	99.0	46.6	30.9	0.8	1,478
20-24	41.3	98.1	48.0	29.8	1.5	976
25-29	34.1	98.7	37.7	21.4	0.9	848
30-34	29.3	98.7	35.8	17.9	1.1	866
35-39	30.8	97.9	28.1	17.0	1.8	1,097
40-44	28.9	98.1	29.3	16.2	1.8	1,232
45-49	28.4	97.2	23.6	14.5	2.4	1,088
Residence						
Urban	50.9	98.9	46.4	34.5	0.7	3,380
Rural	20.7	97.7	27.3	11.0	2.1	4,204
Region						
Coastal	39.6	98.9	41.1	24.9	0.9	2,129
Central	27.5	97.8	30.0	15.4	1.9	3,477
Mountain	17.6	97.2	17.2	7.2	2.6	777
Urban Tirana	54.7	99.1	55.4	42.4	0.5	1,201
Education						
No education/Primary 4-year	2.8	87.6	13.0	2.6	10.9	127
Primary 8-year	16.3	97.6	25.3	9.3	2.1	3,712
Secondary, professional, technical	44.3	99.2	40.4	26.6	0.6	2,740
University+	76.5	99.4	64.9	55.0	0.1	1,005
Wealth quintile						
Lowest	12.0	96.4	19.0	4.9	3.2	1,513
Second	18.6	97.6	27.5	10.1	2.2	1,486
Middle	31.1	98.8	34.2	18.2	0.8	1,533
Fourth	40.9	99.0	38.3	25.4	0.9	1,480
Highest	67.0	99.4	59.1	47.8	0.4	1,573
Total	34.2	98.2	35.8	21.5	1.5	7,584

Women age 15-24 are more likely than older women to report exposure to all three types of media. Exposure to all forms of media is strongly associated with residence, education, and wealth. Thirty-five percent of women in urban areas are exposed to television, radio, and newspapers, compared with 11 percent of women in rural areas. Women in Urban Tirana are more likely to be exposed to all three specified media (42 percent) than women in other regions (7 to 25 percent). Fiftyfive percent of women with a university or higher education are exposed to all three media, compared with only 3 percent of women with primary 4 -year education or no education, and 9 percent of women with primary 8-year education. Women in the highest wealth quintile are almost ten times as likely to be exposed to all three media as women in the lowest wealth quintile (48 and 5 percent, respectively).

Table 3.4.2 shows that the same proportion of men (98 percent) watch TV at least once a week. On the other hand, more men than women are exposed to the other two forms of media including listening to the radio (54 percent of men compared with 36 percent of women) and reading a newspaper (51 percent of men compared with 34 percent of women) on a weekly basis. Overall, the proportion of men exposed to all three types of media is higher than that of women (35 and 21 percent, respectively). The relationships between exposure to mass media and background characteristics for men are generally similar to those observed for women. However, men have a somewhat different pattern of media exposure by age group than women. While younger women are more likely than older women to report exposure to all three types of media on a weekly basis, younger men are generally less likely than older men to be exposed to all three media, partly because they are less likely to read a newspaper.

Percentage of men age 15-49 who are exposed to specific media on a weekly basis, by background characteristics, Albania 2008-09						
Background characteristic	Reads a newspaper at least once a week	Watches television at least once a week	Listens to the radio at least once a week	All three media at least once a week	No media at least once a week	Number of men
Age						
15-19	44.2	97.3	49.4	31.1	2.6	670
20-24	53.9	97.1	57.7	40.5	1.9	393
25-29	56.2	98.6	61.7	41.5	0.8	269
30-34	49.4	97.8	54.6	34.9	1.6	273
35-39	54.7	98.9	57.9	38.2	1.0	372
40-44	51.5	99.3	52.5	35.2	0.2	501
45-49	54.3	96.9	48.7	32.7	2.9	536
Residence						
Urban	60.7	99.0	59.6	42.5	0.7	1,391
Rural	43.3	96.9	48.2	29.4	2.6	1,622
Region						
Coastal	52.5	97.8	52.6	34.5	1.8	800
Central	49.2	97.6	53.7	34.7	2.0	1,443
Mountain	38.0	96.6	37.7	22.7	2.8	277
Urban Tirana	63.0	99.5	63.2	46.4	0.4	493
Education						
No education/Primary 4-year	6.0	90.0	36.6	6.0	10.0	55
Primary 8-year	34.5	96.4	44.4	23.6	3.1	1,183
Secondary, professional, technical	59.3	99.1	56.0	39.5	0.7	1,415
University+	81.8	99.2	75.9	63.0	0.0	361
Wealth quintile						
Lowest	26.3	94.0	26.4	12.2	4.9	475
Second	40.8	98.0	49.0	27.5	1.5	600
Middle	52.5	98.3	58.7	37.0	1.6	661
Fourth	62.1	98.6	57.1	43.9	1.2	625
Highest	67.7	99.5	68.5	50.0	0.2	652
Total	51.3	97.9	53.5	35.4	1.7	3,013

3.5 Employment

In the 2008-09 ADHS, respondents were asked about their employment status at the time of the survey and, if they were not currently employed, about any work they may have done in the 12 months prior to the survey. ${ }^{2}$ All employed respondents were asked additional questions about their occupation; whether they were paid in cash, in kind, or not at all; and for whom they worked.

[^7]Tables 3.5.1 and 3.5.2 show the percent distribution of women and men by employment status according to background characteristics. Three in ten women (30 percent) reported being currently employed, 7 percent were employed in the 12 months preceding the survey but were not working at the time of the interview, and more than six in ten (63 percent) were not employed in the 12 months preceding the survey (Table 3.5.1). More than twice as many men as women reported being currently employed (66 percent compared with 30 percent). Nonetheless, nearly one in four men (24 percent) reported that they were not employed during the 12 months preceding the survey (Figure 3.1).

Percent distribution of women age $15-49$ by employment status, according to background characteristics, Albania 2008-09					
	Employed in the 12 months preceding the survey		Not employed in the 12 months preceding the survey	Total	Number of women
Background characteristic	Currently employed ${ }^{1}$	$\begin{gathered} \text { Not } \\ \text { currently } \\ \text { employed } \end{gathered}$			
Age					
15-19	5.6	4.7	89.7	100.0	1,478
20-24	19.0	4.4	76.7	100.0	976
25-29	34.7	6.4	58.9	100.0	848
30-34	36.6	7.8	55.5	100.0	866
35-39	39.6	9.8	50.6	100.0	1,097
40-44	41.6	8.5	49.9	100.0	1,232
45-49	41.3	7.5	51.2	100.0	1,088
Marital status					
Never married	18.5	4.3	77.2	100.0	2,357
Married or living together	34.8	8.2	57.0	100.0	5,001
Divorced/separated/widowed	44.5	7.3	48.2	100.0	226
Number of living children					
0	19.8	4.4	75.8	100.0	2,750
1-2	38.8	7.7	53.5	100.0	2,809
3-4	32.9	8.9	58.2	100.0	1,804
5+	21.8	13.1	65.1	100.0	222
Residence					
Urban	40.1	2.4	57.6	100.0	3,380
Rural	21.9	10.6	67.4	100.0	4,204
Region					
Coastal	31.6	5.4	63.0	100.0	2,129
Central	25.9	7.9	66.2	100.0	3,477
Mountain	20.0	17.0	63.0	100.0	777
Urban Tirana	45.4	0.6	54.0	100.0	1,201
Education					
No education/Primary 4-year	18.7	9.1	72.1	100.0	127
Primary 8-year	21.8	10.1	68.1	100.0	3,712
Secondary, professional, technical	31.7	4.6	63.7	100.0	2,740
University+	57.2	1.6	41.2	100.0	1,005
Wealth quintile					
Lowest	19.1	15.0	66.0	100.0	1,513
Second	21.9	11.3	66.8	100.0	1,486
Middle	25.2	5.2	69.5	100.0	1,533
Fourth	35.5	2.6	61.9	100.0	1,480
Highest	47.6	1.0	51.4	100.0	1,573
Total	30.0	7.0	63.0	100.0	7,584

${ }^{1}$ "Currently employed" is defined as having done work in the past seven days. Includes persons who did not work in the past seven days but who are regularly employed and were absent from work for leave, illness, vacation, or other such reason.

Looking at the differentials in employment status, Table 3.5.1 shows that the percentage of women and men employed at the time of the survey increases steadily with age. Among women, those who are divorced, separated or widowed are most likely to be employed (about 45 percent), followed by women who are married or cohabiting (35 percent). This pattern can be explained by the fact that previously married women are likely to be single mothers and, therefore, heads of households and the main income earners in the family. Table 3.5 .2 shows that the pattern for men is different from that of women. Men who are currently married are more than twice as likely to be employed as nevermarried men (85 percent compared with 40 percent). For both women and men, the percentage currently employed is highest among those with one or two children (39 and 88 percent, respectively), and it is lowest among women and men with no living children (20 and 43 percent, respectively), which is usually associated with younger age.

Table 3.5.2 Employment status: Men
Percent distribution of men age 15-49 by employment status, according to background characteristics, Albania 2008-09

	Employe months p	in the 12 eding the y	Not employed in the	
Background	Currently	Not currently employed	12 months preceding the survey	Number of men

Age					
$15-19$	27.4	11.1	61.4	100.0	670
$20-24$	47.5	15.3	37.3	100.0	393

25-29
$35-39$
$40-44$

45-49
Marital status Never married
Married or living together
Divorced/separated/widowed
Number of living children
0
1-2
$3-4$
3-4
$5+$
Residence
Urban

72.3	15.0	12.8	100.0

269
-
-39 85.0

	12.9
8.0	8.0

Urban
Region
Coastal
Central
Mountain Urban Tirana

Education
No education/Primary 4-yea
Primary 8-year
Secondary, professional,
technical
87.0
84.8
8.0
100.0

40.4				
85.2	13.1	46.5	100.0	1,291
$*$	8.2	6.6	100.0	1,703
	$*$	$*$	$*$	19

University+

Wealth quintile					
Lowest	66.3	17.4	16.4	100.0	475
Second	66.5	12.6	20.9	100.0	600
Middle	63.1	10.9	26.0	100.0	661
Fourth	66.3	8.7	24.9	100.0	625
Highest	67.7	3.9	28.4	100.0	652
Total	65.9	10.3	23.8	100.0	3,013

[^8]Women in urban areas are almost twice as likely to be currently employed as their rural counterparts (40 percent compared with 22 percent); however, for men, there is no substantial difference in the percentage currently employed by urban-rural residence (65 and 67 percent, respectively). Looking at regions, current employment among women is highest in Urban Tirana (45 percent) and lowest in the Mountain region (20 percent); among men, current employment is highest in the Coastal and Central regions (68 percent each) and lowest in the Mountain region (54 percent). The likelihood that a woman or man is currently employed increases with education, although the relationship is not as uniform for men as it is for women. Women in the lowest wealth quintile are the least likely to be currently employed (19 percent), while women in the highest wealth quintile are the most likely to be currently employed (48 percent). Among men, current employment does not vary much by wealth status, ranging from 63 percent among men in the middle wealth quintile to 68 percent among men in the highest wealth quintile.

Figure 3.1 Women's and Men's Employment Status in the Past 12 Months

3.6 OCCUPATION

Information on women's occupation not only allows an evaluation of their source of income but also has implications for women's empowerment. To obtain information on occupation, respondents who indicated that they were currently working or had been employed in the past 12 months were asked about the kind of work they did.

Table 3.6.1 shows the percent distribution of women employed in the 12 months preceding the survey by occupation, according to background characteristics. More than one-third (35 percent) of employed women work in agriculture; more than one in four (26 percent) are employed in professional, technical, or managerial positions; more than one in five (23 percent) are in sales and services; and about one in eight (13 percent) work in skilled manual jobs. Only 2 percent of women are employed in unskilled manual labor or in clerical positions.

Table 3.6.1 Occupation: Women								
Percent distribution of women age 15-49 employed in the 12 months preceding the survey by occupation, according to background characteristics, Albania 2008-09								
Background characteristic	Professional/ technical/ managerial	Clerical	Sales and services	Skilled manual	Unskilled manual	Agriculture	Total	Number of women
Age								
15-19	2.5	0.0	17.7	12.8	1.5	65.5	100.0	152
20-24	26.1	2.8	20.2	21.0	2.3	26.9	100.0	228
25-29	44.4	2.2	15.0	15.3	0.4	22.8	100.0	348
30-34	27.1	1.2	24.8	11.7	1.2	33.8	100.0	385
35-39	22.2	0.8	24.1	16.0	2.1	34.7	100.0	542
40-44	23.0	2.4	23.3	12.0	2.4	37.0	100.0	618
45-49	26.3	1.9	26.2	8.6	2.6	34.5	100.0	530
Marital status								
Never married	32.0	1.7	17.5	17.8	1.2	29.8	100.0	537
Married or living together	24.3	1.7	23.2	11.8	2.1	36.8	100.0	2,150
Divorced/separated/widowed	26.3	2.3	35.5	18.8	1.2	16.0	100.0	117
Number of living children								
0	33.4	1.8	18.4	16.8	1.0	28.5	100.0	666
1-2	29.8	2.5	25.1	14.5	2.0	26.1	100.0	1,306
3-4	14.2	0.6	23.3	9.1	2.6	50.2	100.0	754
5+	6.0	0.0	9.8	2.8	2.1	79.3	100.0	77
Residence								
Urban	43.3	3.3	31.6	17.9	1.9	2.1	100.0	1,434
Rural	7.5	0.1	13.2	8.5	1.9	68.7	100.0	1,370
Region								
Coastal	21.1	1.8	29.0	14.6	1.3	32.1	100.0	788
Central	16.1	1.0	20.6	15.3	2.6	44.3	100.0	1,176
Mountain	16.3	1.0	12.0	2.8	1.1	66.8	100.0	287
Urban Tirana	58.2	3.6	23.4	12.4	1.8	0.7	100.0	552
Education								
No education/Primary 4-year	(0.0)	(0.0)	(17.8)	(9.5)	(0.8)	(72.0)	(100.0)	35
Primary 8-year	1.7	0.1	18.9	14.0	2.5	62.9	100.0	1,182
Secondary, professional, technical	19.1	3.3	36.1	19.4	2.1	20.0	100.0	995
University+	86.9	2.5	7.7	1.8	0.4	0.4	100.0	591
Wealth quintile								
Lowest	3.1	0.0	6.2	2.9	1.9	86.0	100.0	515
Second	6.6	0.0	11.3	8.1	2.5	71.5	100.0	493
Middle	11.3	1.1	28.2	23.7	2.3	33.4	100.0	467
Fourth	27.1	3.1	39.8	25.7	2.4	1.7	100.0	564
Highest	61.4	3.4	24.9	8.1	0.9	1.2	100.0	765
Total	25.8	1.7	22.6	13.3	1.9	34.6	100.0	2,804

Note: Total includes 1 woman with information missing on type of employment who is not shown separately. Figures in parentheses are based on 25-49 unweighted cases.

The 2008-09 ADHS results show that, as expected, the percentage of women working in agriculture is substantially higher in rural areas (69 percent) than in urban areas (2 percent). Women in the Mountain and Central regions, women with primary education or no education, and women in the two lowest wealth quintiles are more likely to be engaged in agriculture than other women. On the other hand, the percentage of women in professional, technical, and managerial positions or in sales and services is higher among women in urban areas and among those in Urban Tirana and the Coastal regions. The percentage of women holding professional, technical, or managerial positions increases steadily with level of education and wealth quintile. The relationship between these background characteristics and the percentage of women in sales and services is not always clear.

Table 3.6.2 shows that four in ten employed men (40 percent) work as skilled manual laborers, two in ten work in agriculture (20 percent), 17 percent hold professional, technical, or managerial positions, and 15 percent are in sales and services. The percentage of men working as skilled manual laborers is higher among younger men, those who are previously married, men with three to four children, men in urban areas and in the Coastal region, men with primary 8-year education, and men in the middle and fourth wealth quintiles. For other occupations, the variations among men are generally similar to those observed for women.

Table 3.6.2 Occupation: Men								
Percent distribution of men age 15-49 employed in the 12 months preceding the survey by occupation, according to background characteristics, Albania 2008-09								
Background characteristic	Professional/ technical/ managerial	Clerical	Sales and services	Skilled manual	Unskilled manual	Agriculture	Total	Number of men
Age								
15-19	6.0	3.7	22.0	22.1	4.9	39.6	100.0	258
20-24	13.3	2.1	24.2	38.0	5.2	17.3	100.0	246
25-29	18.3	2.1	16.8	42.9	5.9	14.0	100.0	235
30-34	24.3	0.2	10.6	46.1	5.2	13.6	100.0	251
35-39	16.6	1.3	13.2	45.5	7.2	16.1	100.0	346
40-44	17.9	1.8	12.9	41.1	6.1	20.3	100.0	462
45-49	20.4	1.6	12.4	41.6	3.2	20.8	100.0	498
Marital status								
Never married	15.6	2.8	21.1	31.6	5.6	22.5	100.0	690
Married or living together	17.9	1.4	12.6	43.8	5.2	19.1	100.0	1,590
Divorced/separated/widowed	*	*	*	*	*	*	*	16
Number of living children								
0	15.7	2.9	20.0	32.8	6.1	22.1	100.0	801
1-2	21.6	1.4	15.2	39.4	4.8	17.6	100.0	902
3-4	12.7	0.8	9.3	52.6	4.8	19.8	100.0	533
5+	9.3	1.9	4.9	39.5	6.4	38.0	100.0	61
Residence								
Urban	28.1	2.9	21.0	40.9	5.1	2.0	100.0	994
Rural	8.8	1.0	10.8	39.6	5.4	34.1	100.0	1,302
Region								
Coastal	16.0	2.3	13.9	44.9	2.4	20.5	100.0	612
Central	13.1	1.7	14.6	39.2	6.8	24.3	100.0	1,148
Mountain	11.1	1.4	13.9	37.0	6.5	30.1	100.0	196
Urban Tirana	36.3	1.6	20.6	36.6	4.6	0.2	100.0	341
Education								
No education/Primary 4-year	(0.0)	(0.0)	(6.2)	(30.1)	(31.8)	(31.9)	(100.0)	39
Primary 8-year	5.8	0.5	9.6	46.6	7.3	30.1	100.0	946
Secondary, professional, technical	15.1	2.7	19.9	42.1	3.7	16.0	100.0	1,038
University+	66.4	3.0	18.3	11.6	0.4	0.3	100.0	274
Wealth quintile								
Lowest	2.5	0.7	4.4	31.2	6.7	54.5	100.0	398
Second	7.9	0.1	10.3	41.8	6.2	33.8	100.0	474
Middle	12.8	1.7	13.2	48.7	6.4	16.3	100.0	489
Fourth	17.3	3.3	23.4	49.1	5.6	1.4	100.0	469
Highest	43.5	3.0	23.4	28.1	1.5	0.4	100.0	467
Total	17.1	1.8	15.2	40.1	5.3	20.2	100.0	2,297

[^9]
3.7 Employment Characteristics

Respondents who were employed in the 12 months preceding the survey were asked about the type of earnings they received, i.e., whether they were paid in cash, in kind, or not at all. They were also asked about whether they were employed by a relative, a nonrelative, or were self-employed. Additionally, they were asked whether they worked continuously throughout the year or seasonally. Table 3.7 presents the results of these questions.

Overall, 60 percent of employed women earn cash only, 3 percent are paid in cash and inkind, 7 percent receive in-kind payments only, and 31 percent do not receive any payment at all. Seven in ten women who work in agriculture (72 percent) do not receive any payment and only 4 percent are paid in cash. In contrast, among women who do nonagricultural work, only 9 percent do not receive any payment and 89 percent are paid in cash.

Table 3.7 shows that 45 percent of women who work are employed by a family member, 37 percent are employed by nonfamily member, and 18 percent are self-employed. The proportion of self-employed women working in the agricultural and nonagricultural sectors is the same (18 percent each). On the other hand, the majority of women working in agriculture are employed by a family member (80 percent), while women doing nonagricultural work are mostly employed by a nonfamily member (55 percent). With regard to continuity of employment, 68 percent of employed women work all year, 23 percent work seasonally, and 9 percent work occasionally. As expected, the majority of women employed in agriculture (57 percent) work seasonally, while 12 percent work occasionally. About three in ten women in agriculture (31 percent) work all year. By comparison, 87 percent of women doing nonagricultural work are employed all year and 5 percent and 8 percent, respectively, do seasonal or occasional work.

Table 3.7 Type of employment

Percent distribution of women and men age 15-49 employed in the 12 months preceding the survey by type of earnings, type of employer, and continuity of employment, according to type of employment (agricultural or nonagricultural), Albania 2008-09

Employment characteristic	Women			Men		
	Agricultura work	Nonagricultural work	Total	Agricultural work	Nonagricultural work	Total
Type of earnings						
Cash only	4.2	88.8	59.5	17.4	86.8	72.6
Cash and in-kind	6.2	1.2	2.9	8.2	2.6	3.7
In-kind only	17.4	0.8	6.6	16.5	1.1	4.2
Not paid	72.1	9.3	31.1	57.8	9.6	19.5
Total	100.0	100.0	100.0	100.0	100.0	100.0
Type of employer						
Employed by family member	79.9	26.8	45.2	59.1	24.3	31.5
Employed by nonfamily member	2.3	55.0	36.7	6.7	37.8	31.4
Self-employed	17.8	18.2	18.1	34.2	37.9	37.1
Total	100.0	100.0	100.0	100.0	100.0	100.0
Continuity of employment						
All year	31.3	87.3	67.9	46.2	67.0	62.7
Seasonal	57.3	5.2	23.2	26.3	9.6	13.0
Occasional	11.5	7.6	8.9	27.5	23.3	24.3
Total	100.0	100.0	100.0	100.0	100.0	100.0
Number of women/men employed during the last 12 months	970	1,832	2,804	465	1,828	2,297

Note: Total includes 1 woman and 4 men with information missing on type of employment who are not shown separately.

The proportion of employed men who earn cash only for their work is higher than that for women (73 percent compared with 60 percent), while the percentage who do not receive any payment is lower than that for women (20 percent compared with 31 percent). About six in ten men who work in agriculture (58 percent) who work in agriculture do not receive any payment, while 17 percent each are paid in cash or in-kind only. The majority of men doing nonagricultural work (87 percent) are paid in cash only. Overall, there is only a small difference among employed men by type of employer; however, there are substantial differences within each sector. The majority of men who work in agriculture (59 percent) are employed by a family member, while about one-third (34 percent) are self-employed. Among men doing nonagricultural work, an equal percentage work for a nonfamily member or are self-employed (38 percent each), while 24 percent are employed by a family member. With regard to continuity of employment, the results indicate that Men are slightly less likely than women to work all year (6263 percent compared with 68 percent) or to do seasonal work (13 percent compared with 23 percent). However, men are more likely than women to work occasionally (24 percent compared with 9 percent).

In the ADHS 2008-09, information was collected on current, past, and cumulative fertility. Drawing on the birth history information collected in the survey, the chapter begins with a description of current fertility. This is followed by a description of differentials in fertility by background characteristics. Then, attention is focused on trends in fertility, which permits an examination of changes in age-specific fertility rates by five-year periods going back 20 years before the survey.

The chapter presents information on cumulative fertility, including the mean number of children ever born and the mean number of children surviving, for women age 15-49 by five-year age groups. Other fertility-related topics covered are birth intervals for births in the five years preceding the survey, age at first birth for five-year age groups of women, and teenage pregnancy and motherhood for the youngest survey respondents, i.e., women age 15-19; these results are important because they describe the beginning of a woman's reproductive life.

In the Women's Questionnaire, information on childbearing patterns was collected in several ways. First, each woman age 15-49 was asked a series of questions on the number of sons and daughters living with her, the number living elsewhere, and the number who may have died. Next, a complete history of all of the woman's births was obtained, including the name, sex, month and year of birth, age and survival status of each birth. For living children, a question was asked about whether the child was living in the household or elsewhere. For dead children, the age at death was recorded. Finally, information was collected on whether the woman was pregnant at the time of the survey.

4.1 Current Fertility Level

The current level of fertility in Albania is the main topic in this chapter because it is directly relevant to population policies and programmes. Table 4.1 shows age-specific fertility rates (ASFR), the total fertility rate (TFR), the general fertility rate (GFR) and the crude birth rate (CBR) for the three years preceding the survey, by residence. This table is designed to provide estimates of current levels of fertility for the country as a whole and for urban and rural areas. A three-year rate was chosen as a compromise, to get the most current information, to reduce sampling error, and to avoid problems of displacement of births.

The information obtained from the birth histories collected in the survey is used to calculate two of the most widely used measures of current fertility-the total fertility rate and its component agespecific fertility rates. Age-specific fertility rates are useful in understanding the age pattern of fertility. ASFRs are expressed as the number of births to women in a given age group per 1,000 women in that age group. In this survey, the ASFR for any five-year age group is calculated by dividing the number of births to women in that age group, during the period 1 to 36 months preceding the survey, by the number of woman-years lived by women in that age group during the same period.

Table 4.1 Current fertility

Age-specific and total fertility rate, the general fertility rate, and the crude birth rate for the three years preceding the survey, by residence, Albania 2008-09

	Residence		
Age group	Urban	Rural	Total
$15-19$	10	21	17
$20-24$	64	120	95
$25-29$	113	138	126
$30-34$	60	67	64
$35-39$	13	18	15
$40-44$	1	1	1
$45-49$	0	0	0
TFR (15-49)	1.3	1.8	1.6
GFR	39	51	46
CBR	8.4	11.3	10.0

Note: Age-specific fertility rates are per 1,000 women. Rates for age group 45-49 may be slightly biased due to truncation. Rates are for the period 1-36 months prior to interview.
TFR: Total fertility rate expressed per woman
GFR: General fertility rate expressed per 1,000 women age 15-44
CBR: Crude birth rate, expressed per 1,000 population

The TFR is a useful measure for examining the overall level of current fertility. It represents the average number of children a woman would have at the end of her reproductive period if she were to follow the current age-specific fertility rates. The TFR is calculated as the sum of the age-specific fertility rates multiplied by five (for the five years in each age group).

Table 4.1 shows a TFR of 1.6 children per woman for the three-year period preceding the 200809 ADHS, approximately corresponding to the period from the beginning of 2006 to the end of 2008 . This means that, on average, a woman in Albania who is at the beginning of her childbearing years will give birth to 1.6 children by the end of her reproductive period, if fertility remains constant at the currently observed levels. This fertility rate is below replacement level fertility, which is slightly more than 2.0 children. Compared with fertility estimates from 2001, estimated at 2.3 live births per 1000 women (INSTAT, 2004), fertility has declined substantially in Albania. The decline in births is related to many factors, including the emigration of young people and internal migration from rural to urban areas (see Chapter 14).

The TFR for rural areas (1.8 births) is higher than that for urban areas (1.3 births). Figure 4.1 shows that this urban-rural difference in childbearing rates can be attributed almost exclusively to the younger age groups-10 births per 1,000 women age 15-19 in urban areas, compared with 21 per 1,000 women age 15-19 in rural areas. Among women age 20-24, the rates are 64 births per 1,000 women in urban areas, compared with 120 per 1,000 women in rural areas (thus the rural rate is almost twice as high as the urban rate). Age-specific fertility rates peak in age group 25-29, regardless of residence, and with a smaller differential between urban and rural areas-113 and 138 births per 1,000 women, respectivelyand decline to about half their peak in age group 30-34.

Figure 4.1 Age-Specific Fertility Rates for the Three-Year Period Preceding the Survey, by Urban-Rural Residence

In examining fertility trends, it is useful to compare the TFR for the three-year period preceding the ADHS with the rates from sources covering earlier periods. The 2002 Reproductive Health Survey (RHS) estimated the TFR among women age 15-44 for the three-year period preceding the survey and reported a steady decline in fertility throughout the 1990s and into the present decade-from 3.3 children per woman in 1993-1996 to 2.6 in 1999-2002 (CDC, IPH, and INSTAT, 2005). Comparison of the RHS and ADHS results show a further decline from 2.6 children per woman in 1999-2002 to the current level of 1.6 children per woman in 2006-2008.

Table 4.1 presents two other summary measures of fertility: the crude birth rate and the general fertility rate. The GFR ignores the structure of the population and uses as a numerator the total number of births in the time period, including births to women under age 15 and age 45 and over. The denominator is the number of woman-years lived between the ages of 15 and 44 during the period. The CBR is calculated by summing the product of the age-specific rates multiplied by the proportion of women in the specific age group out of the total de facto population, male and female. The survey results indicate that the CBR is 10 births per 1,000 women and the GFR of 46 indicates that 1,000 women age 15-44 would have 46 births per year. The CBR decreased to 10 births per 1,000 women in the 2008-09 ADHS, from 13 births per 1,000 women in 2005 and 18 births per 1,000 women in 2001 (INSTAT, 2008a).

Compared with recent fertility estimates from Demographic and Health Surveys conducted in other countries in the region, fertility is higher in Albania than in Ukraine: 1.2 births per woman in 2007 (UCSR, SSC, and Macro International, 2008) but lower than in Azerbaijan: 2.0 births per woman in 2006 (SSC, MOH, and Macro International, 2008), Moldova: 1.7 births per woman in 2005 (NCPM and ORC Macro, 2006), and Armenia: 1.7 births per woman in 2005 (NSS, MOH, and ORC Macro, 2006).

The fertility level in Albania, 1.6 births per woman in 2006-08, is similar to that of surrounding countries, according to estimates from the United Nations Population Division; Greece and The Former Yugoslav Republic of Macedonia: 1.4 births per woman for the period 2005-2010, and Serbia and Montenegro: 1.6 births per woman (UNPD, 2008)

4.2 Fertility Differentials by Background Characteristics

Table 4.2 shows the total fertility rate for the three years preceding the survey, the percentage of women age 15-49 currently pregnant, and the mean number of children ever born to women age 40-49 years, by background characteristics. As expected, fertility is lowest in Urban Tirana (1.0 births per woman) and highest in Mountain region (1.9 births per woman) where most women live in rural areas. The other regions have approximately the same level of fertility (1.7 births per woman in the Coastal and Central regions). In accordance with patterns observed in most other countries, a negative association between fertility and education is observed. The TFR decreases from 1.9 for women with primary education, to 1.5 for women with secondary education and even lower, to 1.1 for those with university education. Similarly, there is a negative association between fertility and wealth status-women in the poorest households give birth to about 50 percent more children than women in the richest households (1.9 and 1.2 births per woman, respectively).

Table 4.2 indicates that 2 percent of women were pregnant at time of the survey. This percentage is likely to be low because of under-reporting: women who are early in their pregnancy may not yet know they are pregnant and some pregnant women may not want to say that they are pregnant. However, the percentage of women currently pregnant does allow for a rough validation of the level of fertility. Differentials in pregnancy rates are generally consistent with patterns of fertility across subgroups.

Table 4.2 presents an assessment of trends in fertility in the various subgroups by comparing current fertility with a measure of completed fertility, the mean number of children ever born to women age 40-49. If fertility remained stable over time, the two fertility measures, TFR and children ever born to women age 40-49, would be equal. The findings show that the mean number of children ever born to women age 40-49 (2.8 children per woman) is higher than the TFR (1.6 children per woman) for the three years preceding the survey, indicating a downward trend in fertility over the past 30 years. Overall, Table 4.2 shows that fertility has fallen by more than one child to levels about half those experienced by women age 40-49.

There is considerable uncertainty about future fertility trends, given that the TFR in Albania is similar to that in many European countries. It is estimated that fertility will continue to decline in the next decade to a level as low as 1.3 live births per woman (INSTAT, 2004).

Table 4.2 Fertility by background characteristics			
Total fertility rate for the three years preceding the survey, percentage of women age 15-49 currently pregnant, and mean number of children ever born to women age 40-49 years, by background characteristics, Albania 2008-09			
Background characteristic	Total fertility rate	Percentage of women age 15-49 currently pregnant	Mean number of children ever born to women age 40-49
Residence			
Urban	1.3	1.7	2.4
Rural	1.8	2.2	3.2
Region			
Coastal	1.7	2.0	2.8
Central	1.7	2.0	2.8
Mountain	1.9	2.1	3.8
Urban Tirana	1.0	1.7	2.2
Education			
No education/Primary 4-year	*	1.8	(3.4)
Primary 8-year	1.9	2.4	3.2
Secondary, professional, technical	1.5	1.6	2.5
University+	(1.1)	1.7	1.9
Wealth quintile			
Lowest	1.9	1.6	3.4
Second	1.7	1.7	3.2
Middle	1.8	2.5	2.8
Fourth	1.5	1.7	2.4
Highest	1.2	2.4	2.2
Total	1.6	2.0	2.8
Note: Total fertility rates are for the period 1-36 months prior to interview. For total fertility rates, an asterisk indicates that a figure is based on fewer than 125 unweighted cases and has been suppressed; figures in parentheses are based on 125-249 unweighted cases. For mean number of children ever born, figures in parentheses are based on 25-49 unweighted cases.			

4.3 Fertility Trends

The information collected in the 2008-09 ADHS allows for direct examination of fertility trends over the 20 years preceding the survey. Table 4.3 present age-specific fertility rates for five-year periods preceding the survey using information on live births from the respondents' birth histories. To calculate these rates, births were classified according to the time period in which the birth occurred and the mother's age at the time of the birth. Because women age 50 and older were not interviewed in the survey, the rates are successively truncated as the number of years before the survey increases. For example, rates cannot be calculated for women age 45-49 for the period 5-9 years before the survey because women in that age group would have been 50 years or older at the time of the survey.

Table 4.3 Trends in age-specific fertility rates
Age-specific fertility rates for five-year periods preceding the survey, by mother's age at the time of the birth, Albania 2008-09

	Number of years preceding survey			
Mother's age at birth	$0-4$	$5-9$	$10-14$	$15-19$
$15-19$	20	35	50	26
$20-24$	105	161	210	192
$25-29$	129	169	196	217
$30-34$	68	82	101	$[140]$
$35-39$	20	30	$[47]$	
$40-44$	4	$[6]$		
$45-49$	$[0]$			

Note: Age-specific fertility rates are per 1,000 women. Estimates in brackets are truncated. Rates exclude the month of interview.

The results in Table 4.3 confirm that fertility has fallen substantially in the past 20 years among all age groups. With the exception of an increase in fertility for teenagers and young adults in the mid1990s (10-14 years before the survey) there has been a monotonic decline in fertility in each five-year period, for every age group. The decline is particularly evident among women in the young age groups. For example, age-specific fertility among women age $15-19$ declined from 50 births per 1,000 women in the period 10-14 years before the survey to 20 births per 1,000 women in the period $0-4$ years before the survey, a 60 percent decrease. The pace of the decline was more rapid at the beginning of the period than during the five-year period preceding the ADHS, reflecting the fact that women had already achieved very low fertility levels by the beginning of that latter period. Figure 4.2 provides a graphical representation of these declines.

Figure 4.2 Trends in Age-Specific Fertility Rates for Five-Year Periods Preceding the Survey

ADHS 2008

4.4 Children Ever Born and Living

Table 4.4 shows the distribution of all women and currently married women by the total number of children ever born and by the mean number of living children. Information on the number of children ever born reflects the accumulation of births over a woman's entire reproductive years, and has limited reference to current fertility, particularly when the country has experienced a fertility decline. However, the information is useful in looking at how average family size varies across age groups and for looking at the level of primary infertility.

On average, a woman in Albania has given birth to 1.6 children. Out of that number, almost all are still alive, with less than 1 in 25 who died. Almost all women age 15-19 (98 percent) have never given birth. This proportion declines rapidly to less than 5 percent among women age 35 and older. Therefore, despite low fertility in Albania, childbearing is almost universal. On average, women in Albania have given birth to 1.2 children by their late twenties. The number of children ever born increases with women's age. However, even in the oldest age groups, the mean number of children ever born is less than three.

The same pattern is seen for currently married women, except that childbearing starts much earlier: only 76 percent of currently married women age 15-19 have never given birth, compared with 98 percent of all women. Similar to all women, the proportion of currently married women who have never given birth declines rapidly with age to a low of 2 percent or less for women in their thirties and older.

Percent distribution of all women and currently married women by number of children ever born, mean number of children ever born and mean number of living children, according to age group, Albania 2008-09															
	Number of children ever born											Total		Mean number of children ever born	Mean number of living children
Age	0	1	2	3	4	5	6	7	8	9	10+				
ALL WOMEN															
15-19	98.1	1.8	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	100.0	1,478	0.02	0.02
20-24	75.2	16.8	6.8	0.9	0.3	0.0	0.0	0.0	0.0	0.0	0.0	100.0	976	0.34	0.34
25-29	36.9	19.6	32.3	9.0	1.6	0.1	0.4	0.0	0.0	0.0	0.0	100.0	848	1.21	1.18
30-34	12.0	12.8	42.2	24.0	7.1	1.4	0.5	0.0	0.0	0.0	0.0	100.0	866	2.08	2.02
35-39	4.8	6.8	42.7	32.6	8.5	3.0	0.7	0.8	0.1	0.0	0.0	100.0	1,097	2.50	2.41
40-44	4.3	6.5	37.5	31.7	13.1	4.3	1.8	0.5	0.2	0.1	0.0	100.0	1,232	2.67	2.58
45-49	3.3	5.1	33.3	31.9	14.6	6.2	3.0	1.4	0.8	0.4	0.1	100.0	1,088	2.95	2.80
Total	36.2	8.9	26.4	18.3	6.5	2.2	0.9	0.4	0.2	0.1	0.0	100.0	7,584	1.64	1.58
CURRENTLY MARRIED WOMEN															
15-19	76.4	22.5	1.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	100.0	110	0.25	0.25
20-24	33.5	44.8	18.5	2.4	0.7	0.0	0.0	0.0	0.0	0.0	0.0	100.0	358	0.92	0.91
25-29	13.4	26.0	44.9	12.7	2.2	0.1	0.6	0.0	0.0	0.0	0.0	100.0	599	1.67	1.64
30-34	2.0	13.8	46.9	27.1	8.0	1.6	0.6	0.0	0.0	0.0	0.0	100.0	766	2.32	2.26
35-39	1.3	6.3	44.4	34.0	9.0	3.3	0.8	0.8	0.1	0.0	0.0	100.0	1,022	2.61	2.51
40-44	1.8	5.6	38.3	33.4	13.7	4.6	1.8	0.6	0.2	0.1	0.0	100.0	1,155	2.77	2.67
45-49	2.0	4.6	33.8	33.0	15.0	6.5	3.0	0.9	0.8	0.4	0.1	100.0	993	2.98	2.83
Total	7.1	12.4	38.5	27.1	9.5	3.3	1.3	0.5	0.2	0.1	0.0	100.0	5,001	2.39	2.30

The difference between married women and all women in the mean number of children ever born (and the mean number living) is about 0.8 children. This difference mainly reflects the large proportion of unmarried women in the younger age groups (15-19 and 20-24) who are less exposed to the risk of pregnancy. The smaller differences at older ages show the fertility-reducing impact of marital dissolution (divorce and widowhood). Note that the number of children ever born rises monotonically with age, which heightens confidence in the birth history reports.

Among currently married women, 12 percent have had only one live-born child, 39 percent have had two children, and 27 percent have had three children. Fifteen percent of currently married women have had four or more children. Just 7 percent of currently married women age 15-49 have never had a child-this is an indirect indicator of primary infertility, because voluntary childlessness is rare in Albania and most women tend to have at least one child.

4.5 BIRTH INTERVALS

A birth interval, defined as the length of time between two live births, provides information about birth spacing patterns. Research has shown that short birth intervals are more likely to adversely affect maternal health and children's chances of survival. Children born soon after a previous birth, especially if the interval between the births is less than two years, are at increased risk of health problems and dying at an early age. The occurrence of closely spaced births gives the mother insufficient time to restore her health, which may limit her ability to take care of her children. The duration of breastfeeding for the older child may also be shortened if the mother becomes pregnant. Longer birth intervals, on the other hand, contribute to the improved health status of both mother and child.

Table 4.5 shows the percent distribution of the birth intervals of second and higher-order births in the five years preceding the survey, by background characteristics. The median birth interval is 47 months, and increases with age from 35 months for births to women in their twenties to 55 months for births to women in their thirties, to 82 months for births to women in their forties. Fifteen percent of births in the five years preceding the survey occurred within 24 months of the previous birth, an interval considered to be too short. The median birth interval is slightly shorter for children born in rural areas (45 months) than those born in urban areas (50 months). Among regions, children born in the Mountain region have the shortest birth interval (41 months), while those born in Urban Tirana have the longest birth interval (52 months).

Table 4.5 Birth intervals									
Percent distribution of non-first births in the five years preceding the survey by number of months since preceding birth, and median number of months since preceding birth, according to background characteristics, Albania 2008-09									
Background characteristic	Months since preceding birth						Total	Number of nonfirst births	Median number of months since preceding birth
	7-17	18-23	24-35	36-47	48-59	$60+$			
Age									
15-19	*	*	*	*	*	*	*	1	*
20-29	11.2	14.8	27.8	16.6	15.6	13.9	100.0	417	34.5
30-39	2.7	5.2	14.3	17.7	16.7	43.4	100.0	551	54.5
40-49	3.2	0.5	10.6	11.6	10.2	63.9	100.0	73	81.7
Birth order									
2	6.5	10.1	24.3	17.4	15.5	26.3	100.0	514	42.3
3	4.2	5.6	14.7	14.5	17.3	43.6	100.0	333	55.2
4+	8.4	10.4	14.9	19.9	13.9	32.5	100.0	194	46.7
Sex of preceding birth									
Male	5.7	9.9	17.5	15.3	15.5	36.0	100.0	481	48.4
Female	6.5	7.7	21.1	18.3	16.0	30.4	100.0	561	45.4
Survival of preceding birth									
Living	5.4	8.4	19.6	17.1	15.7	33.9	100.0	1,007	47.6
Dead	(28.4)	(16.6)	(15.3)	(13.0)	(18.9)	(7.8)	(100.0)	35	(24.8)
Residence									
Urban	5.8	7.4	17.8	15.5	15.4	38.1	100.0	381	49.8
Rural	6.3	9.4	20.4	17.8	16.0	30.0	100.0	661	44.8
Region									
Coastal	10.3	10.6	21.0	10.7	15.2	32.2	100.0	283	44.7
Central	3.5	7.7	18.4	19.0	18.7	32.7	100.0	495	48.4
Mountain	7.5	9.5	21.0	25.1	11.1	25.8	100.0	140	41.4
Urban Tirana	5.7	7.4	18.1	13.8	10.7	44.3	100.0	123	52.2
Education									
No education/Primary 4-year	(8.7)	(22.7)	(18.2)	(8.7)	(13.8)	(28.1)	(100.0)	31	(36.3)
Primary 8-year	7.7	9.3	20.9	18.0	16.1	28.0	100.0	673	43.9
Secondary, professional, technical	2.2	6.8	16.6	15.4	14.8	44.1	100.0	267	54.5
University+	5.4	3.9	16.3	15.8	17.2	41.4	100.0	71	54.9
Wealth quintile									
Lowest	5.1	11.0	16.0	22.1	15.3	30.6	100.0	244	45.5
Second	6.9	8.1	18.4	18.5	19.0	29.0	100.0	228	46.8
Middle	4.9	6.5	27.9	15.8	14.1	30.9	100.0	233	43.5
Fourth	9.4	7.9	19.3	11.0	17.0	35.4	100.0	187	48.8
Highest	4.6	10.4	13.7	15.2	12.7	43.4	100.0	149	54.5
Total	6.1	8.7	19.4	16.9	15.8	33.0	100.0	1,041	47.0

Note: First-order births are excluded. The interval for multiple births is the number of months since the preceding pregnancy that ended in a live birth. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed. Figures in parentheses are based on 25-49 unweighted cases.

Table 4.5 shows that births to women with higher levels of education are more likely to have a longer birth interval (55 months) than births to women with primary education or less (44 months or less). Similarly, longer birth intervals are associated with higher wealth quintiles. For example, the birth interval for births to women in the highest wealth quintile is 55 months, compared with 44 to 49 months for births to women in the other wealth quintiles.

4.6 Age at First Birth

The onset of childbearing has a direct bearing on fertility. Early initiation of childbearing lengthens the reproductive period, thereby increasing fertility. Conversely, late initiation of childbearing shortens the reproductive period, thereby limiting potential fertility. Table 4.6 shows the percentage of women who gave birth by exact age, according to five-year age groups, and the median age at first birth. The youngest cohort of women for whom the median age at first birth can be calculated is women age 2529 years. The medians for age groups 15-19 and 20-24 cannot be determined because less than half of the women had a birth before reaching the lowest age of the age group.

The 2008-09 ADHS findings indicate that childbearing begins relatively late in Albania; threefourths of women age 20-24 years have never given birth. On the other hand, only 12 percent of women age 30-34 have never given birth. The median age at first birth among women age 25-49 who gave birth is 23.4 years. There is little variation by age groups (median 22.7-23.9 years).

Further insights into the onset of childbearing can be discerned by examining the percentage of women in different age groups who had a first birth by exact ages. While around one in ten women age 40-49 had their first birth by age 20, almost one in five women age 25-34 had their first birth by age 20. For women age 20-24, the proportion who had their first birth by age 20 has dropped to one in ten (11 percent).

Table 4.6 Age at first birth
Percentage of women age 15-49 who gave birth by exact ages, percentage who have never given birth, and median age at first birth, according to current age, Albania 2008-09

Current age	Percentage who gave birth by exact age					Percentage who have never given birth	Number of women	Median age at first birth
	15	18	20	22	25			
15-19	0.2	na	na	na	na	98.1	1,478	a
20-24	0.1	2.5	11.3	na	na	75.2	976	a
25-29	0.0	4.7	18.1	36.8	53.5	36.9	848	23.9
30-34	0.0	2.6	18.6	41.4	70.0	12.0	866	22.7
35-39	0.0	2.7	10.3	35.3	72.0	4.8	1,097	23.1
40-44	0.0	1.1	10.6	29.8	66.0	4.3	1,232	23.6
45-49	0.0	1.7	10.1	30.6	64.0	3.3	1,088	23.6
25-49	0.0	2.4	13.0	34.3	65.4	10.9	5,130	23.4
na $=$ Not applicable due to censoring $\mathrm{a}=$ Omitted because less than 50 percent of women had a birth before reaching the beginning of the age group								

Table 4.7 shows differentials in the median age at first birth among women age 25-49 by current age, according to background characteristics. As expected, the median age at first birth shows an inverse relationship with educational attainment and wealth status. Women in Urban Tirana have the highest median age at first birth (24.9 years); the median age at first birth for the other regions is about 23 years. Overall, women in urban areas (24.2 years) have a higher median age at first birth than women in rural areas (22.7 years).

Table 4.7 Median age at first birth						
Median age at first birth among women age 25-49 years, according to background characteristics, Albania 2008-09						
Background	Age					Women age 25-49
characteristic	25-29	30-34	35-39	40-44	45-49	
Residence						
Urban	a	23.9	23.7	24.1	24.4	24.2
Rural	22.4	22.0	22.6	23.3	22.9	22.7
Region						
Coastal	23.2	22.5	23.1	23.4	23.9	23.3
Central	22.6	22.4	22.7	23.6	23.3	23.0
Mountain	24.3	22.8	22.9	23.7	22.8	23.2
Urban Tirana	a	24.6	24.6	24.0	24.4	24.9
Education						
No education/Primary 4-year	*	*	*	*	*	22.7
Primary 8-year	22.3	22.0	22.4	23.0	22.7	22.5
Secondary, professional, technical	22.9	22.6	23.4	24.0	24.2	23.6
University+	a	27.8	25.7	25.8	25.5	a
Wealth quintile						
Lowest	23.6	22.5	22.9	23.8	23.0	23.1
Second	22.6	21.6	22.6	23.0	22.7	22.6
Middle	22.2	22.4	22.5	23.5	23.8	22.9
Fourth	23.7	22.7	23.1	23.6	24.5	23.5
Highest	a	24.9	24.6	24.1	24.1	24.7
Total	23.9	22.7	23.1	23.6	23.6	23.4
Note: An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed. $\mathrm{a}=$ Omitted because less than 50 percent of the women had a birth before reaching the beginning of the age group						

4.7 Teenage Pregnancy and Motherhood

Adolescent pregnancy, early childbearing, and teenage motherhood have negative socio-economic and health consequences. Adolescent mothers are more likely to have complications during labour, which result in higher morbidity and mortality for themselves and their children. Moreover, childbearing during the teenage years frequently has adverse social consequences, particularly on female educational attainment, because women who become mothers in their teens are more likely to curtail education and subsequently compromise their future prospects.

Table 4.8 shows the percentage of women age $15-19$ who were mothers or were pregnant with their first child at the time of the 2008-09 ADHS, by selected background characteristics. Only 3 percent of teenagers had begun childbearing, including 2 percent who are already mothers. As expected, the proportion of young women who have begun childbearing increases rapidly with age, from almost none among women age 15 , to 12 percent among women age 19.

Table 4.8 Teenage pregnancy and motherhood				
Percentage of women age 15-19 who have had a live birth or who are pregnant with their first child, and percentage who have begun childbearing, by background characteristics, Albania 2008-09				
	Percentage who:		Percentage who have begun childbearing	Number of women
Background characteristic	Have had a live birth	Are pregnant with first child		
Age				
15	0.0	0.0	0.0	319
16	0.0	0.0	0.0	367
17	0.5	1.7	2.2	320
18	2.7	1.2	3.9	260
19	8.7	2.8	11.5	212
Residence				
Urban	1.0	0.2	1.2	546
Rural	2.4	1.4	3.8	932
Region				
Coastal	2.2	1.3	3.4	445
Central	1.8	0.9	2.8	687
Mountain	2.4	1.2	3.5	183
Urban Tirana	0.5	0.0	0.5	163
Education				
No education/Primary 4-year	*	*	*	19
Primary 8-year	2.9	1.5	4.4	569
Secondary, professional, technical	0.6	0.6	1.2	830
University+	3.3	0.0	3.3	59
Wealth quintile				
Lowest	1.4	0.3	1.6	345
Second	2.2	2.6	4.8	314
Middle	3.5	0.9	4.5	318
Fourth	1.2	0.0	1.2	275
Highest	0.6	1.0	1.6	226
Total	1.9	1.0	2.8	1,478

Note: An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.

Teenage fertility varies by residence and region. Three times as many young women in rural areas have begun childbearing (4 percent), compared with those in urban areas (1 percent). Teenagers in the Mountain region are most likely to start childbearing, while those in Urban Tirana are the least likely (4 percent compared with less than 1 percent, respectively). The proportion of teenagers who have started childbearing is lower among those with secondary education (1 percent) than those with only primary 8year education (4 percent). However, teenagers with some university education (3 percent)—who are also the oldest in the age group-are more likely to have started childbearing than those with secondary education. The proportion of teenage women who have begun childbearing is highest in the second and middle wealth quintiles (5 percent each), compared with 1 to 2 percent among those in the other wealth quintiles.

After the fall of Communism in Albania, family planning was legalized under government order no. 226, in May 1992. Since January 1993, based on an order from the Ministry of Health, contraceptives have been distributed free in all government health centres and social marketing of contraceptives has been implemented throughout the country. In 2008-09, contraceptives were available from three sources: the government (at no cost), social marketing programmes (at subsidized prices), and the commercial for-profit sector (at market prices).

The public sector provides pills, condoms, and injectables free of charge in over 431 public health facilities-hospitals, polyclinics and health centres, and some health posts (ambulances)-and tubal ligations and intrauterine device (IUD) insertions in facilities with trained obstetricians/ gynaecologists. The National Logistics Management Information System collects service statistics as well as contraceptive logistics information that enable the Ministry of Health to estimate national contraceptive requirements and to monitor the progress of the national family planning programme.

The Ministry of Health has taken the lead in strengthening contraceptive security to ensure a lifetime supply of contraceptives for all Albanians who need them. As part of these efforts, in 2003, the Ministry of Health approved the national strategy on securing contraceptives. The Ministry of Health has regulated family planning policy and budgets to achieve contraceptive security. This was done in a step by step manner by assuming the cost of procuring public sector contraceptives. The share of contraceptives provided by UNFPA, the only contraceptive donor for the public sector, has decreased correspondingly. Today, the Ministry of Health covers 80 percent of contraceptive procurement costs for the public sector and by 2010 Albania will be completely self-sufficient and independent of outside donor support for provision of contraceptives.

This chapter addresses family planning topics such as knowledge of contraceptive methods, use of methods in the past and present, sources of supply, reasons for non-use, desire to use in the future, exposure to family planning messages, and attitudes toward family planning. Although the focus of this chapter is women, some results from the men's survey are included because men play an important role in the realization of reproductive goals.

5.1 Knowledge of Contraceptive Methods

A major objective of the 2008-09 ADHS was to assess the level of knowledge about family planning methods. Individuals who have adequate information about the available methods of contraception are better able to plan the size of their family and to space the births of their children. Information on knowledge of contraception was collected during the survey by asking respondents to name ways or methods by which a couple could delay or avoid pregnancy. If the respondent failed to mention a particular method spontaneously, the interviewer described the method and asked whether the respondent recognized it. In this manner, information was collected about ten modern methods (female sterilization, male sterilization, the pill, IUD, injectables, implants, male condoms, female condoms, lactational amenorrhoea, and emergency contraception) and two traditional methods (periodic abstinence or rhythm and withdrawal). Provision was also made in the questionnaire to record any other methods named spontaneously by the respondent.

Table 5.1 shows knowledge of contraceptive methods among all respondents age 15-49, currently married respondents, and sexually active unmarried respondents. Knowledge of family planning is nearly universal in Albania, with 99 percent of all women and almost 100 percent of all men age 15-49 knowing at least one method.

Percentage of all respondents, currently married respondent, and sexually active unmarried respondents age 15-49 who know any contraceptive method, by specific method, Albania 2008-09						
		Women			Men	
Method	$\begin{gathered} \text { All } \\ \text { women } \\ \hline \end{gathered}$	Currently married women	Sexually active unmarried women ${ }^{1}$	$\begin{gathered} \text { All } \\ \text { men } \end{gathered}$	Currently married men	$\begin{gathered} \text { Sexually } \\ \text { active } \\ \text { unmarried } \\ \text { men }^{1} \\ \hline \end{gathered}$
Any method	98.6	99.5	99.2	99.8	100.0	100.0
Any modern method	94.8	94.4	98.9	96.5	95.3	99.9
Female sterilization	57.8	64.4	69.2	37.1	43.3	45.4
Male sterilization	15.5	15.5	41.1	22.4	25.7	29.9
Pill	84.7	86.3	95.0	59.3	61.9	73.9
IUD	34.7	41.1	43.9	9.1	11.0	11.0
Injectables	57.3	63.6	62.6	23.9	28.3	27.0
Implants	6.5	6.6	16.0	5.3	6.0	8.1
Male condom	88.3	86.6	97.5	95.7	93.9	99.9
Female condom	15.2	14.4	27.7	8.9	8.9	15.1
Lactational amenorrhoea method (LAM)	28.4	37.0	23.7	12.0	18.8	4.7
Emergency contraception	28.2	26.4	58.6	32.7	31.7	52.2
Any traditional method	84.1	95.6	93.8	91.6	96.9	97.7
Rhythm	18.6	20.7	31.2	25.8	32.9	30.1
Withdrawal	83.5	95.4	93.8	91.4	96.9	97.7
Folk method	0.3	0.3	0.9	0.4	0.7	0.3
Mean number of methods						
known by respondents 15-49	5.2	5.6	6.6	4.2	4.6	5.0
Number of respondents	7,584	5,001	154	3,013	1,703	309
${ }^{1}$ Had sexual intercourse within 30 days preceding the survey						

Modern methods are more widely known by women than traditional methods: 95 percent of women have heard of at least one modern method, compared with 84 percent who know of a traditional method. Among women, the most widely known modern contraceptive methods are the male condom (88 percent) and the pill (85 percent), while withdrawal (84 percent) is the most commonly known traditional method. Female sterilization (58 percent) and injectables (57 percent) are known by almost six in ten women, while the IUD is known by more than one-third (35 percent) of women. Only 28 percent of women have heard of the lactational amenorrhoea method (LAM) or emergency contraception. The least known modern methods are male sterilization (16 percent), the female condom (15 percent), and implants (7 percent); the least known traditional methods are rhythm (19 percent) and folk methods (less than 1 percent).

As expected, contraceptive knowledge is slightly higher among currently married women and sexually active unmarried women than among all women. The mean number of methods known is a general indicator of the breadth of knowledge of family planning methods. On average, the mean number of methods known by all women is 5.2 , compared with 5.6 among married women and 6.6 among sexually active unmarried women. The gap in knowledge of contraceptive methods between sexually active unmarried women and other groups of women is largest for emergency contraception and male sterilization.

As with women, modern methods are more widely known to men than traditional methods. For example, 97 percent of all men have heard of at least one modern method, while only 92 percent know of a traditional method. Among all men, the most widely known modern method is the male condom (96 percent), while withdrawal (92 percent) is the most commonly known traditional method. Pills are known by 59 percent of men, while female sterilization and emergency contraception are known by 37 and 33 percent, respectively. Around one in four men has heard of male sterilization, injectables, and the rhythm method. The least widely known methods are LAM, IUD, female condom (9 percent, each), and implants (5 percent).

As with women, contraceptive knowledge is slightly higher among currently married men and sexually active unmarried men than among all men. The mean number of methods known by all men is 4.2 , compared with 4.6 among married men and 5.0 among sexually active unmarried men. The gap in knowledge between sexually active unmarried men and other groups of men is largest for the pill, emergency contraception, and female condoms.

Table 5.1 highlights the large gap in contraceptive knowledge between women and men regarding some of the female methods: female sterilization (58 percent of women, compared with 37 percent of men), the pill (85 percent of women, compared with 59 percent of men), the IUD (35 percent of women, compared with 9 percent of men); and injectables (57 percent of women, compared with 24 percent of men). Overall, women generally have more knowledge of female-specific methods than men and men have more knowledge of male-specific methods than women; however, the gender gap for knowledge of female-specific methods is larger than the gap for male-specific methods.

Table 5.2 shows the percentage of currently married women and men who know any method of contraception and any modern method by background of characteristics. Overall, knowledge of any method is high and does not vary substantially by background characteristics. As expected, knowledge of modern methods among currently married women and men is somewhat lower among older respondents (age 45-49); it is higher in urban areas than in rural areas, and increases with educational attainment and wealth quintile.

Table 5.2 Knowledge of contraceptive methods by background characteristics
Percentage of currently married women and currently married men age 15-49 who have heard of at least one contraceptive method and who have heard of at least one modern contraceptive method, by background characteristics, Albania 2008-09

Background characteristic	Women			Men		
	Heard of any method	Heard of any modern method ${ }^{1}$	Number of women	Heard of any method	Heard of any modern method ${ }^{1}$	Number of men
Age						
15-19	100.0	99.0	110	*	*	6
20-24	98.6	94.4	358	(100.0)	(91.9)	30
25-29	99.9	95.7	599	100.0	99.5	113
30-34	99.9	96.7	766	100.0	99.1	212
35-39	99.2	95.1	1,022	100.0	95.5	341
40-44	99.5	93.0	1,155	100.0	95.8	481
45-49	99.5	92.5	993	100.0	92.3	520
Residence						
Urban	99.9	98.3	2,145	100.0	99.3	746
Rural	99.2	91.5	2,856	100.0	92.2	957
Region						
Coastal	99.9	95.2	1,450	100.0	95.1	462
Central	99.2	93.9	2,383	100.0	93.9	840
Mountain	99.5	91.4	482	100.0	95.7	151
Urban Tirana	99.9	96.9	686	100.0	100.0	249
Education						
No education/Primary 4-year	98.7	88.8	81	(100.0)	(89.4)	32
Primary 8-year	99.3	92.0	2,746	100.0	92.0	740
Secondary, professional, technical	99.8	97.2	1,681	100.0	97.5	745
University+	100.0	99.7	493	100.0	100.0	186
Wealth quintile						
Lowest	99.1	90.0	987	100.0	87.2	292
Second	99.2	92.4	1,011	100.0	93.4	345
Middle	99.5	94.7	1,066	100.0	97.3	380
Fourth	99.7	95.7	963	100.0	97.7	348
Highest	100.0	99.4	975	100.0	99.3	337
Total	99.5	94.4	5,001	100.0	95.3	1,703

[^10]
5.2 Ever Use of Contraception

All respondents who had heard of a specific method of contraception were asked whether they (or their partner) had ever used that method. The questionnaire contained an additional probe to be asked of those who reported no contraceptive use. Table 5.3 .1 shows the percentage of all women, currently married women, and sexually active unmarried women who have ever used specific methods of family planning, by age.

The results from the 2008-09 ADHS indicate that 91 percent of currently married women have ever used a contraceptive method, 33 percent have ever used a modern method, and 89 percent have ever used a traditional method. The most common method by far is withdrawal; 89 percent of currently married women used this method at some time. Sixteen percent of currently married women have used the male condom, 11 percent have used LAM, and 8 percent have used the pill. Ever use of other modern methods does not exceed 3 percent.

Sexually active unmarried women are more likely to have ever used a contraceptive method than currently married women (96 and 91 percent, respectively). Ever use of contraception among all women (67 percent) is substantially lower than among currently married or sexually active unmarried women because this group includes women who are not sexually active and therefore not in need of contraception. Sexually active unmarried women are much more likely than either all women or currently married women to have used a male condom (66 percent, compared with 14 percent and 16 percent, respectively), emergency contraception (22 percent, compared with 2 percent and 3 percent, respectively), and the pill (12 percent, compared with 2 percent and 3 percent, respectively). However, they are less likely than other women to have used long-term methods such as the IUD, or sterilization.

In the 2008-09 ADHS, men were asked only about ever use of male-specific contraceptive methods, so the results are not comparable with the women's findings (Table 5.3.2). Ninety-six percent of currently married men age 15-49 have used a contraceptive method at some time in their lives. More than twice as many married men have used a traditional method (95 percent) as a modern method (42 percent). The most commonly used method among currently married men is withdrawal (95 percent), followed by the male condom (42 percent).

Ever use of contraception among all men age 15-49 is lower than among currently married men (74 percent, compared with 96 percent). Sexually active unmarried men are slightly more likely to have used family planning at some time than currently married men (98 percent, compared with 96 percent). Likewise, withdrawal (93 percent) and the male condom (90 percent) are more likely to have been used by sexually active unmarried men than by currently married men (95 and 42 percent, respectively).

Table 5.3.1 Ever use of contraception: Women															
Percentage of all women, currently married women, and sexually active unmarried women age 15-49 who have ever used any contraceptive method by method, according to age, Albania 2008-09															
			Modern method								Any tradial method	Traditional method			Number of women
Age	$\begin{gathered} \text { Any } \\ \text { method } \end{gathered}$	Any modern method	Female sterilization	Pill	IUD	Injectables	Male condom	LAM	Emergency contra- ception	Other modern method		Rhythm	Withdrawal	$\begin{aligned} & \text { Folk } \\ & \text { method } \end{aligned}$	
ALL WOMEN															
15-19	11.1	5.2	0.0	1.0	0.0	0.1	4.1	0.3	1.0	0.0	9.7	0.5	9.7	0.0	1,478
20-24	45.4	23.5	0.0	3.5	0.3	0.2	19.5	3.3	3.5	0.1	40.8	2.9	40.5	0.0	976
25-29	76.0	35.4	1.0	10.0	1.3	3.6	21.8	8.3	6.3	0.1	71.3	4.8	71.1	0.0	848
30-34	87.8	39.0	2.4	9.0	1.2	2.8	19.2	14.1	2.5	1.1	85.1	6.1	85.1	0.0	866
35-39	89.3	34.4	2.8	9.0	2.5	2.9	16.4	10.5	2.3	0.2	86.9	5.1	86.8	0.0	1,097
40-44	90.7	31.3	4.0	7.0	1.7	2.4	13.1	11.0	1.8	0.3	88.9	5.9	88.9	0.1	1,232
45-49	89.1	24.7	4.5	7.0	1.7	2.3	7.9	8.3	0.9	0.4	87.5	4.9	87.5	0.1	1,088
Total	66.9	26.0	2.1	6.2	1.2	1.9	13.6	7.5	2.4	0.3	64.4	4.1	64.3	0.0	7,584
CURRENTLY MARRIED WOMEN															
15-19	86.4	32.6	0.0	5.0	0.0	1.1	24.9	3.3	5.0	0.0	78.8	3.5	78.8	0.0	110
20-24	82.0	31.7	0.0	5.1	0.9	0.5	23.5	8.9	5.0	0.0	79.9	7.1	79.0	0.0	358
25-29	90.0	37.1	1.4	10.3	1.8	4.5	20.9	11.4	5.3	0.1	87.1	5.0	86.7	0.0	599
30-34	93.8	40.9	2.7	10.2	1.4	3.2	19.1	15.6	2.6	1.3	91.1	6.7	91.1	0.0	766
35-39	91.7	35.2	2.9	9.5	2.6	3.2	16.3	10.8	2.2	0.2	89.5	5.4	89.4	0.0	1,022
40-44	92.1	31.3	4.3	7.1	1.8	2.5	12.3	11.4	1.6	0.2	90.5	6.2	90.5	0.1	1,155
45-49	90.5	24.0	4.4	6.4	1.5	2.1	8.3	8.6	0.7	0.5	88.9	4.8	88.9	0.1	993
Total	90.9	32.9	3.0	8.1	1.7	2.7	15.5	11.0	2.5	0.4	88.6	5.7	88.5	0.0	5,001
SEXUALLY ACTIVE UNMARRIED WOMEN ${ }^{1}$															
15-19	(90.8)	(66.2)	(0.0)	(11.5)	(0.0)	(0.0)	(51.9)	(0.0)	(28.8)	(0.0)	(84.2)	(11.2)	(84.2)	(0.0)	32
20-24	95.3	73.3	0.0	10.4	0.0	0.0	71.4	0.0	15.0	0.0	83.3	3.2	83.3	0.0	58
25+	100.0	73.3	0.0	14.2	0.0	0.0	66.8	0.0	24.4	0.0	92.8	9.0	92.8	0.0	63
Total	96.3	71.8	0.0	12.2	0.0	0.0	65.5	0.0	21.7	0.0	87.4	7.3	87.4	0.0	154
Note: Figures in parentheses are based on 25-49 unweighted cases. Other modern methods include diaphragm, foam, jelly, female condom, and male sterilization. LAM = Lactational amenorrhoea method ${ }^{1}$ Women who had sexual intercourse within 30 days preceding the survey															

Table 5.3.2 Ever use of contraception: Men								
Percentage of all men, currently married men, and sexually active unmarried men age 15-49 who have ever used any contraceptive method by method, according to age, Albania 2008-09								
			Modern	method		Tradition	method	
Age	Any method	Any modern method	Male sterilization	Male condom	Any traditional method	Rhythm	Withdrawal	Number of men
ALL MEN								
15-19	22.0	18.6	0.0	18.6	15.7	1.0	15.7	670
20-24	66.1	55.6	0.5	55.6	60.7	6.0	60.6	393
25-29	86.3	69.6	0.8	69.6	80.6	10.4	80.6	269
30-34	92.8	53.3	0.3	53.3	90.9	13.6	90.9	273
35-39	96.1	49.6	0.0	49.6	95.2	15.2	94.8	372
40-44	95.8	38.6	0.2	38.6	94.1	16.6	93.9	501
45-49	95.7	32.8	0.0	32.8	94.4	14.9	94.4	536
Total	74.4	40.8	0.2	40.8	71.0	10.5	70.9	3,013
CURRENTLY MARRIED MEN								
15-19	*	*	*	*	*	*	*	6
20-24	(93.5)	(52.6)	(0.0)	(52.6)	(93.5)	(11.3)	(93.5)	30
25-29	93.4	62.5	0.0	62.5	88.6	17.2	88.6	113
30-34	96.3	48.9	0.0	48.9	95.7	14.2	95.7	212
35-39	97.4	47.9	0.0	47.9	96.5	15.8	96.1	341
40-44	96.1	38.3	0.2	38.3	94.9	17.2	94.6	481
45-49	95.7	32.2	0.0	32.2	94.6	14.8	94.6	520
Total	96.1	41.8	0.0	41.8	94.8	15.7	94.6	1,703
SEXUALLY ACTIVE UNMARRIED MEN ${ }^{1}$								
15-19	(97.9)	(86.8)	(0.0)	(86.8)	(93.2)	(2.2)	(93.2)	45
20-24	97.9	90.3	0.8	90.3	91.9	12.7	91.9	134
25+	99.2	90.7	1.7	90.7	93.9	8.9	93.9	130
Total	98.4	90.0	1.1	90.0	92.9	9.6	92.9	309
Note: Figures in parentheses are based on 25-49 unweighted cases. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed. ${ }^{1}$ Men who had sexual intercourse within 30 days preceding the survey								

5.3 Current Use of Contraceptive Methods

Table 5.4 shows the percent distribution of all women, currently married women, and sexually active unmarried women age 15-49 by contraceptive method currently used, according to age. Fortyeight percent of all women of reproductive age, 69 percent of currently married women, and 72 percent of sexually active unmarried women are using a method of contraception. As expected, contraceptive use is lower among all women than among married women or sexually active unmarried women because the first group includes women who are not married or sexually active and therefore are not in need of family planning.

Table 5.4 Current use of contraception by age															
Percent distribution of all women, currently married women, and sexually active unmarried women age 15-49 by contraceptive method currently used, according to age, Albania 2008-09															
						Modern m	ethod				Tradi met	ional od			
Age	Any method	Any modern method	Female sterilization	Pill	IUD	Injectables	Male condom	LAM	Other modern method	Any traditional method	Rhythm	Withdrawal	$\begin{gathered} \text { Not } \\ \text { currently } \\ \text { using } \\ \hline \end{gathered}$	Total	Number of women
ALL WOMEN															
15-19	6.7	1.8	0.0	0.1	0.0	0.1	1.5	0.1	0.0	4.9	0.1	4.9	93.3	100.0	1,478
20-24	26.4	5.7	0.0	0.8	0.2	0.0	3.9	0.8	0.0	20.7	0.5	20.2	73.6	100.0	976
25-29	49.0	12.2	1.0	1.6	0.7	0.8	7.3	0.8	0.0	36.8	0.9	35.9	51.0	100.0	848
30-34	64.7	11.8	2.4	1.8	1.1	1.2	5.0	0.2	0.0	52.9	1.4	51.5	35.3	100.0	866
35-39	70.4	9.9	2.8	2.3	1.2	0.6	2.8	0.2	0.1	60.5	0.5	59.9	29.6	100.0	1,097
40-44	72.0	9.6	4.0	1.5	0.9	0.5	2.6	0.0	0.2	62.3	0.8	61.5	28.0	100.0	1,232
45-49	59.4	7.6	4.5	0.6	0.5	0.1	1.9	0.0	0.0	51.9	0.0	51.9	40.6	100.0	1,088
15-44	46.0	7.9	1.7	1.3	0.6	0.5	3.5	0.3	0.0	38.1	0.6	37.5	54.0	100.0	6,496
15-49	48.0	7.9	2.1	1.2	0.6	0.4	3.3	0.3	0.0	40.1	0.5	39.5	52.0	100.0	7,584
CURRENTLY MARRIED WOMEN															
15-19	54.7	12.9	0.0	1.7	0.0	1.1	9.4	0.7	0.0	41.8	1.0	40.8	45.3	100.0	110
20-24	52.8	8.4	0.0	0.9	0.5	0.0	4.8	2.1	0.0	44.5	1.3	43.2	47.2	100.0	358
25-29	62.2	14.3	1.4	1.7	1.0	1.2	8.0	1.1	0.0	47.9	1.1	46.8	37.8	100.0	599
30-34	72.9	13.4	2.7	2.1	1.3	1.4	5.7	0.3	0.0	59.5	1.6	57.9	27.1	100.0	766
35-39	75.4	10.5	2.9	2.4	1.2	0.7	2.9	0.2	0.1	64.9	0.6	64.3	24.6	100.0	1,022
40-44	76.1	10.0	4.3	1.6	0.9	0.6	2.5	0.0	0.2	66.1	0.9	65.2	23.9	100.0	1,155
45-49	64.3	7.7	4.4	0.7	0.5	0.1	2.0	0.0	0.0	56.6	0.0	56.6	35.7	100.0	993
15-44	70.6	11.4	2.7	1.8	1.0	0.8	4.4	0.5	0.1	59.2	1.0	58.2	29.4	100.0	4,009
15-49	69.3	10.6	3.0	1.6	0.9	0.7	4.0	0.4	0.1	58.7	0.8	57.9	30.7	100.0	5,001
SEXUALLY ACTIVE UNMARRIED WOMEN ${ }^{1}$															
15-19	(76.1)	(29.1)	(0.0)	(1.2)	(0.0)	(0.0)	(27.9)	(0.0)	(0.0)	(47.0)	(0.0)	(47.0)	(23.9)	(100.0)	32
20-24	78.0	28.9	0.0	5.7	0.0	0.0	23.2	0.0	0.0	49.1	0.0	49.1	22.0	100.0	58
25+	65.2	28.1	0.0	5.7	0.0	0.0	22.4	0.0	0.0	37.1	1.2	35.9	34.8	100.0	63
15-44	72.3	28.6	0.0	4.8	0.0	0.0	23.9	0.0	0.0	43.7	0.5	43.2	27.7	100.0	154
15-49	72.3	28.6	0.0	4.8	0.0	0.0	23.9	0.0	0.0	43.7	0.5	43.2	27.7	100.0	154
Note: If more than one method is used, only the most effective method is considered in this tabulation. Other modern methods include diaphragm, foam, jelly, female condom, and male sterilization. Figures in parentheses are based on 25-49 unweighted cases. LAM = Lactational amenorrhoea method ${ }^{1}$ Women who have had sexual intercourse within 30 days preceding the survey															

The majority of currently married women in Albania rely on a traditional method (59 percent); this is more than five times the proportion who use a modern method (11 percent). The most commonly used method among currently married women is withdrawal (58 percent), followed by the male condom (4 percent), female sterilization (3 percent), and the pill (2 percent). All other methods are less than 1 percent (Figure 5.1).

Figure 5.1 Contraceptive Use among Currently Married Women

 Age 15-49

Use of contraception increases rapidly with age among married women, peaking at 75 percent in age group 35-39 and 76 percent in age group 40-44, and then falling to 64 percent among women age 45-49. Use of modern methods is lower among women age 20-24 and 45-49 (8 percent, each), compared with women in other age groups (10 to 14 percent). Use of traditional methods increases with age from 41 percent in age group 15-19 to a peak of 66 percent in age group 40-44, after which it fall to 57 percent. Younger married women are more likely to use condoms than older women and less likely to use long-term or permanent methods like the IUD and sterilization. Sexually active unmarried women are more likely to use male condoms and less likely to use long-term methods than either married women or all women.

Compared with other countries in the region, use of any contraceptive method by married women age 15-49 is higher in Albania (69 percent) than in Moldova: 67 percent (NCPM and ORC Macro, 2006), Ukraine: 67 percent (UCSR, SSC, and Macro International, 2008), Armenia: 53 percent (NSS, MOH, and ORC Macro, 2006), and Azerbaijan: 51 percent (SSC, MOH, and Macro International, 2008). Other data from Serbia: 41 percent (SORS and SMMRI, 2007), Montenegro: 39 percent (MONSTAT and SMMRI, 2006), and The Former Yugoslav Republic of Macedonia: 14 percent (SSO, 2007) indicate that use of any method among currently married women is higher in Albania.

For modern contraceptive methods, the comparison shows a different picture. As mentioned above, modern methods are currently used by 11 percent of married women in Albania. Thus, use of modern methods among married women is lower in Albania than in Moldova: 46 percent (NCPM and ORC Macro, 2006), Ukraine: 48 percent (UCSR, SSC, and Macro International, 2008), Armenia: 20 percent (NSS, MOH, and ORC Macro, 2006), and Azerbaijan: 14 percent (SSC, MOH, and Macro International, 2008). Similarly, the results from the MICS surveys in Serbia: 19 percent (SORS and

SMMRI, 2007) and Montenegro: 17 percent (MONSTAT and SMMRI, 2006) show higher levels of use of modern methods of contraception. Only The Former Yugoslav Republic of Macedonia: 10 percent (SSO, 2007) has a lower level of use of modern methods than Albania.

5.4 Trends in Contraceptive Use

Looking at the trends in contraceptive use, the contraceptive prevalence rate in Albania in 2002 was 75 percent for married women age $15-44$, with 8 percent using modern methods (CDC, IPH, and INSTAT, 2005). In the 2008-09 ADHS, the proportion of currently married women age 15-44 ${ }^{1}$ using modern methods increased from 8 to 11 percent. Use of traditional methods has dropped considerably, from 67 percent among married women age 15-44 in 2002 to 59 percent in the 2008-09 ADHS. This decline has been partially offset by slight increases in the use of condoms (from 3 to 4 percent among married women age 15-44), the pill, IUD, and other methods such as LAM.

5.5 Differentials in Contraceptive Use by Background Characteristics

Table 5.5 shows current use of contraception among currently married women age 15-49 according to background characteristics. The results show that some women in Albania are more likely to use contraception than others. Women in urban areas are more likely to use contraception than women in rural areas (74 and 66 percent, respectively); they are also more likely to use modern methods (12 and 10 percent, respectively) and traditional methods (63 and 56 percent, respectively). There is some variation in contraceptive use by region. Women in Urban Tirana are the most likely to use any method (72 percent) and any modern method of contraception (13 percent). In contrast, women in the Coastal region are the least likely to use any method (66 percent) and any modern method (9 percent).

Contraceptive use increases with level of education. Excluding the relatively small group of women with no education or only primary 4-year education, contraceptive use increases with level of education, from 66 percent among women with primary 8 -year education to 74 and 73 percent, respectively, among women in the secondary, professional or technical group and the university or higher education group. While there is no difference in overall contraceptive prevalence between these two groups, a larger proportion of university-educated women use modern methods (18 percent) than those with some secondary, professional, or technical education (12 percent). Women's use of contraception increases with the number of living children. About one-third of women with no children (34 percent) use a contraceptive method, about three-fourths of these rely on withdrawal and about one in six rely on the male condom. The majority of women with at least one child (72 to 74 percent) are contraceptive users. Use of any method increases with wealth status however the pattern is less clear for use of modern methods. Women in the highest wealth quintile (14 percent) are more likely to use a modern method than women in other quintiles (9 to 11 percent).

[^11]Table 5.5 Current use of contraception by background characteristics
Percent distribution of currently married women age 15-49 by contraceptive method currently used, according to background characteristics, Albania 2008-09

Note: If more than one method is used, only the most effective method is considered in this tabulation. Other modern methods include diaphragm, foam, jelly, female condom, and male sterilization.

5.6 Other Forms of Fertility Regulation

While the focus of this chapter is on contraception and family planning, two other forms of fertility regulation need to be mentioned-abortion and emergency contraception. The 2008-09 ADHS attempted to collect information on these two subjects but various problems and limitations were encountered. Collecting information on abortion is problematic because of under-reporting, usually because of social stigma attached to having an abortion. Emergency contraception cannot be considered a 'current' method because women do not use emergency contraception in a continuous manner. However, some information was collected on these two topics.

In the 2008-09 ADHS, a month by month calendar of births, pregnancies, and contraceptive use was collected covering the period from January 2003 until the date of interview. For each pregnancy reported in this period that did not result in a live birth, women were asked if the pregnancy ended in a spontaneous miscarriage, an induced abortion, or a stillbirth. This information can be used to calculate age-specific and total abortion rates, in a manner similar to age-specific and total fertility rates. A preliminary review of the survey findings however indicated the presence of substantial under-reporting of abortions. For the three years preceding the survey, the ADHS results estimate that there were 90 abortions per 1,000 live births (data not shown). In contrast, official data reported to INSTAT provide an estimate of 272 abortions per 1,000 live births in 2007 (INSTAT, 2008b). The large gap between the two sources indicates that the ADHS results under-reported abortions by about two-thirds. A similar situation occurred with the abortion data collected in the ARHS 2002 (CDC, IPH, and INSTAT, 2005), where under-reporting of abortions was found to be about two-thirds (64 percent). Because of the problem of under-reporting of abortions, further analysis of the abortion data from the 2008-09 ADHS is beyond the scope of this report.

Information on ever use of emergency contraception was collected along with that for other contraceptive methods, and the results are shown in Table 5.3.1 (see Section 5.2 above). Three percent of all currently married women have ever used emergency contraception. Among currently married women under age 30, 5 percent have ever used emergency contraception. In contrast, more than one in five (22 percent) sexually active unmarried women reported ever use of emergency contraception, indicating that emergency contraception is more widely used outside of marriage. Some of the reasons for the high reliance on emergency contraception as an method of contraception among sexually active unmarried women may be the greater frequency of casual or unprotected sex among women in this sub-group, a lifestyle that includes late partying and the consumption of alcohol before sexual intercourse, the lack of willingness of male partners to use a male condom, and the availability of emergency contraception in pharmacies without the need to see a health provider or have a prescription.

5.7 Number of Children at First Use of Contraception

To assess women's motives for using family planning, women were asked how many living children they had at the time they first used a method of family planning. Women who first used a method before having a child presumably want to delay childbearing to sometime in the future. Women who first used a method after having one or two children may want to delay the next birth or to limit childbearing. Women who use a method for the first time after having several children are more likely to be using family planning to stop childbearing than to space their births.

Table 5.6 shows the percent distribution of women by number of living children at the time of first use of contraception and residence, according to current age. The results suggest that Albanian women are adopting family planning at lower parities (i.e., when they have fewer children) than in the past. Among women age 25-34 more than 40 percent used contraception before having any children, compared with 33 percent of women age 45-49. Among younger women age 20-24, 55 percent have never used contraception; however, among those who have used contraception, four-fifths had no living children at the time they first used a contraceptive method.

Overall, a smaller proportion of women in urban areas have never used contraception compared with women in rural areas (30 and 36 percent, respectively). On the other hand, among those who have used contraception, a higher proportion of women in urban areas than in rural areas had no living children at the time they first used a contraceptive method (54 and 45 percent, respectively).

Percent distribution of women age $15-49$ by number of living children at the time of first use of contraception and residence, according to current age, Albania 2008-09								
	Never used	Numb	living	en at fir	se of cond	eption		
Current age	contraception	0	1	2	3	4+	Total	Number of women
ALL WOMEN								
15-19	88.9	10.4	0.7	0.0	0.0	0.0	100.0	1,478
20-24	54.6	36.5	7.6	1.1	0.1	0.0	100.0	976
25-29	24.0	44.2	22.3	8.2	1.2	0.1	100.0	848
30-34	12.2	43.0	26.6	11.6	5.8	0.8	100.0	866
35-39	10.7	37.4	28.4	14.9	6.8	1.7	100.0	1,097
40-44	9.3	36.8	28.7	11.4	8.7	5.0	100.0	1,232
45-49	10.9	32.6	30.0	13.8	7.6	5.1	100.0	1,088
Total	33.1	32.6	19.7	8.4	4.3	1.9	100.0	7,584
URBAN WOMEN								
15-19	91.0	9.0	0.0	0.0	0.0	0.0	100.0	546
20-24	50.7	43.4	5.7	0.2	0.0	0.0	100.0	461
25-29	23.0	53.4	17.0	5.1	1.3	0.2	100.0	420
30-34	12.9	49.5	24.4	10.7	2.2	0.3	100.0	412
35-39	8.7	40.3	27.8	15.8	6.5	0.9	100.0	483
40-44	7.2	42.4	30.0	14.6	3.9	1.9	100.0	533
45-49	10.5	32.1	30.5	15.3	9.0	2.7	100.0	525
Total	30.1	37.5	19.3	8.9	3.4	0.9	100.0	3,380
RURAL WOMEN								
15-19	87.7	11.2	1.1	0.0	0.0	0.0	100.0	932
20-24	58.1	30.3	9.4	1.9	0.3	0.0	100.0	515
25-29	25.1	35.1	27.6	11.2	1.0	0.0	100.0	428
30-34	11.5	37.1	28.5	12.4	9.1	1.3	100.0	454
35-39	12.4	35.2	28.8	14.2	7.1	2.3	100.0	614
40-44	10.9	32.6	27.7	9.0	12.3	7.4	100.0	698
45-49	11.3	33.0	29.5	12.3	6.3	7.4	100.0	563
Total	35.5	28.7	20.1	7.9	5.1	2.7	100.0	4,204

5.8 Knowledge of the Fertile Period

A basic knowledge of reproductive physiology is needed for the successful practice of coitusrelated methods such as the calendar or rhythm method, the Billings method, and other methods collectively called 'periodic abstinence.' The successful use of such methods depends in part on an understanding of when, during the ovulatory cycle, a woman is most likely to conceive. Women and men were asked, 'From one menstrual period to the next, are there certain days when a woman is more likely to get pregnant if she has sexual relations?' If the answer was 'yes,' they were asked whether that time was just before her period begins, during her period, right after her period has ended, or halfway between two menstrual periods. Table 5.7 shows the results for all women by whether they were users or non-users of periodic abstinence, and for all men.

Table 5.7 Knowledge of the fertile period				
Percent distribution of women age 15-49 by knowledge of the fertile period during the ovulatory cycle, according to current use of periodic abstinence, and percent distribution of men age 15-49 by knowledge of the fertile period, Albania 2008-09				
		All women		
Perceived fertile period	Users of periodic abstinence	Non-users of periodic abstinence	Total	All men
Just before her menstrual period begins	(5.7)	4.3	4.3	7.5
During her menstrual period	(0.0)	1.5	1.5	4.4
Right after her menstrual period has ended	(16.0)	36.1	36.0	14.8
Halfway between two menstrual periods	(78.3)	22.2	22.5	23.9
Other	(0.0)	0.0	0.0	0.0
No specific time	(0.0)	13.3	13.2	13.5
Don't know	(0.0)	22.6	22.5	35.9
Total	(100.0)	100.0	100.0	100.0
Number of women/men	41	7,543	7,584	3,013
Note: Figures in parentheses are based on 25-49 unweighted cases.				

Among all women, about one in four (23 percent) knows that a woman is most likely to conceive halfway between her menstrual periods. Thirty-six percent wrongly reported that the fertile period is right after a woman's period has ended, 23 percent said they do not know when the fertile period falls, and 13 percent said there is no specific fertile time. As expected, users of periodic abstinence are much more likely than non-users to know that the fertile time in a woman's menstrual cycle is halfway between periods (78 and 22 percent, respectively).

The same questions about the ovulatory cycle were asked of men and some of the results are similar to those of women; for example, 24 percent of men, compared with 23 percent of women, know that a woman is most likely to conceive if she has sexual intercourse halfway between her menstrual periods. However, 36 percent of men said they don't know when the fertile period is and 14 percent said there is no specific fertile time.

5.9 Source of Contraception

Information on where women obtain their contraceptive methods is useful for family planning programme managers and implementers for planning logistics. In the 2008-09 ADHS, women who reported using a modern contraceptive method at the time of the survey were asked where they obtained the method the last time.

Table 5.8 shows that public (government) facilities provide contraceptive methods to the majority (53 percent) of users of modern methods, while 40 percent of users are supplied through private medical sources, and 7 percent through other sources (e.g., shops). The most common public source of contraceptive methods in Albania is government hospitals or maternities, which supply 37 percent of all users of modern methods; the most common private source of contraceptive methods are pharmacies, which supply 39 percent of users of modern methods. Government primary health care services supply 16 percent of users with their methods, while private hospitals and clinics supply just 1 percent.

Government sources supply most users of female sterilization (100 percent), the IUD (85 percent), and injectables (94 percent), but smaller proportions of pill users (39 percent) and male condom users (16 percent). The large majority of pill and condom users get their methods from private sources, primarily pharmacies: condoms (69 percent), and pills (57 percent).

Percent distribution of women age 15-49 who are using a modern contraceptive method by most recent source of method, according to method, Albania 2008-09						
Most recent source of method	Female sterilization	Pill	IUD	Injectables	Male condom	Total ${ }^{1}$
Public sector	100.0	38.5	84.6	(93.8)	15.8	52.7
Public hospital, maternity	100.0	2.2	79.0	(35.6)	0.6	36.8
Public health centre	0.0	11.5	0.0	(31.7)	5.3	5.9
Women's consulting centre, family planning clinic	0.0	21.2	3.9	(21.1)	7.1	7.8
Public health post	0.0	3.6	1.7	(5.4)	2.9	2.2
Private medical sector	0.0	57.6	13.4	(4.1)	69.7	40.2
Private hospital, clinic	0.0	1.0	9.0	(0.0)	0.3	1.0
Private pharmacy	0.0	56.6	4.4	(4.1)	69.4	39.2
Other source	0.0	2.4	0.0	(1.1)	13.7	6.3
Shop	0.0	0.0	0.0	(0.0)	0.2	0.1
Friend/relative	0.0	0.0	0.0	(0.0)	0.7	0.3
Husband/partner	0.0	2.4	0.0	(1.1)	12.8	5.9
Other	0.0	1.4	2.0	(1.0)	0.8	0.8
Total	100.0	100.0	100.0	(100.0)	100.0	100.0
Number of women	158	89	46	34	248	578

Note: Figures in parentheses are based on 25-49 unweighted cases.
${ }^{1}$ Total includes other modern methods but excludes lactational amenorrhoea method (LAM).

Table 5.9 shows sources of modern contraceptive methods by background characteristics. By residence, the public sector share of modern contraceptive methods is substantially higher in rural areas than in urban areas (69 and 38 percent, respectively), while the private sector share is substantially higher in urban areas than in rural areas (56 and 23 percent, respectively). The private sector is the main source of modern contraceptive methods in Urban Tirana (75 percent) while the public sector is the main source in the Mountain region (74 percent), Coastal region (64 percent), and Central region (56 percent).

Table 5.9 Source of modern contraception methods by background characteristics
Percent distribution of women age 15-49 who are using a modern contraceptive method by most recent source of method, according to background characteristics, Albania 2008-09

Background characteristic	Most recent source of method			Total	Number of women
	Public sector	Private medical sector	Other source		
Residence					
Urban	37.7	56.1	6.1	100.0	297
Rural	68.6	23.4	8.1	100.0	281
Region					
Coastal	64.4	27.4	8.2	100.0	141
Central	56.1	34.6	9.3	100.0	263
Mountain	73.8	22.2	3.9	100.0	53
Urban Tirana	22.3	75.4	2.2	100.0	121
Education					
Primary 8-year or less	69.7	23.6	6.7	100.0	252
Secondary, professional, technical	57.0	34.4	8.6	100.0	198
University+	12.8	81.7	5.5	100.0	128
Wealth quintile					
Lowest	75.6	16.5	7.9	100.0	105
Second	70.1	24.1	5.8	100.0	87
Middle	65.6	25.8	8.6	100.0	112
Fourth	51.5	41.2	7.3	100.0	100
Highest	23.0	70.9	6.1	100.0	175
Total	52.7	40.2	7.1	100.0	578

The public sector share decreases substantially as mother's level of education increases, from 70 percent among women with primary 8 -year or less education to 57 percent among women with secondary education and 13 percent among women with university or higher education.

The public sector share also decreases as wealth status increases. The public sector serves predominantly women in the lowest wealth quintile (76 percent) and the second wealth quintile (70 percent), who cannot afford to pay private sector prices. However, it is notable that 66 percent and 52 percent of women, respectively, in the middle and fourth wealth quintiles get their modern methods from the public sector, and it is only in the highest wealth quintile that the majority of women receive their methods from the private medical sector (71 percent).

Table 5.10 shows percent distribution of condom users age $15-49$ by condom brand used, and the percentage of condom users age 15-49 using a social marketing brand, by background characteristics. Eighty-one percent of men and 63 percent of women who are condom users reported using the social marketing brand condoms 'For You', 'For You More', or 'Adore'. 'For You' and 'For You More' are the condoms brands most commonly reported by men (36 and 43 percent, respectively) and by women (41 and 21 percent, respectively).

There is little difference in the use of social marketing brand condoms by urban-rural residence. However, there are some differences in the specific brand used in different regions, with the brand 'For You' being more commonly used by men in the Central (44 percent) and Mountain (56 percent) regions and the brand 'For You More' being more common in the Coastal (47 percent) and Urban Tirana (55 percent) regions. Men with university or higher education are the least likely to report using the brand 'For You' (28 percent), compared with men with less education (37 to 41 percent), while they are the most likely to report using the brand 'For You More' (55 percent). The same pattern is seen for wealth status; men in the highest 40 percent are less likely than those in the lowest 60 percent to use 'For You,' while the reverse is seen for men using 'For You More'.
Table 5.10 Use of social marketing brand condoms
Percent distribution of women and men age 15-49 who are condom users by brand of condoms used, and the percentage who are using the social marketing brand
condoms 'For You', 'For you More', or 'Adore', by background characteristics, Albania 2008-09

	Among condom users, percentage using:	$\begin{array}{c}\text { Percentage of } \\ \text { condom users }\end{array}$	For You
53 mm	For You		Sisco

Standard 4 More Adore Moods Durex Sisco using 'For You', Number of
(1 condom/ condoms/ (3 condoms/ (1 condom/ (3 condoms/ (3 condoms/ (3 condoms/ Other \quad 'For You More', condom
_packet packet packet) packet WOMEN

Residence											
Urban	4.2	40.6	22.9	0.9	5.9	8.7	13.4	3.4	100.0	64.4	140
Rural	(19.5)	(41.9)	(15.6)	(3.1)	(6.2)	(0.0)	(6.6)	(7.1)	(100.0)	(60.7)	63
Region											
Coastal	(6.0)	(54.0)	(12.2)	(0.0)	(5.1)	(11.9)	(3.1)	(7.8)	(100.0)	(66.2)	37
Central	14.6	48.1	14.6	1.7	6.1	3.0	5.1	6.8	100.0	64.5	91
Mountain	(14.4)	(50.4)	(21.2)	(4.0)	(5.9)	(2.0)	(0.0)	(2.1)	(100.0)	(75.6)	10
Urban Tirana	2.1	22.9	33.4	2.0	6.3	7.5	25.9	0.0	100.0	58.2	67
Education											
Primary 8-year or less	11.9	57.0	10.7	0.0	2.2	1.7	7.1	9.4	100.0	67.8	58
Secondary, professional, technical	15.4	38.1	22.7	1.7	10.7	4.7	2.5	4.2	100.0	62.5	62
University+	2.1	32.0	26.0	2.7	5.1	10.0	20.7	1.3	100.0	60.7	83
Wealth quintile											
Lowest 60\%	17.9	42.4	15.4	2.6	6.8	0.0	5.4	9.5	100.0	60.4	77
Highest 40\%	3.5	40.2	23.8	1.0	5.5	9.6	14.8	1.5	100.0	65.0	127
Total	9.0	41.0	20.6	1.6	6.0	6.0	11.3	4.5	100.0	63.3	204
MEN											
Residence											
Urban	3.0	33.1	44.9	2.4	4.0	8.6	1.9	2.1	100.0	80.4	172
Rural	0.3	39.9	40.9	0.0	7.6	2.8	7.8	0.7	100.0	80.9	114
Region											
Coastal	0.0	35.8	46.8	4.5	5.1	6.5	0.0	1.4	100.0	87.1	70
Central	0.6	44.0	36.3	0.0	7.0	2.9	6.9	2.2	100.0	80.3	121
Mountain	(5.6)	(55.8)	(18.8)	(0.0)	(3.0)	(6.5)	(4.4)	(6.0)	(100.0)	(74.5)	13
Urban Tirana	5.0	20.5	54.6	1.2	3.6	11.1	4.0	0.0	100.0	76.4	82
Education											
Primary 8-year or less	2.3	36.6	33.4	0.0	6.7	7.1	11.9	2.0	100.0	70.0	70
Secondary, professional, technical	2.3	40.6	41.0	2.4	5.6	4.9	3.0	0.3	100.0	84.0	129
University+	1.2	28.1	54.7	1.1	4.0	7.7	0.0	3.1	100.0	84.0	87
Wealth quintile											
Lowest 60\%	1.9	41.6	36.7	1.4	6.7	4.0	7.1	0.6	100.0	79.8	126
Highest 40\%	2.1	31.7	47.8	1.5	4.4	8.2	2.1	2.3	100.0	80.9	158
Total	2.0	35.8	43.3	1.4	5.4	6.3	4.2	1.6	100.0	80.6	286

Note: Table excludes condom users who do not know the brand name of the condom used. Figures in parentheses are based on 25-49 unweighted cases.

5.10 Cost of Contraception

One of the goals of the 2008-09 ADHS was to obtain information about expenditures on modern contraceptive methods. The number of respondents using a modern method allows a comparison of only the most frequently used modern methods: female sterilization, the pill, IUD, injectables, and the male condom (Table 5.11). Female sterilization and the IUD are the most expensive methods; however, because they are both long-term methods they are cost effective. For users of female sterilization who paid for the operation and were able to provide information on costs, the median cost was about 25,000 new lek, and for IUD users the median cost was about 2,000 new lek. Twenty-four percent of women who were sterilized received the operation free while 17 percent did not remember the cost. For IUD users, 31 percent received their method free while 5 percent did not remember the cost.

Among women age 15-49 who are currently using a modern contraceptive method, percentage who received their method free, percentage who do not know the cost of their method, and the median cost of the method. by source of method, Albania 2008-09						
Source of method/cost	Female sterilization	Pill	IUD	Injectables	Male condom	Total ${ }^{1}$
Public sector						
Received method free	23.5	83.0	(33.8)	(72.4)	(81.7)	44.6
Does not know cost	16.9	6.1	(3.7)	(6.1)	(1.4)	10.7
Median cost (new lek) ${ }^{2}$	$(24,950)$	*	$(1,500)$	*	*	1,970
Number of women	158	34	39	32	39	305
Private medical sector/other						
Received method free	*	7.5	*	*	10.3	9.7
Does not know cost	*	17.1	*	*	31.3	28.0
Median cost (new lek) ${ }^{2}$	*	(540)	*	*	30	40
Number of women	0	55	7	2	209	273
Total						
Received method free	23.5	36.6	31.0	(67.9)	21.6	28.1
Does not know cost	16.9	12.8	5.3	(5.7)	26.6	18.9
Median cost (new lek) ${ }^{2}$	$(24,950)$	510	$(1,970)$	*	30	150
Number of women	158	89	46	34	248	578

Note: Costs are based on the last time users obtained method and include consultation fees, if any. For condom, costs are per package; for pills, costs are per cycle; for sterilization, cost is based on women who received the operation in the past five years. Figures in parentheses are based on 25-49 unweighted cases. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
${ }^{1}$ Total includes other modern methods but excludes lactational amenorrhoea method (LAM).
${ }^{2}$ Median cost is based on women who reported a cost.

The cost of temporary modern methods (the pill and male condoms) is considerably lower. For women who knew the price, a cycle of pills was about 500 lek and a male condom was about 30 lek. More than four in five pill users and condom users who received their method from a public source received them free. Overall, 27 percent of condom users and 13 percent of pill users reported that they did not know the cost of these two methods.

5.11 Informed Choice

Current users of modern methods who are well informed about the side effects and problems associated with methods and who know of a range of method options are better able to make an informed choice about the method they would like to use. Current users of modern contraceptive
methods were asked whether at the time they started using the method they were informed about side effects or problems they might have with the method. Table 5.12 shows the percentage of current users of female sterilization, the pill, IUD, and injectables who were informed about side effects or problems with the method used, informed about what to do if they experienced side effects, informed about other methods they could use, and informed that sterilization is a permanent method; the results are broken down by method and initial source of current method.

Sixty-two percent of users of modern contraceptive methods were informed about possible side effects or health problems with the method they received and 59 percent were informed what to do if they experienced side effects or problems. Only 67 percent of women who are using a modern method said they were told about other methods they could use. Almost all women (94 percent) who were sterilized during the five-year period preceding the survey were informed that sterilization is permanent and that they would not be able to have any more children.

The results indicate that IUD users (73 percent) are more likely to be informed about side effects or problems with their method than users of female sterilization (60 percent), the pill (61 percent), or injectables (57 percent). On the other hand, users of injectables (74 percent) are more likely to be told about other methods they could use than users of the other methods (61 to 67 percent). There are differences in informed choice by initial source of method, with users of public sources being more informed than users of private sources about the side effects or health problems of their method, about what to do if they experienced side effects, and about other methods that they could use.

Table 5.12 Informed choice							
Among current users of modern methods age 15-49 who started the last episode of use within the five years preceding the survey, percentage who were informed about possible side effects or problems of the method, percentage who were informed about what to do if they experienced side effects, and percentage who were informed about other methods they could use, by method and initial source of method; and among women who were sterilized in the past five years, percentage who were informed that sterilization is permanent, by source of method, Albania 2008-09							
Women who started last episode of use of modern contraceptive method in the five years preceding the survey							
	Percentage who were informed about side effects or problems of method used	Percentage who were	Percentage who were informed by a health or		Women who w in the past	sterilized years	
Method/source		informed about what to do if experienced side effects	family planning worker of other methods that could be used	Number of women	Percentage who were informed that sterilization is permanent	Number of women	
Method							
Female sterilization	(60.2)	(56.4)	(61.1)	42	(93.5)	42	
Pill	60.5	60.6	67.1	69	na	na	
IUD	(73.2)	(65.0)	(66.7)	32	na	na	
Injectables	(56.8)	(51.9)	(73.7)	24	na	na	
Initial source of method ${ }^{1}$							
Public sector ${ }^{2}$	66.7	62.1	71.3	121	(93.5)	42	
Public hospital, maternity	60.8	55.1	63.1	76	(93.5)	42	
Women's consulting centre, family planning clinic	(83.7)	(72.2)	(87.2)	22	*	0	
Private medical sector	(53.9)	(51.1)	(57.3)	41	*	0	
Total	62.3	59.1	66.5	167	(93.5)	42	
Note: Table includes only users of female sterilization, pill, IUD, and injectables. Figures in parentheses are based on 25-49 unweighted cases. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed. na $=$ Not applicable ${ }^{1}$ Source at start of current episode of use ${ }^{2}$ Includes 19 women reporting a health centre and 5 women reporting a health post as the initial source of method.							

5.12 CONTRACEPTIVE DISCONTINUATION

A particular concern of managers of family planning programmes is the discontinuation of methods by users. In the calendar section of the 2008-09 ADHS questionnaire all segments of contraceptive use between January 2003 and the date of interview were recorded. First-year contraceptive discontinuation rates based on the calendar information are presented in Table 5.13. ${ }^{2}$

The results show that 27 percent of family planning users in Albania discontinue using a contraceptive method within 12 months of starting its use. Discontinuation rates are high for pill users (43 percent) and condom users (32 percent), but lower for users of withdrawal (19 percent).

Table 5.13 First-year contraceptive discontinuation rates

Among women age 15-49 who started an episode of contraceptive use in the past five years, percentage of episodes discontinued within 12 months after beginning use of the method, by type of method, Albania 2008-09

Method	Total
Pill	42.8
Male condom	31.7
Withdrawal	18.8
All methods	26.9
Number of episodes of use	2,778

Note: Table is based on episodes of contraceptive use that began since January 2003. The rates apply to the period 3-62 months preceding the survey.

The 2008-09 ADHS did not collect information on reasons for discontinuation-which might have helped explain the high discontinuation rates and would have allowed for the calculation of failure rates-but questions on intention to use contraception in the future and reasons for non-use of contraception provide some background on the issues.

5.13 Future Use of Contraception

An important indicator of the changing demand for family planning is the extent to which non-users of contraception plan to use family planning in the future. Women who were not currently using a method of contraception were asked about their intention to use family planning in the future. The results are presented in Table 5.14.

Among currently married non-users, about one in five (19 percent) intend to use family planning in the future, 69 percent do not intend to use contraception in the future, and 12 percent are unsure. The proportion of married women who intend to use a contraceptive method in the future generally decreases as the number of living children increases, and the proportion who say they do not intend to use in the future is highest among those with three or more children. This pattern is counter to expectations and is mainly due to the fact that non-users with more children are also more likely to be older and infertile (see Section 5.14).

Percent distribution of currently married women age 15-49 who are not using a contraceptive method by intention to use in the future, according to number of living children, Albania 2008-09						
Intention to use in the future	Number of living children ${ }^{1}$					Total
	0	1	2	3	4+	
Intends to use	16.5	24.8	22.2	14.1	13.6	18.9
Unsure	12.9	17.8	11.9	9.3	11.6	12.4
Does not intend to use	70.6	57.4	65.9	76.6	74.8	68.7
Total	100.0	100.0	100.0	100.0	100.0	100.0
Number of women	178	283	491	403	179	1,534
${ }^{1}$ Includes current pregnancy						

[^12]
5.14 Reasons for Not Intending to Use Contraception

Table 5.15 presents the main reasons for not using contraception as reported by currently married non-users who do not intend to use a contraceptive method in future. Fertility-related reasons (40 percent), especially being subfecund or infecund (infertile) or menopausal, are by far the most common reasons for not intending to use contraception, followed by method-related reasons (31 percent). Twenty-five percent of non-users said they do not intend to use because they or their relatives are opposed to the use of family planning. Overall, the most common reasons given for not intending to use contraception are fear of side effects (19 percent), respondent opposed to use of contraception (18 percent), menopause/hysterectomy (16 percent), and subfecund or infecund (16 percent).

Among women under age 30 , the most frequently cited reasons for not intending to use contraception are fear of side effects (33 percent), followed by respondent opposed to use (17 percent), husband or partner opposed to use (15 percent), and health concerns (12 percent). Among non-users age 30-49, 47 percent reported fertility-related reasons for not intending to use contraception-compared with 13 percent among non-users under age 30-particularly menopause or hysterectomy (20 percent) and subfecund or infecund (18 percent). Other frequently cited reasons among women age 30-49 are respondent opposed to use (18 percent) and fear of side effects (15 percent).

Table 5.15 Reason for not intending to use contraception in the future			
Percent distribution of currently married women age 15-49 who are not using contraception and who do not intend to use in the future by main reason for not intending to use contraception, according to broad age groups, Albania 2008-09			
	Age		Total
Reason	15-29	30-49	
Fertility-related reasons			
Infrequent sex/no sex	1.1	5.0	4.2
Menopausal/had hysterectomy	0.0	20.4	16.3
Subfecund/infecund	7.0	17.8	15.6
Wants as many children as possible	4.9	3.8	4.0
Opposition to use			
Respondent opposed	17.0	17.9	17.8
Husband/partner opposed	14.5	4.6	6.6
Others opposed	1.6	0.3	0.6
Religious prohibition	0.6	0.1	0.2
Lack of knowledge			
Knows no method	0.0	0.8	0.7
Knows no source	0.0	2.8	2.2
Method-related reasons			
Health concerns	11.9	8.3	9.0
Fear of side effects	33.4	15.2	18.9
Lack of access/too far	2.2	0.3	0.7
Costs too much	0.2	0.5	0.5
Inconvenient to use	1.0	0.6	0.7
Interferes with body's normal process	0.9	0.9	0.9
Other	0.7	0.2	0.3
Don't know	3.1	0.4	1.0
Total	100.0	100.0	100.0
Number of women	214	840	1,054

5.15 Preferred Method for Future Use

Demand for specific methods can be assessed by asking non-users which method they intend to use in the future. Table 5.16 presents information on method preferences for married women who are not using contraception but say they intend to use in the future. The majority of prospective users reported withdrawal as their preferred method (56 percent), while 18 percent cited male condoms, and 12 percent favour the pill.

Method preference among women under age 30 and those over 30 years is similar, with withdrawal, the male condom, and the pill being the three leading methods preferred for future use by both age groups. There are some differences: older women are more likely than younger women to

Table 5.16 Preferred method of contraception for future use

Percent distribution of currently married women age 15-49 who are not using a contraceptive method but who intend to use in the future by preferred method, according to broad age groups, Albania 2008-09

	Age		
Method	$15-29$	$30-49$	Total
Female sterilization	0.0	7.3	3.5
Pill	14.7	8.5	11.7
IUD	2.5	2.1	2.3
Injectables	3.9	2.0	3.0
Condom	17.2	18.4	17.8
Periodic abstinence	0.7	0.0	0.4
Withdrawal	53.0	58.1	55.5
Other	0.0	0.9	0.4
Unsure of method	7.9	2.8	5.4
Total	100.0	100.0	100.0
Number of women	148	141	290

5.16 Exposure to Family Planning Messages

Information on the level of public exposure to types of media allows policymakers to use the most effective media to target different groups in the population. To assess the effectiveness of such media on the dissemination of family planning information, the 2008-09 ADHS asked all female and male respondents whether in the past few months they had heard a message about family planning on the radio or television, or read about family planning in a newspaper or magazine.

Table 5.17 shows that more than half of women (54 percent) reported seeing a family planning message on the television in the past few months, more than one in ten (11 percent) heard about family planning on the radio, and almost one-fourth (24 percent) read about it in a newspaper or magazine. A relatively high proportion-more than four in ten women (43 percent)—were not exposed to family planning messages in any of these media.

Men are less likely than women to report being exposed to family planning messages. Less than one-fourth of men (22 percent) heard about family planning on the television, only 5 percent were exposed to family planning messages on the radio, and 10 percent were exposed to family planning information through newspapers or magazines. Almost three-fourths of men (74 percent) said they had not heard anything about family planning through the three media sources in the past few months.

Generally, the oldest and youngest respondents are less likely to have seen or heard a family planning message than those in their primary reproductive years. Exposure to family planning messages through media sources is higher in urban areas than in rural areas and higher among women in Urban Tirana than among those in the other regions. Exposure to family planning messages is lowest in the Mountain region for both women and men. Finally, exposure to family planning messages increases with level of education and wealth quintile.

Table 5.17 Exposure to family planning messages
Percentage of women and men age 15-49 who heard or saw a family planning message on the radio or television, or in a newspaper or magazine, in the past few months, according to background characteristics, Albania 2008-09

Background characteristic	Women					Men				
	Radio	Television	Newspaper/ magazine	None of the specified media sources	Number of women	Radio	Television	Newspaper/ magazine	None of the specified media sources	Number of men
Age										
15-19	8.6	49.8	25.8	45.8	1,478	3.1	16.6	6.1	80.5	670
20-24	11.9	54.6	30.3	40.4	976	4.4	18.5	6.9	77.5	393
25-29	13.8	58.6	26.7	38.6	848	3.6	16.4	9.8	77.8	269
30-34	12.3	58.1	24.8	38.2	866	6.9	24.5	9.0	70.2	273
35-39	10.6	55.0	23.7	42.4	1,097	6.0	24.9	12.2	71.7	372
40-44	13.6	52.0	20.8	45.5	1,232	5.6	29.3	13.6	65.5	501
45-49	8.3	49.9	19.0	48.6	1,088	6.6	22.6	11.5	73.0	536
Residence										
Urban	15.0	61.0	34.9	34.2	3,380	6.0	21.9	12.8	72.6	1,391
Rural	8.0	47.4	15.7	50.6	4,204	4.3	21.6	7.1	75.3	1,622
Region										
Coastal	11.5	55.6	29.1	40.0	2,129	4.2	23.1	9.6	73.1	800
Central	9.8	53.2	19.6	44.7	3,477	5.3	24.9	10.0	71.0	1,443
Mountain	4.2	37.9	11.6	59.1	777	3.1	14.6	5.3	83.4	277
Urban Tirana	18.6	60.3	37.4	34.9	1,201	6.9	14.4	11.7	79.1	493
Education										
No education/Primary 4-year	5.9	37.1	1.5	61.8	127	2.8	7.6	1.9	90.5	55
Primary 8-year	6.0	45.4	12.7	52.8	3,712	2.4	16.5	5.1	80.5	1,183
Secondary, professional, technical	12.4	57.8	29.7	37.9	2,740	5.9	24.4	11.7	71.1	1,415
University+	27.0	73.3	54.9	20.5	1,005	10.8	30.8	18.3	61.5	361
Wealth quintile										
Lowest	3.8	39.2	7.6	59.2	1,513	3.2	16.0	5.4	81.9	475
Second	7.9	47.3	15.5	50.4	1,486	4.4	23.9	8.0	72.2	600
Middle	10.2	57.0	23.3	41.0	1,533	4.6	24.0	7.1	73.3	661
Fourth	12.1	57.8	29.1	37.9	1,480	4.0	19.8	10.5	74.9	625
Highest	21.1	65.5	45.0	28.6	1,573	8.5	23.5	16.6	69.9	652
Total	11.1	53.5	24.3	43.3	7,584	5.0	21.7	9.7	74.0	3,013

5.17 Contact of Non-users with Family Planning Providers

In the 2008-09 ADHS, women who were not using any family planning methods were asked about contact with family planning providers in the past 12 months: whether they were visited by a health worker who discussed family planning and whether they visited a health facility and discussed family planning. The purpose of the questions was to assess the extent of 'missed opportunities' to disseminate information about contraception.

Table 5.18 shows the percentage of non-users who were exposed to a family planning provider in the past 12 months. The vast majority (93 percent) of non-users neither discussed family planning with a health worker nor with a provider at a health facility. Of those women who visited a health facility in the past 12 months, only 24 percent of non-users discussed family planning with a health provider. Women age 25-34 are more likely to discuss family planning with a health provider than women who are older or younger. There is little variation by background characteristics between groups.

Table 5.18 Contact of non-users with family planning providers
Among women age 15-49 who are not using contraception, percentage who during the past 12 months were visited by a health worker who discussed family planning, the percentage who visited a health facility and discussed family planning, percentage who visited a health facility but did not discuss family planning, the percentage who neither discussed family planning with a health worker nor at a health facility, and, among women who are not using contraception and who visited a health facility in the past 12 months, percentage who discussed family planning, by background characteristics, Albania 2008-09

5.18 Attitudes of Respondents Towards Family Planning

Use of effective contraceptive methods is facilitated when couples have a positive attitude towards family planning and when men share the responsibility for contraception. In the 2008-09 ADHS all currently married women who were currently using a contraceptive method (other than the male methods of male sterilization, male condom, or withdrawal) were asked whether their husband/partner knew about their use of contraception. Most women (93 percent) said that their husband/partner knew about their use of contraception. In general, husband/partner's knowledge of the woman's use of contraception increases with level of education and wealth quintile.

Table 5.19 Husband/partner's knowledge of women's use of contraception

Percent distribution of currently married women age 15-49 who are using a method of contraception by whether their husband/partner knows about their use of contraception, according to background characteristics, Albania 2008-09

Background characteristic	Husband/partner's knowledge of woman's use of contraception			Total	Number of women
	Knows ${ }^{1}$	Does not know	Unsure whether knows		
Age					
15-19	*	*	*	*	4
20-24	*	*	*	*	11
25-29	(88.0)	(7.8)	(4.2)	100.0)	35
30-34	98.7	1.3	0.0	100.0	52
35-39	93.9	5.6	0.5	100.0	72
40-44	93.8	3.0	3.2	100.0	73
45-49	90.7	6.9	2.5	100.0	54
Residence					
Urban	93.4	5.0	1.6	100.0	128
Rural	92.4	4.8	2.8	100.0	174
Region					
Coastal	89.4	6.5	4.1	100.0	96
Central	93.9	5.0	1.2	100.0	132
Mountain	92.0	4.5	3.6	100.0	41
Urban Tirana	100.0)	0.0	0.0	100.0)	33
Education					
No education/Primary 4-year	*	*	*	*	9
Primary 8-year	89.0	7.9	3.1	100.0	156
Secondary, professional, technical	96.8	1.3	1.9	100.0	112
University+	100.0)	0.0	0.0	100.0)	25
Wealth quintile					
Lowest	84.9	11.5	3.6	100.0	61
Second	98.7	1.3	0.0	100.0	63
Middle	84.4	8.7	6.9	100.0	66
Fourth	97.6	2.0	0.4	100.0	52
Highest	100.0	0.0	0.0	100.0	60
Total	92.9	4.8	2.3	100.0	302

Note: Figures in parentheses are based on 25-49 unweighted cases. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
${ }^{1}$ Includes women who reported use of male sterilization, male condoms, or withdrawal

OTHER PROXIMATE DETERMINANTS OF FERTILITY

6.1 INTRODUCTION

Fertility levels in most populations can be explained by five key proximate determinants that define the risk of becoming pregnant. These are marriage, sexual intercourse, post-partum amenorrhoea and abstinence from sexual relations, onset of menopause, and use of contraception. This chapter addresses all of these determinants except contraception (see Chapter 5). In some countries, including Albania, induced abortion is another factor that affects fertility.

Marriage is a principal indicator of women's exposure to the risk of pregnancy. Early age at marriage in a population is usually associated with a longer period of exposure to the risk of pregnancy and higher fertility. Sometimes, the early initiation of childbearing associated with early marriage may also adversely affect women's and children's health. The durations of post-partum amenorrhoea and post-partum abstinence, both of which affect the length of time a woman is insusceptible to pregnancy, help determine the interval between births, as does the frequency of intercourse. The onset of menopause marks the end of a woman's reproductive life cycle. Taken together, these factors in large measure determine the length and pace of reproduction; hence they are important in understanding fertility levels and differences.

6.2 Marital Status

The distribution of women and men by marital status at the time of survey is presented in Table 6.1. In most of the rest of this report, the term 'currently married' refers to those who are formally 'married' and those who are 'living together,' while those who are divorced, separated, or widowed are referred to as 'formerly married.' Combining those who are currently married and those who are formerly married gives the proportion ever married.

The results show that three in ten women of childbearing age have never been married; 66 percent are either married or living together with a man; and the remaining 3 percent are either divorced, separated, or widowed. The low proportion (1 to 2 percent) of women in their forties who have never been married indicates that marriage is nearly universal in Albania. Divorce and separation (1 percent) are not common in Albania. The percentage of divorced women, although low, tends to increase with age. Two percent of women age 15-49 are widowed. Women age 45-49 are more likely to be widowed (5 percent) than other women. The marital status of women has remained unchanged since 2005, when 66 percent of women were reported as married or living together with a man and 33 percent were never married (INSTAT, 2008).

A higher proportion of men than women (43 percent compared with 31 percent) have never been married, while the proportion currently married or cohabiting is lower for men than for women (57 percent compared with 66 percent). Only 1 percent of men are separated, divorced, or widowed.

Although women enter into marriage earlier than men, by age 40-44, the proportions of women and men who have never been in union are about the same (2 percent of women and 3 percent of men). Women are slightly more likely than men to report being divorced or widowed.

Table 6.1 Current marital status									
Percent distribution of women and men age 15-49 by current marital status, according to age, Albania 2008-09									
	Marital status						TotalPercentage currently in union		Number
Age	Never married	Married	Living together	Divorced	Separated	Widowed			
WOMEN									
15-19	92.4	5.3	2.2	0.1	0.1	0.0	100.0	7.4	1,478
20-24	62.2	33.3	3.3	0.7	0.3	0.1	100.0	36.6	976
25-29	26.8	69.0	1.6	0.8	0.7	1.1	100.0	70.6	848
30-34	9.3	87.8	0.6	1.6	0.1	0.5	100.0	88.5	866
35-39	3.2	93.1	0.1	1.5	0.1	2.0	100.0	93.2	1,097
40-44	2.2	93.5	0.3	1.9	0.2	1.9	100.0	93.8	1,232
45-49	1.2	91.0	0.3	2.4	0.0	5.2	100.0	91.3	1,088
Total	31.1	64.7	1.2	1.2	0.2	1.5	100.0	65.9	7,584
MEN									
15-19	99.0	0.3	0.6	0.0	0.0	0.0	100.0	1.0	670
20-24	91.7	5.3	2.3	0.0	0.7	0.0	100.0	7.6	393
25-29	57.8	37.6	4.2	0.4	0.0	0.0	100.0	41.8	269
30-34	21.3	76.2	1.6	0.4	0.5	0.0	100.0	77.8	273
35-39	8.1	91.5	0.2	0.1	0.1	0.0	100.0	91.7	372
40-44	2.9	96.0	0.0	0.8	0.0	0.3	100.0	96.0	501
45-49	1.7	96.6	0.5	0.8	0.0	0.4	100.0	97.0	536
Total	42.8	55.4	1.1	0.3	0.2	0.1	100.0	56.5	3,013

6.3 Age at First Marriage

In most societies, marriage marks the time when childbearing is considered socially acceptable. Women who marry early will have, on average, a longer period of exposure to pregnancy, which typically leads to a higher number of children born and surviving. Table 6.2 shows the percentage of women and men who were married by specific ages, according to current age.

In Albania, just 29 percent of women enter marriage before age 20. Among women age 2549, the median age at first marriage is 21.8 years. An examination of the median age at marriage across age groups shows that the median has changed little over time. The median age at marriage declines from 22.1 years among women age 45-49 to 21.3 among those age $30-34$, and then rises to 22.3 years among women age 25-29, indicating a recent shift to later marriage.

The lower panel of Table 6.2 shows age at first marriage for men. Only 3 percent of men age 25-49 marry before age 20, and just one in ten marry before age 22. The median age at marriage among men age 25-49 is omitted because less than 50 percent of men married for the first time before reaching age 25. However, men in each age group from 30 to 49 married about four years later than women in the same age group.

In many parts of the world, marriage before the age of 18 is common for girls. Parents may encourage early marriage of their daughters with the expectation that they will benefit financially and/or socially. In addition to having longer exposure to the risk of pregnancy and child birth, girls who are married at a young age may have limited life choices because of limited education and/or vocational skills, social isolation, and limited participation in household decision-making.

Table 6.2 Age at first marriage								
Percentage of women and men age 15-49 who were first married by specific exact ages and median age at first marriage, according to current age, Albania 2008-09								
	Percentage first married by exact age:					Percentage never		Median age at first
Current age	15	18	20	22	25	married	Number	marriage
WOMEN								
15-19	0.5	na	na	na	na	92.4	1,478	a
20-24	0.2	9.6	22.3	na	na	62.2	976	a
25-29	0.8	14.0	32.2	48.4	65.0	26.8	848	22.3
30-34	0.7	12.1	35.5	58.1	77.8	9.3	866	21.3
35-39	0.3	7.5	28.2	56.1	81.8	3.2	1,097	21.6
40-44	0.4	8.2	25.2	49.9	80.3	2.2	1,232	22.0
45-49	0.1	7.0	24.9	48.6	77.9	1.2	1,088	22.1
25-49	0.4	9.4	28.7	52.1	77.1	7.5	5,130	21.8
MEN								
15-19	0.0	na	na	na	na	99.0	670	a
20-24	0.0	0.0	2.4	na	na	91.7	393	a
25-29	0.3	1.6	4.3	9.0	28.9	57.8	269	a
30-34	0.0	0.5	6.7	19.3	36.6	21.3	273	26.7
35-39	0.1	1.2	3.1	9.7	35.1	8.1	372	26.3
40-44	0.0	0.6	2.4	8.4	38.7	2.9	501	26.0
45-49	0.0	0.9	2.3	8.3	31.4	1.7	536	26.7
25-49	0.1	0.9	3.4	10.2	34.3	13.7	1,951	a

Note: The age at first marriage is defined as the age at which the respondent began living together with her/his first spouse or partner.
na $=$ Not applicable due to censoring
$a=$ Omitted because less than 50 percent of the respondents married for the first time before reaching the beginning of the age group

Table 6.3 shows that about one in ten (9 percent) women age 20-49 was first married before age 18, and 7 percent of women age 15-19 are currently married or in union. These results indicate that there has been a slight increase in the proportion of women first married by age 18, from 8 percent in the 2005 MICS to 9 percent in the 2008-09 ADHS; there has also been a slight increase in the percentage of women age 15-19 currently married or in union, from 5 percent in the 2005 MICS to 7 percent in the 2008-09 ADHS (INSTAT, 2008).

According to background characteristics, the percentage of women married before age 18 increases from 7 percent among women age 45-49 to 14 percent in the 25-29 age group before declining to 10 percent among women age 20-24. The percentage of women married before age 18 is higher in rural areas (11 percent) than in urban areas (7 percent), and it is lower in Urban Tirana (7 percent) than in the other regions (9 to 11 percent). The percentage of women married before their eighteenth birthday decreases rapidly as level of education increases, from 22 percent among women with no education or primary 4 -year education to just 1 percent among women with university or higher education. Similarly, the percentage of women married before age 18 is inversely related to wealth status, highest among women in the three lowest quintiles (10 to 13 percent) and lowest among women in the highest wealth quintile (4 percent).

Similar patterns are observed by background characteristics in the proportion of women age 15-19 who are currently married or in union. The proportion of women age 15-19 currently married or in union is higher among women in rural areas than those in urban areas (9 percent compared with 5 percent). Urban Tirana has the lowest proportion (5 percent) of women age 15-19 currently married or in union, compared with women in other regions (7 to 9 percent). The highest proportions of women age 15-19 currently married or in union are found among women with primary 8 -year education (12 percent) and women in the second and middle wealth quintiles (10 percent, each).

Table 6.3 also shows the percentage of men age 20-49 who were first married before age 18 (less than 1 percent) and the percentage of men age 15-19 currently married or in union (1 percent). While almost one in ten women age 20-49 were married before age 18, less than 1 percent of men were married by this age. Similarly, while 7 percent of women age 15-19 are currently married or in union, the corresponding figure for men is just 1 percent.

Table 6.3 Early marriage

Percentage of women and men age 20-49 who were married or in union before age 18, and the percentage of women and men age 15-19 currently married or in union, by background characteristics, Albania 2008-09

Background characteristic	Women				Men			
	Percentage married before age 18	Number of women age 20-49 years	Percentage of women 15-19 married/ in union	Number of women age 15-19 years	Percentage married before age 18	Number of men age 20-49 years	$\begin{gathered} \text { Percentage } \\ \text { of men } \\ 15-19 \\ \text { married/ } \\ \text { in union } \\ \hline \end{gathered}$	Number of men age 15-19 years
Age								
15-19	na	na	7.4	1,478	na	na	1.0	670
20-24	9.6	976	na	na	0.0	393	na	na
25-29	14.0	848	na	na	1.6	269	na	na
30-34	12.1	866	na	na	0.5	273	na	na
35-39	7.5	1,097	na	na	1.2	372	na	na
40-44	8.2	1,232	na	na	0.6	501	na	na
45-49	7.0	1,088	na	na	0.9	536	na	na
Residence								
Urban	7.2	2,834	5.1	546	0.8	1,135	0.9	256
Rural	11.4	3,272	8.8	932	0.7	1,208	1.0	413
Region								
Coastal	9.5	1,684	8.7	445	0.3	612	0.6	188
Central	10.5	2,790	7.5	687	1.1	1,119	1.6	324
Mountain	9.1	594	6.7	183	0.1	201	0.0	77
Urban Tirana	6.8	1,038	4.5	163	0.8	411	0.0	81
Education								
No education/Primary 4-year	22.3	108	*	19	(6.1)	48	*	7
Primary 8-year	13.2	3,142	12.0	569	0.7	961	0.0	222
Secondary, professional, technical	6.6	1,909	4.0	830	0.6	991	1.0	424
University+	1.1	946	3.3	59	0.7	343	*	17
Wealth quintile								
Lowest	10.4	1,168	6.2	345	1.5	362	0.0	114
Second	12.0	1,172	10.6	314	0.0	443	0.0	157
Middle	13.1	1,215	9.8	318	1.5	495	2.5	166
Fourth	8.1	1,205	5.6	275	0.7	508	1.0	117
Highest	4.3	1,346	3.6	226	0.3	536	1.0	116
Total	9.4	6,106	7.4	1,478	0.8	2,343	1.0	670

Note: Figures in parentheses are based on 25-49 unweighted cases. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
na $=$ Not applicable

Tables 6.4.1 and 6.4.2 show the median age at first marriage for women age 25-49 and men age 30-49 by background characteristics. Urban women and men tend to marry later than their rural counterparts, and both women and men in Urban Tirana marry later than women and men in the other regions. The median age at first marriage increases with level of education for both women and men; the patterns by age groups are similar for women and men. Age at first marriage increases with household wealth status for both women and men.

Comparison of the results of the 2008-09 ADHS with those of the 2002 ARHS shows little change in the median age at first marriage over time. The median age at first marriage among women was 21.9 years in 2002 compared with 21.8 years in 2008-09, while among men it was 26.5 years in 2002 compared with 26.7 years in 2008-09 (CDC, IPH, and INSTAT, 2005). ${ }^{1}$

Table 6.4.1 Median age at first marriage: Women
Median age at first marriage among women age 25-49 by five-year age groups, according to background characteristics, Albania 2008-09

Background characteristic	Current age					Women age 25-49	Women age 30-49
	25-29	30-34	35-39	40-44	45-49		
Residence							
Urban	24.5	22.2	22.2	22.6	23.0	22.7	22.6
Rural	21.1	20.5	21.1	21.6	21.2	21.2	21.2
Region							
Coastal	21.5	21.1	21.6	22.1	22.3	21.8	21.8
Central	21.3	20.8	21.3	21.9	21.7	21.5	21.5
Mountain	22.9	21.1	21.4	21.9	21.5	21.6	21.5
Urban Tirana	a	23.2	22.8	22.3	23.1	23.5	22.9
Education							
No education/Primary 4-year	*	*	*	*	*	20.9	21.5
Primary 8-year	20.9	20.6	20.9	21.3	21.1	21.0	21.0
Secondary, professional, technical	21.5	21.2	21.9	22.4	22.7	22.2	22.2
University+	a	26.1	23.7	24.3	24.7	a	24.6
Wealth quintile							
Lowest	22.3	20.9	21.6	21.7	21.5	21.5	21.4
Second	21.1	20.0	21.2	21.5	21.0	21.0	21.0
Middle	20.6	20.8	20.9	21.9	22.1	21.3	21.4
Fourth	21.9	21.6	21.7	22.3	22.8	22.1	22.1
Highest	a	23.1	22.6	22.6	22.8	23.1	22.7
Total	22.3	21.3	21.6	22.0	22.1	21.8	21.8

Note: Age at first marriage is defined as the age at which the woman began living together with her first spouse/partner. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
$a=$ Omitted because less than 50 percent of the women married for the first time before reaching the beginning of the age group

[^13]| Table 6.4.2 Median age at first marriage: Men | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Median age at first marriage among men by five-year age groups, and age 30-49, according to background characteristics, Albania 2008-09 | | | | | |
| Background | Current age | | | | Men age |
| characteristic | 30-34 | 35-39 | 40-44 | 45-49 | 30-49 |
| Residence | | | | | |
| Urban | 29.1 | 27.3 | 27.2 | 28.3 | 27.9 |
| Rural | 25.1 | 25.7 | 25.3 | 26.0 | 25.5 |
| Region | | | | | |
| Coastal | 27.5 | 26.8 | 27.1 | 26.8 | 27.0 |
| Central | 25.6 | 26.1 | 25.0 | 26.1 | 25.7 |
| Mountain | 26.5 | 26.1 | 25.6 | 26.2 | 26.1 |
| Urban Tirana | a | 27.2 | 27.7 | 29.2 | 28.4 |
| Education | | | | | |
| No education/Primary 4-year | * | * | * | * | (24.7) |
| Primary 8-year | 25.4 | 25.7 | 25.3 | 25.8 | 25.5 |
| Secondary, professional, technical | 27.0 | 26.7 | 26.5 | 27.4 | 26.9 |
| University+ | a | (26.6) | 29.2 | 29.0 | 28.7 |
| Wealth quintile | | | | | |
| Lowest | (25.7) | 25.5 | 25.2 | 26.3 | 25.6 |
| Second | (25.6) | 24.7 | 25.9 | 25.7 | 25.6 |
| Middle | 24.4 | 26.1 | 25.2 | 26.6 | 25.9 |
| Fourth | 27.1 | 26.7 | 26.9 | 26.8 | 26.8 |
| Highest | 29.6 | 27.8 | 27.4 | 29.0 | 28.5 |
| Total | 26.7 | 26.3 | 26.0 | 26.7 | 26.4 |

Note: Age at first marriage is defined as the age at which the man began living with his first spouse or partner. Figures in parentheses are based on 25-49 unweighted cases. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
$\mathrm{a}=$ Omitted because less than 50 percent of the men married for the first time before reaching the beginning of the age group

Large differences in age between husband and wife can lead to power imbalances within marriage. An age difference of 10 or more years between a woman and her spouse/partner is considered to be a large age gap. The 2008-09 ADHS collected information on spousal age differences for women age 20-24. Table 6.5 shows the percent distribution of currently married women age $20-24$ by the difference in age between the woman and her husband/partner, according to background characteristics. About one in four (24 percent) currently married women age $20-24$ has a husband/partner who is 10 or more years older; about four in ten (39 percent) have a husband/partner who is 5 to 9 years older.

Women age 20-24 in urban areas are slightly more likely than their counterparts in rural areas to have a husband/partner who is 10 or more years older (26 and 23 percent, respectively). A spousal age gap of 10 or more years is most common in the Coastal region (32 percent) and least common in the Mountain region (18 percent). Women with primary 8 -year education (28 percent) are more likely than those with higher education to have a husband/partner who is 10 or more years older. By wealth status, the percentage of currently married women age 20-24 with a husband/partner 10 or more years older is highest for the three highest wealth quintiles and lowest for the two lowest wealth quintiles.

The percentage of currently married women age 20-24 whose husband/partner is 10 or more years older has increased from 20 percent in the 2005 MICS (INSTAT, 2008) to 24 percent in the 2008-09 ADHS.

Table 6.5 Spousal age difference						
Percent distribution of currently married women age $20-24$ by the age difference with their husband or partner, according to background characteristics, Albania 2008-09						
	Percentage of currently married women age 20-24 whose husband/partner is:				Total	Number of currently married women age 20-24
Background characteristic	Younger	$\begin{gathered} \hline 0-4 \text { years } \\ \text { older } \end{gathered}$	5-9 years older	$\begin{gathered} \hline 10+\text { years } \\ \text { older } \end{gathered}$		
Residence						
Urban	3.1	31.5	39.5	25.9	100.0	122
Rural	0.4	38.0	38.9	22.6	100.0	235
Region						
Coastal	1.0	30.2	37.1	31.7	100.0	110
Central	0.0	38.6	41.5	20.0	100.0	181
Mountain	3.2	40.9	37.9	18.0	100.0	37
Urban Tirana	(8.1)	(33.1)	(34.4)	(24.5)	(100.0)	30
Education						
No education/Primary 4-year	*	*	*	*	*	15
Primary 8-year	0.7	31.9	39.1	28.3	100.0	239
Secondary, professional, technical	3.6	39.2	44.5	12.7	100.0	57
University+	(0.0)	(49.1)	(31.9)	(19.0)	(100.0)	47
Wealth quintile						
Lowest	0.6	39.7	40.8	19.0	100.0	77
Second	0.7	41.5	40.8	17.0	100.0	77
Middle	1.7	41.0	31.1	26.2	100.0	103
Fourth	3.7	23.0	39.2	34.2	100.0	55
Highest	0.0	23.0	51.9	25.1	100.0	45
Total	1.3	35.8	39.1	23.8	100.0	358

Note: Figures in parentheses are based on 25-49 unweighted cases. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.

6.4 Age at First Sexual Intercourse

Although age at marriage is often used as a proxy for the beginning of exposure to the risk of pregnancy, some women engage in sexual activity before marriage. The ADHS gathered information on the timing of first sexual intercourse for both women and men. Table 6.6 shows the percentage of women and men who had first sexual intercourse by specific exact ages, and the median age at first intercourse, by current age.

Only a small proportion (less than 1 percent) of women reported having their first sexual intercourse before age 15 while more than one-third (36 percent) had first sexual intercourse by age 20. Older women experienced first sexual intercourse at a later age than younger women; the median age at first sexual intercourse among women in their early forties is 21.3 years, compared with 20.6 to 20.8 years for women under age 40.

Like women, less than 1 percent of men reported having their first sexual intercourse before age 15 while more than one-fourth (27 percent) had first sexual intercourse by age 20 . Overall, the median age at first sexual intercourse among men (22.3 years) is higher than that for women (20.9 years). Median age at first sexual intercourse by age group shows that men in the younger age groups experience first sexual intercourse earlier than women in same age groups, and the opposite is seen for men in the older age groups. As with women, age at first sexual intercourse among men declines from older to younger cohorts. For men, age at first sexual intercourse does not correspond closely to age at first marriage as it does for women.

Table 6.6 Age at first sexual intercourse								
Percentage of women and men age 15-49 who had first sexual intercourse by specific exact ages, percentage who never had intercourse, and median age at first intercourse, according to current age, Albania 2008-09								
	Percentage who had first sexual intercourse by exact age:					Percentage who never had		Median age at first
Current age	15	18	20	22	25	intercourse	Number	intercourse
WOMEN								
15-19	0.6	na	na	na	na	87.7	1,478	a
20-24	0.4	14.5	35.0	na	na	47.1	976	a
25-29	1.2	15.8	39.0	61.2	75.6	16.1	848	20.8
30-34	0.9	14.9	41.9	65.3	81.9	5.7	866	20.6
35-39	0.5	8.8	35.4	64.6	87.2	2.4	1,097	20.8
40-44	0.6	9.4	33.1	58.6	84.4	1.3	1,232	21.3
45-49	0.4	8.5	31.8	59.2	83.1	0.8	1,088	21.1
25-49	0.7	11.1	35.8	61.6	82.9	4.6	5,130	20.9
15-24	0.5	na	na	na	na	71.6	2,454	a
MEN								
15-19	1.4	na	na	na	na	80.7	670	a
20-24	0.8	21.8	51.4	na	na	31.7	393	19.9
25-29	1.4	16.3	43.4	68.3	85.8	9.3	269	20.4
30-34	0.0	14.5	38.0	60.1	82.4	4.0	273	20.8
35-39	0.2	7.2	28.4	50.8	76.8	1.6	372	21.9
40-44	0.1	5.5	19.6	38.9	67.8	0.7	501	23.2
45-49	0.5	4.5	18.7	35.0	64.2	0.1	536	23.4
25-49	0.4	8.3	26.9	47.1	73.1	2.4	1,951	22.3
15-24	1.2	na	na	na	na	62.6	1,062	a
na $=$ Not applicable due to censoring $\mathrm{a}=$ Omitted because less than 50 percent of respondents had intercourse for the first time before reaching the beginning of the age group								

In the 2008-09 ADHS, the median ages at first sexual intercourse for women and men are similar to those reported in the 2002 ARHS. The median age at first sexual intercourse among women was 21.1 years in 2002, compared with 20.9 years in 2008-09; for men, median age at first sexual intercourse was 21.5 years in 2002, compared with 22.3 years in 2008-09 (CDC, IPH, and INSTAT, 2005). ${ }^{2}$

Tables 6.7.1 and 6.7.2 show the median age at first sexual intercourse for women and men age 25-49 by background characteristics. Women in rural areas have first sexual intercourse slightly earlier than their urban counterparts (20.7 years compared with 21.3 years). The median age at first intercourse for women varies little across regions, ranging from 20.8 years in Urban Tirana and 20.9 years in the Central region to 21.1 years in the Mountain region. With respect to education, the median age at first sexual intercourse increases steadily with education from 19.6 years among women with no education or primary 4-year education to 22.6 years among women with university or higher education. Median age at first sexual intercourse by wealth status does not show a clear pattern for women.

Interestingly, the findings on age at first sexual intercourse among men by background characteristics show a pattern that contrasts with that of women for most characteristics. For example, men in rural areas initiate sexual activity slightly later than men in urban areas (median of 22.6 years in rural areas compared with 22.0 years in urban areas). Regional variation among men is similar to that observed for women; median age at first sexual intercourse is lowest among men in Central (21.7 years) and Urban Tirana (22.3 years) regions and highest in the Mountain region (23.8 years). Unlike women, the median age at first sexual intercourse among men decreases as level of education and wealth quintile increase.

[^14]| Table 6.7.1 Median age at first intercourse: Women | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Median age at first sexual intercourse among women age 25-49 by five-year age groups, according to background characteristics, Albania 2008-09 | | | | | | |
| Background characteristic | Current age | | | | | Women age$25-49$ |
| | 25-29 | 30-34 | 35-39 | 40-44 | 45-49 | |
| Residence | | | | | | |
| Urban | 20.8 | 21.1 | 21.0 | 21.7 | 21.8 | 21.3 |
| Rural | 20.7 | 20.2 | 20.7 | 21.0 | 20.7 | 20.7 |
| Region | | | | | | |
| Coastal | 20.4 | 20.6 | 20.8 | 21.1 | 21.7 | 21.0 |
| Central | 20.7 | 20.3 | 20.9 | 21.4 | 21.1 | 20.9 |
| Mountain | 22.3 | 20.6 | 21.0 | 21.4 | 21.0 | 21.1 |
| Urban Tirana | 20.9 | 20.9 | 20.7 | 20.9 | 20.5 | 20.8 |
| Education | | | | | | |
| No education/Primary 4- year | * | * | * | * | * | 19.6 |
| Primary 8-year | 20.6 | 20.1 | 20.4 | 20.8 | 20.7 | 20.6 |
| Secondary, professional, technical | 20.1 | 20.6 | 21.0 | 21.5 | 21.7 | 21.1 |
| University+ | 22.2 | 22.7 | 22.3 | 23.0 | 23.4 | 22.6 |
| Wealth quintile | | | | | | |
| Lowest | 22.1 | 20.5 | 21.1 | 21.2 | 20.9 | 21.0 |
| Second | 20.8 | 19.6 | 20.8 | 21.1 | 20.6 | 20.7 |
| Middle | 19.9 | 20.3 | 20.4 | 21.2 | 21.1 | 20.7 |
| Fourth | 20.7 | 21.0 | 20.8 | 21.5 | 21.7 | 21.1 |
| Highest | 20.8 | 21.2 | 21.2 | 21.5 | 21.5 | 21.2 |
| Total | 20.8 | 20.6 | 20.8 | 21.3 | 21.1 | 20.9 |

Note: An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed

Median age at first sexual intercourse among men age 25-49 by five-year age groups, according to background characteristics, Albania 2008-09							
Background characteristic	Current age						Men age25-49
	20-24	25-29	30-34	35-39	40-44	45-49	
Residence							
Urban	19.8	20.0	21.3	21.9	23.0	22.9	22.0
Rural	a	21.0	20.4	21.9	23.4	24.0	22.6
Region							
Coastal	19.6	20.0	20.6	22.1	23.7	23.7	22.5
Central	19.7	20.5	20.4	21.3	22.9	22.9	21.7
Mountain	a	22.6	23.2	23.4	23.8	24.7	23.8
Urban Tirana	19.9	20.0	(22.1)	22.2	22.9	23.3	22.3
Education							
No education/Primary 4- year	*	*	*	*	*	*	(20.4)
Primary 8-year	a	21.0	21.1	22.5	23.9	23.4	22.7
Secondary, professional, technical	19.2	20.6	20.6	21.3	22.9	23.4	22.2
University+	19.5	19.6	(21.1)	(20.6)	22.0	23.6	21.1
Wealth quintile							
Lowest	a	(23.0)	(22.8)	23.7	24.5	25.6	24.4
Second	a	(20.3)	(20.1)	22.0	23.0	24.1	22.4
Middle	19.0	(20.9)	20.9	20.5	23.6	23.2	21.8
Fourth	19.6	20.1	21.6	22.3	23.4	23.0	22.3
Highest	19.8	19.8	20.4	21.0	22.3	22.8	21.3
Total	19.9	20.4	20.8	21.9	23.2	23.4	22.3

[^15]
6.5 Recent Sexual Activity

In the absence of contraception, the likelihood of becoming pregnant is related to the frequency of sexual intercourse. Thus, information on sexual activity can be used to refine measures of exposure to pregnancy. In the 2008-09 ADHS, women and men were asked how long ago their last sexual intercourse occurred. The responses to this question allow an assessment of recent sexual activity (in the four weeks preceding the survey). Tables 6.8 .1 and 6.8 .2 show the distribution of women and men, respectively, by timing of last sexual intercourse, according to background characteristics.

Table 6.8.1 Recent sexual activity: Women						
Percent distribution of women age $15-49$ by timing of last sexual intercourse, according to background characteristics, Albania 2008-09						
Timing of last sexual intercourse						
Background characteristic	Within the past 4 weeks	Within 1 year ${ }^{1}$	One or more years	Never had sexual intercourse	Total	Number of women
Age						
15-19	6.8	4.9	0.6	87.7	100.0	1,478
20-24	34.3	12.7	5.8	47.1	100.0	976
25-29	62.9	12.3	8.7	16.1	100.0	848
30-34	78.3	9.8	6.2	5.7	100.0	866
35-39	83.6	8.5	5.5	2.4	100.0	1,097
40-44	83.3	9.4	6.0	1.3	100.0	1,232
45-49	77.9	10.6	10.7	0.8	100.0	1,088
Marital status						
Never married	6.0	4.6	5.0	84.4	100.0	2,357
Married or living together	85.7	11.7	2.6	0.1	100.0	5,001
Divorced/separated/ widowed	5.2	7.0	87.7	0.2	100.0	226
Marital duration ${ }^{2}$						
0-4 years	75.7	22.4	1.4	0.6	100.0	631
5-9 years	83.5	13.2	3.4	0.0	100.0	604
10-14 years	87.4	9.9	2.7	0.0	100.0	953
15-19 years	89.4	9.2	1.4	0.0	100.0	1,119
20-24 years	87.5	8.9	3.6	0.0	100.0	1,011
$25+$ years	85.9	11.1	3.0	0.0	100.0	617
Married more than once	82.3	13.2	4.5	0.0	100.0	67
Residence						
Urban	60.1	7.6	7.8	24.5	100.0	3,380
Rural	57.2	10.7	4.3	27.7	100.0	4,204
Region						
Coastal	57.9	11.5	5.1	25.5	100.0	2,129
Central	60.6	9.0	5.0	25.4	100.0	3,477
Mountain	52.1	10.2	3.8	33.9	100.0	777
Urban Tirana	57.7	6.1	11.1	25.2	100.0	1,201
Education						
No education/Primary 4-year	52.2	12.4	13.1	22.4	100.0	127
Primary 8-year	61.8	12.0	5.0	21.2	100.0	3,712
Secondary, professional, technical	55.7	6.3	5.4	32.6	100.0	2,740
University+	54.9	7.6	9.4	28.1	100.0	1,005
Wealth quintile						
Lowest	53.9	11.2	4.6	30.3	100.0	1,513
Second	57.2	10.9	5.0	26.9	100.0	1,486
Middle	59.4	10.4	4.8	25.4	100.0	1,533
Fourth	60.4	7.7	6.3	25.6	100.0	1,480
Highest	61.6	6.7	8.4	23.3	100.0	1,573
Total	58.5	9.3	5.9	26.3	100.0	7,584
${ }^{1}$ Excludes women who had sexual intercourse within the past 4 weeks ${ }^{2}$ Excludes women who are not currently married						

Twenty-six percent of women age 15-49 and 24 percent of men age 15-49 have never had sexual intercourse. Six percent of women and 4 percent of men reported that their last sexual intercourse occurred more than a year preceding the survey. Nine percent of women and 11 percent of men had sexual intercourse in the past year, but not in the past month, while 59 percent of women and 62 percent of men had sexual intercourse in the four weeks preceding the survey.

Table 6.8.2 Recent sexual activity: Men

Percent distribution of men age $15-49$ by timing of last sexual intercourse, according to background characteristics, Albania 2008-09

Background characteristic	Timing of last sexual intercourse			Never had sexual intercourse	Total	Number of men
	Within the past 4 weeks	Within 1 year ${ }^{1}$	One or more years			
Age						
15-19	7.5	9.1	2.6	80.7	100.0	670
20-24	41.0	19.9	7.4	31.7	100.0	393
25-29	64.9	20.2	5.6	9.3	100.0	269
30-34	80.2	13.3	2.5	4.0	100.0	273
35-39	89.1	6.3	3.0	1.6	100.0	372
40-44	87.9	7.2	4.2	0.7	100.0	501
45-49	89.5	7.3	3.1	0.1	100.0	536
Marital status						
Never married	22.9	16.3	5.7	55.1	100.0	1,291
Married or living together	91.2	6.6	2.2	0.0	100.0	1,703
Divorced/separated/widowed	*	*	*	*	*	19
Marital duration ${ }^{2}$						
0-4 years	89.8	9.5	0.6	0.0	100.0	190
5-9 years	93.7	6.3	0.0	0.0	100.0	230
10-14 years	92.9	4.4	2.7	0.0	100.0	391
15-19 years	91.8	4.9	3.4	0.0	100.0	458
20-24 years	86.3	11.7	2.0	0.0	100.0	303
$25+$ years	90.8	5.7	3.5	0.0	100.0	60
Married more than once	(94.5)	(2.4)	(3.2)	(0.0)	(100.0)	69
Residence						
Urban	65.4	10.3	3.2	21.2	100.0	1,391
Rural	58.4	11.4	4.5	25.7	100.0	1,622
Region						
Coastal	60.3	13.1	2.9	23.7	100.0	800
Central	60.6	11.6	5.0	22.8	100.0	1,443
Mountain	56.5	6.2	2.4	34.9	100.0	277
Urban Tirana	69.7	7.7	3.1	19.5	100.0	493
Education						
No education/Primary 4-year	59.8	10.6	4.0	25.5	100.0	55
Primary 8-year	62.2	10.4	4.2	23.1	100.0	1,183
Secondary, professional, technical	57.0	11.0	4.1	27.9	100.0	1,415
University+	77.9	12.0	1.9	8.2	100.0	361
Wealth quintile						
Lowest	54.1	8.5	7.4	29.9	100.0	475
Second	58.3	11.1	4.2	26.3	100.0	600
Middle	60.6	13.1	3.0	23.2	100.0	661
Fourth	64.9	11.2	3.9	19.9	100.0	625
Highest	67.9	9.8	1.8	20.4	100.0	652
Total	61.6	10.9	3.9	23.6	100.0	3,013

Note: Figures in parentheses are based on 25-49 unweighted cases. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
${ }^{1}$ Excludes men who had sexual intercourse within the past 4 weeks
${ }^{2}$ Excludes men who are not currently married

As expected, recent sexual activity is least common among the youngest respondents (age 15-19). In this age group, 7 percent of women and 8 percent of men had sexual intercourse in the four weeks preceding the survey and 88 percent of women and 81 percent of men said they had never had sexual intercourse. The proportion of women and men who had sexual intercourse recently (within the past four weeks) increases with age from 7 percent among women age 15-19 to 84 percent among women age 35-39, and from 8 percent among men age 15-19 to 89 percent among men age 35-39. Recent sexual activity is most common among currently married respondents- 86 percent of married women and 91 percent of married men had sexual intercourse in the four weeks preceding the survey. Differences between women and men in recent sexual intercourse are greatest for those who have never married-the proportion of never-married men who reported recent sexual intercourse is almost four times that of never-married women (23 and 6 percent, respectively).

The proportion of women who reported having recent sexual intercourse is lowest among those with the shortest marital duration ($0-4$ years); among men, the lowest proportions reporting recent sexual intercourse are men married for 20-24 years and those married for the shortest duration ($0-4$ years). The lower proportion of respondents with the shortest marital duration reporting recent sexual intercourse could possibly be explained by the relatively large number of spouses who migrate either temporarily or permanently early in marriage. Women and men in urban areas are somewhat more likely to report recent sexual intercourse than women and men in rural areas, the difference being larger for men. Recent sexual intercourse is lowest in the Mountain region (52 percent of women and 57 percent of men) and highest in the Central region for women (61 percent) and Urban Tirana for men (70 percent). There is no clear relationship between level of education and the percentage of respondents reporting recent sexual intercourse. However, it must be noted that a substantially higher proportion of men with university or higher education reported recent sexual intercourse (78 percent) than men with less education or no education (57 to 62 percent). The proportion of both women and men reporting recent sexual intercourse increases with household wealth status from 54 percent among women and men in the lowest wealth quintile to 62 percent among women and 68 percent among men in the highest wealth quintile.

6.6 Post-Partum Amenorrhoea, Abstinence, and Insusceptibility

Post-partum amenorrhoea is defined as the period between childbirth and the return of ovulation, generally approximated by the resumption of menstruation following childbirth. The length of the period of post-partum amenorrhoea is largely determined by the duration and intensity of breastfeeding. The risk of conception during this period is low. The duration of post-partum amenorrhoea and the period of sexual abstinence following the birth jointly determine the length of the period of insusceptibility. Thus, women are considered insusceptible (to the risk of pregnancy) if they are either still amenorrhoeic or still abstaining (or both) following the birth.

Women who gave birth in the three years preceding the survey were asked whether their periods had returned since the birth and whether they had resumed sexual relations since the birth. From this information, the proportion of women still amenorrhoeic and the proportion still abstaining, as well as the proportion insusceptible to the risk of pregnancy can be calculated by duration since the birth. The results are presented in Table 6.9 by number of months since the birth. Eight in ten women (80 percent) who gave birth during the three years preceding the survey were insusceptible to pregnancy during the first three months following the birth. After the third month, the contribution of abstinence was greatly reduced (10 percent), and at $6-8$ months, 17 percent of women were still amenorrhoeic, but only 4 percent were still abstaining. At 15-17 months post-partum, the proportion amenorrhoeic was 2 percent and less than 1 percent were abstaining.

Overall, the median duration of insusceptibility after birth is 4.7 months. The principal determinant of the length of the period of insusceptibility is post-partum amenorrhoea. The median duration of amenorrhoea is 3.5 months and abstinence is 1.2 months.

Table 6.9 Post-partum amenorrhoea, abstinence and insusceptibility

Percentage of births in the three years preceding the survey for which mothers are post-partum amenorrhoeic, abstaining, and insusceptible, by number of months since birth, and median and mean durations, Albania 2008-09

Months since birth	Percentage of births for which the mother is:			Number of births
Amenorrhoeic	Abstaining	Insusceptible $^{1} n$	79.9	
3	60.9	47.5	60.1	88
$6-5$	58.8	9.5	20.9	59
6-8	17.4	3.5	7.1	58
$12-14$	7.1	0.7	7.6	74
$15-17$	3.1	6.7	2.0	70
$18-20$	1.8	0.2	2.3	73
$21-23$	2.3	0.0	3.4	51
$24-26$	2.4	1.0	4.6	89
$27-29$	2.1	2.5	5.2	84
$30-32$	4.1	1.1	3.7	82
$33-35$	3.0	0.7	1.5	61
Total	1.5	0.0	16.8	853
Median	14.1	5.9	4.7	na
Mean	3.5	1.2	6.8	na

Note: Estimates are based on status at the time of the survey.
na $=$ Not applicable
${ }^{1}$ Includes births for which mothers are either still amenorrhoeic or still abstaining (or both) following birth

Table 6.10 shows the median duration of post-partum amenorrhoea, post-partum abstinence, and post-partum insusceptibility by background characteristics. The median duration of post-partum insusceptibility is higher among women age 15-29 than among women age 30-49 (5.0 and 4.0 months, respectively) and higher among women in rural areas than those in urban areas (4.3 and 5.1 months, respectively). There is no strong relationship between median duration of amenorrhoea and mother's level of education or household wealth status.

Table 6.10 Median duration of amenorrhoea, post-partum abstinence and post-partum insusceptibility			
Median number of months of post-partum amenorrhoea, post-partum abstinence, and post-partum insusceptibility following births in the three years preceding the survey, by background characteristics, Albania 2008-09			
Background characteristic	Post-partum amenorrhoea	Post-partum abstinence	Post-partum insusceptibility ${ }^{1}$
Mother's age			
15-29	4.0	(1.2)	5.0
30-49	*	*	4.0
Residence			
Urban	3.6	1.5	4.3
Rural	3.5	(1.1)	5.1
Region			
Coastal	(5.0)		(5.6)
Central	2.4	1.3	4.5
Mountain	2.9	*	3.4
Urban Tirana	(4.5)	*	(4.9)
Mother's education			
Primary or less	2.9	(1.1)	4.7
Secondary +	3.9	1.3	4.7
Wealth quintile			
Lowest 60\%	3.0	(1.2)	4.8
Highest 40\%	3.8	(1.2)	4.6
Total	3.5	1.2	4.7
Note: Medians are based on the status at the time of the survey (current status). Figures in parentheses are based on 25-49 unweighted cases. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed. ${ }^{1}$ Includes births for which mothers are either still amenorrhoeic or still abstaining (or both) following birth			

6.7 Termination of Exposure to Pregnancy

One indicator of infecundity is the onset of menopause. Menopausal women are defined here as women who are neither pregnant nor post-partum amenorrhoeic, but who have not had a menstrual period in the six months preceding the survey. The prevalence of menopause increases with age, typically from around age 30 . Table 6.11 shows the proportion of women age $30-49$ who are menopausal by age; prevalence ranges from 1 percent among women age 30-34 to 37 percent among women age 48-49. There is a sharp increase in the percentage of women who are menopausal after age 45 , from 8 percent among women age $44-45$ to 24 percent among those age 46-47.

Table 6.11 Menopause

Percentage of women age 30-49 who are menopausal, by age, Albania 2008-09

Age	Percentage menopausal ${ }^{1}$	Number of women
30-34	0.8	866
35-39	2.3	1,097
40-41	5.4	482
42-43	6.0	480
44-45	8.3	497
46-47	23.6	459
48-49	37.2	402
Total	9.0	4,282

${ }^{1}$ Percentage of all women who are not pregnant and not post-partum amenorrhoeic whose last menstrual period occurred six or more months preceding the survey

The fertility desires of women and men in a population are important both for predicting future levels of fertility and for estimating the potential need for family planning. This chapter focuses on three indicators of the need for family planning: whether the respondent wants another child and, if so, the preferred interval between children; the number of children considered to be ideal; and the level of unwanted and mistimed births.

The 2008-09 ADHS collected information on these issues and the results are important for the planning and implementation of family planning programmes. The underlying rationale of most family planning programmes is to give couples the freedom and ability to have the number of children they want and to achieve the desired spacing of births. As part of this analysis, the ADHS results are used to quantify fertility preferences and, in combination with information on contraceptive use, provide estimates of unmet need for family planning.

7.1 Desire for More Children

Women and men in the 2008-09 ADHS sample were asked, 'Would you like to have (a/another) child or would you prefer not to have any (more) children?’ Respondents who said that they would like to have more children were asked, 'How long would you like to wait from now before the birth of (a/another) child?' The responses of currently married women and men are shown in Table 7.1 by number of living children.

Table 7.1 Fertility preferences by number of living children
Percent distribution of currently married women and currently married men age 15-49 by desire for children, according to number of living children, Albania 2008-09

Desire for children	Number of living children							Total
	0	1	2	3	4	5	$6+$	
WOMEN ${ }^{1}$								
Have another soon ${ }^{2}$	50.2	22.9	4.5	1.9	0.7	0.0	0.0	8.4
Have another later ${ }^{3}$	13.2	35.8	6.9	1.1	0.2	1.0	0.0	8.7
Have another, undecided when	20.3	9.3	0.7	0.0	0.0	0.0	0.0	2.7
Undecided	0.9	4.3	6.6	2.3	1.9	2.3	1.4	4.2
Want no more	1.2	21.8	76.5	87.7	91.7	90.4	89.3	69.7
Sterilized ${ }^{4}$	0.2	0.4	2.8	4.4	4.8	6.0	7.8	3.1
Declared infecund	14.0	5.6	2.0	2.7	0.8	0.2	1.5	3.2
Missing	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Number of women	300	655	2,053	1,366	419	150	59	5,001
MEN ${ }^{5}$								
Have another soon ${ }^{2}$	36.9	32.8	7.7	3.2	3.1	6.8	(0.0)	11.0
Have another later ${ }^{3}$	20.2	18.0	2.9	1.8	1.8	0.0	(0.0)	5.4
Have another, undecided when	15.7	11.4	3.1	0.8	0.0	1.8	(1.1)	4.0
Undecided	7.8	5.0	10.8	9.2	4.4	1.8	(5.3)	8.6
Want no more	7.9	29.0	74.7	83.3	88.8	89.6	(92.0)	68.9
Sterilized ${ }^{4}$	1.6	0.0	0.5	0.4	0.3	0.0	(1.6)	0.4
Declared infecund	10.0	3.8	0.4	1.2	1.6	0.0	(0.0)	1.7
Missing	0.0	0.0	0.0	0.0	0.0	0.0	(0.0)	0.0
Total	100.0	100.0	100.0	100.0	100.0	100.0	(100.0)	100.0
Number of men	96	225	725	464	124	45	24	1,703

[^16]Overall, 73 percent of married women either do not want another child or are sterilized, 20 percent want to have another child-8 percent want a child soon (within two years), 9 percent want a child later (after two years), and 3 percent are undecided when they want another child. The remaining 7 percent are either undecided whether to have another child, or say they are unable to have another child (infecund) (Figure 7.1).

Table 7.1 shows that Albanian women generally prefer small families. The desire to limit fertility increases with the number of living children. For example, 84 percent of married women with no children want to have a child, with six in ten of these women (50 percent) wanting to have a child within two years. Among women with one living child, 68 percent want to have another child in the future. This percentage decreases rapidly to 12 percent among women with two children, 3 percent among women with three children, and 1 percent or less among women with four or more children.

Men's fertility preferences are similar to those of women. However, a smaller proportion of men than women report that they want no more children or are sterilized (69 percent compared with 73 percent) (Figure 7.1). A similar proportion of men and women want another child (20 percent, each), while a higher proportion of men (9 percent) than women (4 percent) are undecided whether to have another child. As with women, the desire to have another child decreases with increasing number of living children, from 73 percent among men with no children to 62 percent among men with one child, to 14 percent among men with two children, and to less than 10 percent among men with three children. Although a larger proportion of men than women are undecided whether to have another child, among both women and men who have two living children there is a strong desire to stop childbearing, and the pattern continues at higher parities. For example, 79 percent of women and 75 percent of men with two living children do not want any more children, and among those with three living children the proportions increase to 92 percent of women and 84 percent of men.

Figure 7.1 Fertility Preferences among Currently Married Women and Men Age 15-49

WOMEN

MEN

Assessing trends in fertility preferences between the 2002 ARHS and the 2008-09 ADHS is hampered by differences in sample coverage. The 2002 survey covered women age $15-44$ only, and there were differences in the way questions were asked. Specifically, the 2002 survey asked whether the respondent intended to have another child at some time, whereas the 2008-09 ADHS asked whether the respondent would like to have another child. Moreover, the surveys used different categories in tabulating the results. Nevertheless, it appears that the proportion of married women who want no more children has increased from 63 percent in 2002 (CDC, IPH, and INSTAT, 2005) to 73 percent in the 2008-09 ADHS.

Tables 7.2.1 and 7.2.2 show the percentage of currently married women and men who want no more children, by number of living children and background characteristics.

Table 7.2.1 Desire to limit childbearing: Women						
Percentage of currently married women age 15-49 who want no more children, by number of living children, according to background characteristics, Albania 2008-09						
Background characteristic	Number of living children ${ }^{1}$					Total
	0	1	2	3	4+	
Residence						
Urban	0.5	24.2	81.5	93.0	95.8	70.8
Rural	2.1	19.9	76.9	91.5	96.7	74.2
Region						
Coastal	1.4	19.4	80.1	93.8	97.4	73.7
Central	1.6	23.7	80.2	92.5	98.5	74.3
Mountain	0.0	8.8	64.1	87.8	90.0	70.3
Urban Tirana	(1.3)	27.7	80.7	88.5	*	67.2
Education						
No education/Primary 4-year	*	*	(71.5)	*	*	67.3
Primary 8-year	2.4	18.3	75.4	91.2	96.6	73.2
Secondary, professional, technical	0.0	31.5	83.3	93.4	96.7	77.8
University+	1.0	19.6	81.2	89.6	*	54.3
Wealth quintile						
Lowest	(0.0)	11.9	69.6	91.0	94.5	72.0
Second	0.0	15.1	80.5	91.9	98.0	75.6
Middle	5.3	26.4	79.1	93.2	95.7	74.1
Fourth	0.0	24.3	83.5	93.8	100.0	73.2
Highest	1.1	27.3	80.4	89.0	(96.1)	68.6
Total	1.4	22.2	79.2	92.0	96.5	72.8

Note: Women who have been sterilized are considered to want no more children. Figures in parentheses are based on 25-49 unweighted cases. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
${ }^{1}$ Includes current pregnancy

A similar proportion of women in urban areas (71 percent) and rural areas (74 percent) want to terminate childbearing. Women in the Coastal and Central regions (74 percent each) are the most likely to want to stop childbearing while those in Urban Tirana region are the least likely to want no more children (67 percent). The regional differences are especially pronounced among women with one child; the percentage of women with one child who want to no more children is substantially lower in the Mountain region (9 percent), compared with women in other regions (19 percent in Coastal region, 24 percent in Central region, and 28 percent in Urban Tirana). The desire to stop childbearing is highest among women with secondary education (78 percent) and is lowest among those with university or higher education (54 percent). Women in the highest wealth quintile are least likely to want to stop childbearing (69 percent), compared with women in the other wealth quintiles (72 to 76 percent).

Table 7.2.2 Desire to limit childbearing: Men						
Percentage of currently married men age 15-49 who want no more children, by number of living children, according to background characteristics, Albania 2008-09						
Background characteristic	Number of living children ${ }^{1}$					Total
	0	1	2	3	4+	
Residence						
Urban	7.5	28.2	73.7	86.4	(85.2)	64.5
Rural	(11.7)	30.2	76.6	82.5	90.4	73.1
Region						
Coastal	(7.4)	18.7	81.8	88.5	(89.8)	71.9
Central	(13.1)	42.9	74.7	83.0	(87.9)	71.4
Mountain	*	12.9	72.8	84.9	96.0	73.2
Urban Tirana	*	21.2	67.0	(72.0)	*	55.4
Education						
No education/Primary 4-year	*	*	*	*	*	72.8
Primary 8-year	(16.5)	30.4	68.4	84.8	88.6	68.7
Secondary, professional, technical	(6.1)	22.4	81.9	83.9	91.7	73.0
University+	*	(44.0)	70.2	(72.8)	*	56.8
Wealth quintile						
Lowest	*	(21.7)	72.8	81.1	(98.0)	73.1
Second	*	(37.0)	77.5	89.2	(85.2)	75.2
Middle	*	(36.7)	77.4	81.5	(89.2)	72.0
Fourth	(4.7)	22.4	77.3	82.6	*	66.6
Highest	(0.0)	27.1	70.6	84.3	*	60.0
Total	9.5	29.0	75.1	83.8	89.1	69.4

Note: Men who have been sterilized or who state in response to the question about desire for children that their wife has been sterilized are considered to want no more children. Figures in parentheses are based on 25-49 unweighted cases. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
${ }^{1}$ Includes one additional child if respondent's wife is pregnant

Differentials in the proportion of men who want no more children vary somewhat from those of women. Men in urban areas (65 percent) are more likely to want to limit childbearing than men in rural areas (73 percent). By region, the highest proportion of men who want no more children is in the Mountain region (73 percent); similar to women, the lowest proportion of men who want to stop childbearing is in Urban Tirana (55 percent). By level of education, the desire to stop childbearing is highest among men with no education or primary 4-year education and men with secondary education (73 percent each) and lowest among men with university or higher education (57 percent). Desire to stop childbearing generally decreases with increasing wealth quintile.

7.2 Need for Family Planning Services

Women who are potentially in need of family planning are those who either want to wait two or more years before their next birth (need for spacing), or want to stop childbearing altogether (need for limiting). Currently married fecund women who either want no more children or want to wait at least two years before having another child, but who are not using contraception, are considered to have an unmet need for family planning. Women who are currently using family planning are said to have a met need for family planning. The sum of unmet need and met need constitute the total demand for family planning. Table 7.3.1 presents information for currently married women on unmet need, met need, and total demand for family planning, according to whether the need is for spacing or limiting births.

Overall, 13 percent of currently married women in Albania have an unmet need for family planning, 3 percent for spacing births and 9 percent for limiting births. If all women with unmet need were added to the 69 percent who are already using family planning (met need), the contraceptive prevalence rate would increase from the current level of 69 percent to 82 percent (total demand). Unmet need for family planning is highest among the youngest women, those age 15-29 (17 to 18 percent), and tends to decrease with age. However, while unmet need for spacing declines with age, unmet need for limiting generally increases with age up to age 44, after which it declines. A higher proportion of women in rural areas than in urban areas have an unmet need for family planning (15 percent compared with 10 percent). Looking at regional variation, the highest percentage of unmet need is among women in the Coastal and Mountain regions (16 percent each) and the lowest percentage is among women in Urban Tirana (10 percent). Unmet need for family planning is higher among women with no education or primary education than among women with secondary or higher education. Finally, unmet need tends to decrease as wealth quintile increases.

Table 7.3.1 Need and demand for family planning among currently married women
Percentage of currently married women age 15-49 with unmet need for family planning, percentage with met need for family planning, the total demand for family planning, and the percentage of the demand for contraception that is satisfied, by background characteristics, Albania 2008-09

Background characteristic	Unmet need for family planning ${ }^{1}$			Met need for family planning (currently using) ${ }^{2}$			Total demand for family planning			Percentage of demand satisfied	Number of women
	$\begin{gathered} \hline \text { For } \\ \text { spacing } \end{gathered}$	$\begin{gathered} \text { For } \\ \text { limiting } \end{gathered}$	Total	$\begin{gathered} \text { For } \\ \text { spacing } \end{gathered}$	$\begin{gathered} \text { For } \\ \text { limiting } \\ \hline \end{gathered}$	Total	$\begin{aligned} & \hline \text { For } \\ & \text { spacing } \end{aligned}$	$\begin{gathered} \text { For } \\ \text { limiting } \end{gathered}$	Total		
Age											
15-19	16.6	0.0	16.6	53.3	1.3	54.7	69.9	1.3	71.2	76.8	110
20-24	14.9	2.9	17.7	46.5	6.4	52.8	61.3	9.2	70.6	74.9	358
25-29	8.7	9.7	18.4	33.7	28.5	62.2	42.4	38.2	80.6	77.2	599
30-34	3.6	9.4	13.0	22.4	50.5	72.9	26.0	59.9	85.9	84.8	766
35-39	1.5	10.3	11.8	7.8	67.6	75.4	9.3	77.9	87.2	86.4	1,022
40-44	0.4	11.7	12.1	1.9	74.2	76.1	2.2	85.9	88.2	86.3	1,155
45-49	0.1	8.9	8.9	0.0	64.3	64.3	0.1	73.2	73.2	87.8	993
Residence											
Urban	3.1	6.6	9.7	15.9	58.5	74.4	19.0	65.2	84.2	88.5	2,145
Rural	3.7	11.4	15.1	12.5	53.0	65.5	16.2	64.4	80.6	81.3	2,856
Region											
Coastal	4.2	11.7	15.9	11.9	53.8	65.7	16.1	65.5	81.6	80.5	1,450
Central	2.8	8.3	11.1	14.2	56.9	71.1	17.0	65.2	82.2	86.5	2,383
Mountain	4.9	11.0	16.0	15.4	51.7	67.1	20.3	62.8	83.1	80.8	482
Urban Tirana	2.9	7.0	9.9	16.4	55.9	72.3	19.3	62.9	82.2	88.0	686
Education											
No education/Primary											
4-year	5.7	9.9	15.7	19.2	52.5	71.7	25.0	62.4	87.4	82.1	81
Primary 8-year	3.9	11.1	15.0	13.0	52.7	65.7	16.9	63.8	80.7	81.5	2,746
Secondary, professional, technical	2.0	7.4	9.3	11.3	62.7	74.0	13.3	70.1	83.4	88.8	1,681
University +	5.5	6.6	12.1	27.9	45.1	73.0	33.4	51.7	85.1	85.8	493
Wealth quintile											
Lowest	4.1	11.6	15.7	14.1	51.5	65.5	18.2	63.1	81.3	80.7	987
Second	3.0	10.6	13.6	11.8	55.0	66.8	14.8	65.6	80.4	83.1	1,011
Middle	3.7	10.2	13.9	12.7	55.9	68.7	16.4	66.2	82.6	83.1	1,066
Fourth	3.5	8.5	12.0	14.8	57.4	72.2	18.3	65.9	84.2	85.8	963
Highest	2.8	5.8	8.6	16.7	56.9	73.7	19.6	62.7	82.3	89.5	975
Total	3.4	9.4	12.8	14.0	55.3	69.3	17.4	64.7	82.1	84.4	5,001

${ }^{1}$ Unmet need for spacing: Includes women who are fecund and not using family planning and who say they want to wait two or more years for their next birth, or who say they are unsure whether they want another child, or who want another child but are unsure when to have the child. In addition, unmet need for spacing includes pregnant women whose current pregnancy was mistimed, or whose last pregnancy was unwanted but who now say they want more children. Unmet need for spacing also includes amenorrhoeic women whose last birth was mistimed, or whose last birth was unwanted but who now say they want more children. Unmet need for limiting: Includes women who are fecund and not using family planning and who say they do not want another child. In addition, unmet need for limiting includes pregnant women whose current pregnancy was unwanted but who now say they do not want more children or who are undecided whether they want another child. Unmet need for limiting also includes amenorrhoeic women whose last birth was unwanted but who now say they do not want more children or who are undecided whether they want another child.
${ }^{2}$ Using for spacing is defined as women who are using some method of family planning and say they want to have another child or are undecided whether to have another. Using for limiting is defined as women who are using and who want no more children. Note that the specific methods used are not taken into account here

The total demand for family planning among currently married women age 15-49 is 82 percent, with 84 percent of the demand satisfied. The demand for limiting is nearly four times greater than the demand for spacing (65 and 17 percent, respectively). Demand for family planning varies little across background characteristics, except for age. Total demand increases with age from 71 percent among currently married women age 15-24 to 88 percent among women age 40-44, after which it declines.

Table 7.3.2 presents information on need and demand for family planning among all women and among women who are not currently married, by background characteristics. Nine percent of all women have unmet need for family planning, 3 percent for spacing births and 6 percent for limiting births. Similar to currently married women, unmet need for spacing declines with age, unmet need for limiting increases with age up to age 44, and declines thereafter. A slightly higher proportion of women in rural areas have an unmet need for family planning, compared with women in urban areas (10 and 7 percent, respectively). By region, the highest level of unmet need is among women in the Coastal region (11 percent), while the lowest level is among women in Urban Tirana (7 percent). Unmet need for family planning by level of education is highest for women with primary 8-year education (11 percent); by household wealth status, unmet need decreases as the wealth quintile increases, from 10 percent among women in the lowest wealth quintile to 7 percent among women in the highest wealth quintile. The total demand for family planning among all women is 57 percent, with 84 percent of demand satisfied. The demand for limiting births is three times higher than the demand for spacing births (43 and 14 percent, respectively). There are no major variations in these indicators by background characteristics.

Table 7.3.2 Need and demand for family planning for all women and for women who are not currently married
Among all women age 15-49 and among women who are not currently married age 15-49, the percentage with unmet need for family planning, the percentage with met need for family planning, the total demand for family planning, and the percentage of the demand for contraception that is satisfied, by background characteristics, Albania 2008-09

Background characteristic	Unmet need for family planning ${ }^{1}$			Met need for family planning (currently using) ${ }^{2}$			Total demand for family planning			Percentage of demand satisfied	Number of women
	$\begin{aligned} & \hline \text { For } \\ & \text { spacing } \end{aligned}$	$\begin{gathered} \text { For } \\ \text { limiting } \end{gathered}$	Total	$\begin{gathered} \text { For } \\ \text { spacing } \end{gathered}$	$\begin{gathered} \text { For } \\ \text { limiting } \end{gathered}$	Total	$\begin{gathered} \hline \text { For } \\ \text { spacing } \end{gathered}$	$\begin{gathered} \text { For } \\ \text { limiting } \\ \hline \end{gathered}$	Total		
ALL WOMEN											
Age											
15-19	1.5	0.0	1.5	6.6	0.1	6.7	8.1	0.1	8.2	81.6	1,478
20-24	6.4	1.1	7.5	24.0	2.4	26.4	30.4	3.4	33.9	77.9	976
25-29	6.6	6.9	13.4	28.8	20.2	49.0	35.4	27.0	62.4	78.5	848
30-34	3.6	8.5	12.2	20.0	44.7	64.7	23.6	53.2	76.8	84.2	866
35-39	1.5	9.7	11.2	7.3	63.2	70.4	8.7	72.9	81.6	86.3	1,097
40-44	0.3	11.4	11.7	2.0	70.0	72.0	2.3	81.3	83.7	86.0	1,232
45-49	0.1	8.1	8.2	0.0	59.4	59.4	0.1	67.5	67.6	87.9	1,088
Residence											
Urban	2.5	4.4	6.9	13.2	37.4	50.6	15.7	41.8	57.5	88.0	3,380
Rural	2.6	7.8	10.4	9.7	36.2	45.9	12.3	44.0	56.2	81.6	4,204
Region											
Coastal	3.2	8.0	11.2	10.0	36.7	46.7	13.1	44.7	57.9	80.7	2,129
Central	2.0	5.8	7.8	11.3	39.3	50.6	13.3	45.0	58.4	86.7	3,477
Mountain	3.2	6.8	10.1	10.4	32.2	42.6	13.6	39.1	52.6	80.9	777
Urban Tirana	2.6	4.4	7.0	13.9	32.1	46.0	16.5	36.5	53.0	86.8	1,201
Education											
No education/Primary											
4-year	3.8	6.3	10.1	12.3	35.2	47.5	16.1	41.5	57.6	82.4	127
Primary 8-year	2.9	8.3	11.2	10.8	39.1	49.9	13.7	47.4	61.1	81.6	3,712
Secondary, professional, technical	1.5	4.6	6.0	7.8	38.7	46.5	9.3	43.3	52.6	88.5	2,740
University+	4.0	3.6	7.6	22.4	22.5	44.8	26.3	26.0	52.4	85.6	1,005
Wealth quintile											
Lowest	2.7	7.6	10.3	10.2	33.9	44.1	12.9	41.5	54.4	81.1	1,513
Second	2.0	7.3	9.4	9.4	37.4	46.9	11.5	44.8	56.3	83.3	1,486
Middle	2.7	7.1	9.8	9.9	39.0	48.9	12.6	46.1	58.7	83.3	1,533
Fourth	2.7	5.7	8.3	12.3	37.6	50.0	15.0	43.3	58.3	85.7	1,480
Highest	2.6	3.8	6.5	14.3	35.6	49.9	17.0	39.4	56.4	88.5	1,573
Total	2.6	6.3	8.8	11.3	36.7	48.0	13.8	43.0	56.8	84.4	7,584
											Continued...

For women who are not currently married, Table 7.3 .2 shows that only 1 percent of these women have an unmet need for family planning, mostly for spacing purposes. The total demand for family planning is 8 percent among women who are not currently married, and it is higher for women in urban areas, those in Urban Tirana, women with university or higher education, and women in the wealthiest households. Eighty-five percent of the total demand among women who are not currently married is satisfied, with rural women, those in the Mountain region, women with primary education, and those in the poorest households being more likely to have their demand for family planning satisfied than women in other sub-groups.

7.3 IDEAL Number OF CHildren

In the 2008-09 ADHS, respondents were asked what they consider to be the ideal family size. This information was obtained by asking the respondents two questions. Respondents who had no children were asked, "If you could choose exactly the number of children to have in your whole life,
how many would that be?" For respondents who had children, the question was, "If you could go back to the time when you did not have any children and could choose exactly the number of children to have in your whole life, how many would that be?" Responses to these questions are meant to be independent of the number of children that a respondent already has. However, there is typically a correlation between the actual number of children that respondents have and their reported ideal. This correlation may be because respondents who want larger families have more children or because respondents adjust their ideal family size to match their actual family size, or a combination of both these factors.

Table 7.4 shows the percent distribution of women and men age $15-49$ by ideal number of children, and mean ideal number of children for all respondents and for currently married respondents, according to the number of living children. About half of women (48 percent) reported that two children was their ideal number of children; 28 percent of women reported that three children was their ideal, and 15 percent said that their ideal number of children was four. The overall mean ideal number of children is 2.6 for all women and 2.7 for currently married women. There is a positive relationship between the number of children a woman considers ideal and the number of living children she has, with the mean ideal number of children increasing from 2.3 among women with no children to 4.0 among women with six or more children.

Table 7.4 Ideal number of children								
Percent distribution of women and men age 15-49 by ideal number of children, and mean ideal number of children for all respondents and for currently married respondents, according to number of living children, Albania 2008-09								
	Number of living children							Total
Ideal number of children	0	1	2	3	4	5	$6+$	
WOMEN ${ }^{1}$								
0	2.7	2.4	4.4	4.9	4.1	0.4	3.3	3.6
1	4.9	5.7	0.5	0.8	0.3	0.0	0.6	2.6
2	60.9	61.0	55.5	19.6	18.9	13.3	5.3	47.9
3	22.7	24.7	27.1	47.4	13.9	21.1	17.1	28.1
4	7.1	4.4	11.6	25.6	57.1	41.0	48.2	15.4
5	0.5	0.4	0.3	0.6	2.8	12.5	12.1	0.9
6+	0.2	0.0	0.2	0.5	0.4	8.9	11.3	0.5
Non-numeric responses	1.0	1.3	0.4	0.6	2.5	2.8	2.0	0.9
Total	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Number of women	2,688	713	2,125	1,405	429	157	67	7,584
Mean ideal number children for: ${ }^{2}$								
All women	2.3	2.2	2.4	2.9	3.3	3.8	4.0	2.6
Number	2,662	704	2,116	1,397	418	153	65	7,515
Currently married women	2.5	2.3	2.4	2.9	3.3	3.8	4.0	2.7
Number	297	645	2,044	1,357	408	146	58	4,955
MEN ${ }^{3}$								
0	1.4	0.5	1.0	1.5	0.0	4.9	(0.0)	1.2
1	4.5	9.5	1.2	1.1	0.0	0.0	(0.0)	3.3
2	51.7	59.8	61.5	12.7	9.7	6.0	(19.0)	45.9
3	29.0	20.9	26.8	60.7	28.0	42.9	(14.9)	32.8
4	7.6	6.6	6.1	17.3	50.6	15.9	(29.0)	10.7
5	2.4	0.5	1.0	1.6	1.5	17.1	(14.2)	2.1
6+	0.6	0.0	0.5	2.0	1.6	13.1	(22.9)	1.1
Non-numeric responses	2.9	2.1	1.8	3.1	8.5	0.0	(0.0)	2.8
Total	100.0	100.0	100.0	100.0	100.0	100.0	100.0)	100.0
Number of men	1,394	230	728	467	125	45	24	3,013
Mean ideal number children for: ${ }^{2}$								
All men	2.5	2.3	2.4	3.1	3.6	3.9	(4.1)	2.6
Number	1,354	225	715	453	115	45	24	2,930
Currently married men	2.4	2.3	2.4	3.1	3.6	3.9	(4.1)	2.7
Number	93	220	712	450	113	45	24	1,657

[^17]In general, men want slightly more children than women; 46 percent of men consider two children to be the ideal (compared with 48 percent of women), and 33 percent say that three children is the ideal number (compared with 28 percent of women). Overall, the mean ideal number of children among all men age $15-49$ is 2.6 children, and among married men it is 2.7 children. The overall means for all women and currently married women are the same as those of their male counterparts.

Table 7.5 shows the mean ideal number of children by background characteristics for all women and men age 15-49. The mean ideal number of children among both women and men increases with age. For example, women age 15-19 want 2.3 children and women age $45-49$ want 2.9 children. Among men, the differential is less pronounced; men age $15-19$ want 2.5 children and men age 45-49 want 2.8 children. The mean ideal number of children is slightly lower among respondents in urban areas than among those in rural areas. The mean ideal number of children is lowest in Urban Tirana (2.1 for women and 2.4 for men) and highest in the Mountain region (2.8 for women and 3.0 for men). By education and wealth status, the mean ideal number of children is lowest among women and men with university or higher education and among those in households in the highest wealth quintile.

Table 7.5 Mean ideal number of children				
Mean ideal number of children for all women and all men age $15-49$ by background characteristics, Albania 2008-09				
	Women		Men	
Background characteristic	Mean ideal number of children	Number of women ${ }^{1}$	Mean ideal number of children	Number of men ${ }^{1}$
Age				
15-19	2.3	1,468	2.5	642
20-24	2.4	957	2.5	389
25-29	2.4	841	2.7	264
30-34	2.5	860	2.5	266
35-39	2.6	1,090	2.7	360
40-44	2.8	1,219	2.8	490
45-49	2.9	1,080	2.8	519
Residence				
Urban	2.4	3,352	2.5	1,368
Rural	2.7	4,162	2.8	1,562
Region				
Coastal	2.6	2,124	2.7	778
Central	2.6	3,440	2.6	1,395
Mountain	2.8	772	3.0	269
Urban Tirana	2.1	1,179	2.4	487
Education				
No education/Primary 4-year	2.5	127	3.3	50
Primary 8-year	2.7	3,673	2.8	1,142
Secondary, professional, technical	2.5	2,716	2.6	1,379
University+	2.3	998	2.4	358
Wealth quintile				
Lowest	2.7	1,501	3.0	455
Second	2.7	1,474	2.7	574
Middle	2.6	1,522	2.6	646
Fourth	2.4	1,459	2.5	611
Highest	2.3	1,559	2.4	644
Total	2.6	7,515	2.6	2,930
${ }^{1}$ Number of women/men who gave a numeric response				

7.4 Wanted and Unwanted Fertility

In the 2008-09 ADHS, women were asked a series of questions to determine the planning status of each of their children born in the five years preceding the survey, as well as any current pregnancy. The questions were designed to determine whether the pregnancy was wanted then (planned), wanted later (mistimed), or not wanted (unplanned).

Information collected on planning status of births can lead to underestimates of unplanned births because women may retrospectively declare an unwanted pregnancy as planned, once the child is born. Another way of measuring unwanted fertility utilizes the information on ideal family size to calculate what the total (wanted) fertility rate would be if all unwanted births were avoided. This approach can lead to the same problem of underestimation of unplanned births because some women may be unwilling to report an ideal family size lower than their actual family size. However, estimates obtained using these two approaches indicate at least the minimum levels of unwanted fertility.

7.4.1 Planning Status of Births

Table 7.6 shows the percent distribution of births in the five years preceding the survey (and current pregnancies) by whether the birth was wanted then, wanted later, or not wanted at all. Overall, 88 percent of births were planned (wanted then), 9 percent were mistimed (wanted later), and 4 percent were unplanned (not wanted). Thus, about five out of six births were wanted at the time of conception. The percentage of births considered to be unwanted is highest for births of order four and above, where 17 percent were reported as not wanted at the time of conception. The percentage of births to older women reported as unwanted is substantially higher than the percentage among younger women. For example, 9 percent of births to women age $35-39$ are unwanted, compared with only 1 percent of births to women age 20-24.

Results from the 2002 ARHS suggest that there has been a decrease in the percentage of unwanted births. In 2002, among women age 15-44 whose most recent pregnancy in the five years preceding the survey ended in a live birth, 7 percent were unwanted, compared with 4 percent in 2008-09 ADHS (CDC, IPH, and INSTAT, 2005).

Figure 7.2 Distribution of Births in the Five Years Preceding the Survey by Fertility Planning Status

ADHS 2008-09

7.4.2 Wanted Fertility

Table 7.7 presents wanted fertility rates, which represent the theoretical level of fertility that would result if all unwanted births were prevented. Unwanted births are those that exceed the respondent's ideal number of children. The comparison of observed total fertility rates and wanted fertility rates indicates the extent to which couples successfully control their fertility over a given period.

In Albania, there is little difference between the observed total fertility rate (1.6 children per woman) and the wanted total fertility rate (1.4 children per woman). Similarly, only minor differences exist between actual and wanted fertility rates by background characteristics.

Table 7.7 Wanted fertility rates
Total wanted fertility rates and total fertility rates for the three years preceding the survey, by background characteristics, Albania 2008-09

Background characteristic	Total wanted fertility rate	Total fertility rate
Residence		
Urban	1.2	1.3
Rural	1.5	1.8
Region		
Coastal	1.4	1.7
Central	1.5	1.7
Mountain	1.6	1.9
Urban Tirana	0.9	1.0
Education		
No education/Primary 4-year	*	*
Primary 8-year	1.6	1.9
Secondary, professional, technical	1.3	1.5
University+	(1.1)	(1.1)
Wealth quintile		
Lowest	1.5	1.9
Second	1.4	1.7
Middle	1.5	1.8
Fourth	1.4	1.5
Highest	1.1	1.2
Total	1.4	1.6

Note: Rates are calculated based on births to women age 15-49 in the period 1-36 months preceding the survey. The total fertility rates are the same as those presented in Table 4.2. Figures in parentheses are based on 125-249 unweighted cases. An asterisk indicates that a figure is based on fewer than 125 unweighted cases and has been suppressed.

INFANT AND CHILD MORTALITY

This chapter presents the results of the 2008-09 ADHS on levels and trends in mortality among children under five years. The neonatal, post-neonatal, infant, child, and under-five mortality rates provide information on the levels and trends, and differentials between population groups. Mortality statistics are useful for identifying segments of the population in which children are at high risk, and for designing programmes and interventions to increase their chances of survival. Estimates of infant and child mortality also serve as an essential parameter for population projections, particularly if the level of adult mortality can be inferred with reasonable confidence. Finally, childhood mortality rates are generally regarded as fundamental indicators of a country's socioeconomic level and quality of life.

8.1 Definitions and Methodology

The primary causes of childhood mortality change as children age. A large component of early infant mortality consists of congenital diseases and other biological factors related to conditions in early infancy. Child mortality, on the other hand, is primarily due to environmental causes that are more susceptible to control, such as infectious diseases, malnutrition, and accidents. As under-five mortality declines over time, it is often observed that child mortality declines to a greater degree than infant mortality; this phenomenon is mainly due to improvements in children's environments brought about by public health interventions or general improvements in living standards (Sullivan et al., 1994). In this chapter, age-specific mortality rates are defined as follows:

- Neonatal mortality (NN): the probability of dying within the first month of life;
- Post-neonatal mortality (PNN): the difference between infant and neonatal mortality;
- Infant mortality $\left({ }_{1} q_{0}\right)$: the probability of dying before the first birthday;
- Child mortality $\left({ }_{4} \mathrm{q}_{1}\right)$: the probability of dying between the first and fifth birthdays; and
- Under-five mortality $\left({ }_{5} \mathrm{q}_{0}\right)$: the probability of dying before the fifth birthday.

All rates are expressed per 1,000 live births, except for child mortality, which is expressed as deaths per 1,000 children surviving to age one.

The information needed for the calculation of mortality rates is collected in the section on reproduction in the Women's Questionnaire. Respondents were asked to report all live births. Using the standard international definition, a live birth is defined as any birth, regardless of the pregnancy duration that, after separation from the mother, showed any sign of life, for example, breathing, beating of the heart, or movement of the voluntary muscles (WHO, 1993). For each live birth reported in the birth history, information was collected on the month and year of birth, sex, survival status, and current age at the time of the interview if the child was living, or age at death if the child had died.

Mortality rates for specific periods preceding the survey were calculated using direct estimation techniques. There are several methods that can be used for the direct calculation of infant and child mortality measures, including the period approach, true cohort approach, and synthetic cohort approach. It is beyond the scope of this chapter to describe the differences between the main approaches, but a technical explanation can be found in the Guide to DHS Statistics (Rutstein and Rojas, 2003). DHS uses the synthetic cohort approach, which calculates mortality probabilities for small age segments, and then combines these component probabilities for the full age segment of interest.

8.2 Assessment of Data Quality

The accuracy of mortality estimates calculated from retrospective birth histories depends on a number of factors. These factors include the completeness with which child deaths are reported, the extent to which birth date and/or age at death are accurately reported and recorded (i.e., non-sampling error), and sampling variability of the estimates. The omission of births or deaths is a more serious problem because such omissions affect the mortality estimates. Errors in reporting of birth dates (displacement) may cause a distortion of trends over time, while errors in reporting of age at death can distort the pattern of mortality.

Omission may be caused by the respondent's conscious avoidance of recalling a tragic loss or, because women age 40 and over are asked to report information on births and deaths that occurred as much as 25-30 years in the past, underreporting of deaths occurring during time periods furthest from the survey date may simply be the result of forgetfulness on the part of the respondent. This report focuses on mortality rates for the 15 -year period preceding the survey, thus eliminating estimates for the periods most distant from the survey date, which are susceptible to recall error.

When omission of childhood deaths occurs, the impact is usually most severe for deaths in early infancy. If early neonatal deaths are selectively underreported, the result is an unusually low ratio of deaths occurring within seven days to all neonatal deaths, and an unusually low ratio of neonatal to infant deaths. Hence it is useful to examine these ratios for the 15 -year period prior to the survey.

Appendix C includes a number of tables that allow an assessment of the extent of underreporting of childhood deaths in the 2008-09 ADHS. First, when omission of childhood deaths occurs, the impact is usually most severe for deaths in the neonatal period, i.e., during the first month of life. If neonatal deaths are selectively underreported, the result is an unusually low ratio of neonatal deaths to all infant deaths. Table C. 6 shows that the proportion of neonatal to infant deaths ranges from 72 percent in the period $0-4$ years before the survey to 35 percent in the period 15-19 years before the survey. This pattern conforms well to the expectation that, as childhood mortality levels declined in Albania, deaths became more concentrated at younger ages.

The possibility of underreporting of early neonatal deaths can be further investigated by looking at the ratios of deaths reported during the first week of life to all deaths during the neonatal period. Table C. 5 shows a high proportion of neonatal deaths occurring in the first week of life: 67 percent in the period 0-4 years preceding the survey. Furthermore, it appears that early infant deaths among births that occurred longer before the survey have not been underreported. Almost three in four neonatal deaths in the 20 years preceding the survey were early neonatal deaths, and the levels 10-19 years before the survey are similar to those in the most recent period.

Another factor that may adversely affect childhood mortality estimates is the quality of the information collected on age at death. To minimize errors in reporting of age at death, interviewers were instructed to record age at death in days if the death took place in the month following the birth, in months if the child died before age two, and in years if the child was at least two years of age. They were also asked to probe for deaths reported at one year to determine a more precise age at death in terms of months. The results presented in Table C. 6 show no evidence of heaping of deaths at age 12 months.

Finally, a potential data quality problem involves displacement of birth dates, which can distort mortality trends. This problem may occur if an interviewer knowingly records a birth as occurring in a different year-which might happen if an interviewer is trying to cut down on his or her workload-because live births occurring in 2003 or later were the subject of a lengthy set of additional questions. Appendix Table C. 4 shows some year-of-birth transference for living children from 2003 to 2004 or to earlier years, but little year-of-birth transference for dead children.

8.3 Levels and Trends in Infant and Child Mortality

Table 8.1 presents early childhood mortality rates in Albania for three five-year periods preceding the 2008-09 ADHS. These periods coincide approximately with calendar years 2004-2008, 1999-2003, and 1994-1998. For the most recent five-year period, the level of under-five mortality is 22 deaths per 1,000 births, implying that about 1 in every 45 children born in Albania during that period died before reaching their fifth birthday. However, the infant mortality rate is 18 deaths per 1,000 births, which indicates that most early childhood deaths take place in the first year of life. Looking at the pattern of mortality during the first year of life, almost two-thirds of infant deaths take place in the first month of life; the neonatal and post-neonatal mortality rates are 11 and 7 per 1,000 births, respectively.

Neonatal, post-neonatal, infant, child, and under-five mortality rates for five-year periods preceding the survey, Albania 2008-09					
Years preceding the survey	Neonatal mortality (NN)	Post-neonatal mortality $(\mathrm{PNN})^{1}$	Infant mortality $\left({ }_{1} q_{0}\right)$	Child mortality $\left({ }_{4} q_{1}\right)$	Under-five mortality $\left({ }_{5} \mathrm{q}_{0}\right)$
0-4	11	7	18	4	22
5-9	10	11	20	2	22
10-14	15	20	35	5	39

${ }^{1}$ Computed as the difference between the infant and neonatal mortality rates

Trends in early childhood mortality rates can also be seen in Table 8.1. Infant mortality rates for the periods 1994-1998, 1999-2003, and 2004-2008 are 35, 20 and 18, respectively, while the under-five mortality rates for these periods are 39,22 , and 22 . The findings suggest that infant and under-five mortality have decreased over the period 1994-2008. However, while there was a substantial decline in infant and under-five mortality rates in the period 1994-1998 (35 and 39 deaths per 1,000 births, respectively) compared with the period 1999-2003 (20 and 22 deaths per 1,000 births, respectively), the period 2004-2008 compared with 1999-2003 shows only a small difference in the mortality rates (18 and 22 deaths per 1,000 births, respectively). It should be noted that the decrease in under-five mortality identified between the earlier periods is largely due to a decrease in post-neonatal mortality (from 20 deaths per 1,000 births in 1994-1998 to 7 deaths per 1,000 births in 2004-2008), while neonatal mortality changed little over the same period (15 and 11 deaths per 1,000 , respectively).

Comparing early childhood mortality rates in Albania (according to the results of the 2008-09 ADHS) with the mortality rates of other countries in the Balkan region (for the period 2000-2005) indicates that both infant mortality and under-five mortality are higher in Albania than in neighbouring countries. While the infant mortality rate is 18 deaths per 1,000 births in Albania, it ranges from 4 to 16 deaths per 1,000 births in the other countries ${ }^{1}$. The same pattern is seen for underfive mortality rates; while under-five mortality is 22 deaths per 1,000 births in Albania, it ranges from 5 to 19 deaths per 1,000 births in the other Balkan countries.

Similar results are seen when comparing the 2008-09 ADHS results with the results from other DHS surveys carried out in the region. The infant mortality rate (18 deaths per 1,000 births) and under-five mortality rate (22 deaths per 1,000 births) in Albania are slightly higher than those in Moldova: 13 deaths per 1,000 births and 14 deaths per 1,000 births, respectively (NCPM and ORC

[^18]Macro, 2006) and Ukraine: 14 deaths per 1,000 births and 17 deaths per 1,000 births, respectively (UCSR, SSC, MOH, and Macro International, 2008), but they are lower than those in Armenia: 26 deaths per 1,000 births and 30 deaths per 1,000 births, respectively (NSS, MOH, and ORC Macro, 2006) and Azerbaijan: 43 deaths per 1,000 births and 50 deaths per 1,000 births, respectively (SSC, MOH , and Macro International, 2008).

Estimates of infant and under-five mortality rates are available from three recent nationallevel surveys: the 2005 and 2000 Multiple Indicator Cluster Surveys (MICS), and the 2002 Albanian Reproductive Health Survey (ARHS). The 2002 ARHS estimated infant mortality at 26 deaths per 1,000 births and under-five mortality at 32 deaths per 1,000 births for the ten-year period 1992-2002. The 2005 MICS estimated infant mortality at 18 deaths per 1,000 births and under-five mortality at 19 deaths per 1,000 births for a period centred on 2002. The 2000 MICS estimated infant mortality at 29 deaths per 1,000 births and under-five mortality at 33 deaths per 1,000 births for a period centred on the beginning of 1996 . Figure 8.1 shows the trends in infant mortality based on these sources; all the sources confirm the declining mortality among children less than one year of age.

Information on trends in infant mortality is also available from two sources of administrative data-from the Ministry of Health (MoH) through the health information system and from INSTAT through the registration of births and deaths. The Ministry of Health estimated infant mortality at 12 deaths per 1,000 births in 2007 (Ministry of Health, 2009). INSTAT registration estimated infant mortality at 6 deaths per 1,000 births at about the same time. The difference in infant mortality rates between the two sources appears to be related to differences in the way information was collected, although both sources show the same downward trend in infant mortality. The 2008-09 ADHS results show a somewhat higher level of infant mortality (18 deaths per 1,000 births) than the two administrative sources, however the ADHS estimate has broad confidence intervals around it (see Appendix B).

8.4 Socio-economic Differentials in Childhood Mortality

Mortality differentials by residence, region, mother's education, and wealth status are presented in Table 8.2. To reduce sampling variability and to have a sufficient number of births to examine mortality differentials across sub-groups, rates are presented for the ten-year period preceding the survey (approximately 1999-2008), and education and wealth status categories have been partially collapsed.

As is the case in most countries, mortality rates in infancy and early childhood are higher in rural areas than in urban areas. In Albania, infant mortality in rural areas (24 deaths per 1,000 births) is twice as high as in urban areas (12 deaths per 1,000 births). The same pattern is seen for under-five mortality (28 deaths per 1,000 births in rural areas and 13 deaths per 1,000 births in urban areas).

During the period 1999-2008, infants and children under five years in the Mountain region had the highest mortality rates. It should be noted that the high infant mortality rate in the Mountain region is primarily due to the high level of post-neonatal mortality.

Neonatal, post-neonatal, infant, child, and under-five mortality rates for the 10-year period preceding the survey, by background characteristic, Albania 2008-09					
Background characteristic	Neonatal mortality (NN)	Post-neonatal mortality (PNN ${ }^{1}$	Infant mortality $\left({ }_{1} q_{0}\right)$	Child mortality $\left({ }_{4} q_{1}\right)$	Under-five mortality $\left({ }_{5} \mathrm{q}_{0}\right)$
Residence					
Urban	7	5	12	0	13
Rural	12	11	24	5	28
Region					
Coastal	4	9	13	3	16
Central	14	7	22	3	25
Mountain	18	20	38	4	42
Urban Tirana	*	*	*	*	*
Mother's education					
Primary or less	13	9	21	3	24
Secondary +	6	9	15	3	18
Wealth quintile					
Lowest 60\%	11	10	21	3	24
Highest 40\%	9	6	15	2	17
Note: An asterisk indicates that mortality estimates for Urban Tirana have been suppressed because they were based on just one death among children under five. ${ }^{1}$ Computed as the difference between the infant and neonatal mortality rates					

Higher levels of educational attainment are usually associated with lower mortality rates in early childhood, in part because education exposes women to information about child feeding practices, child illnesses and treatment, and the importance of spacing births. In Albania, the differences in the mortality rates by mother's level of education show that children of mothers with primary education or less are more likely to die before their first or fifth birthday than children of mothers with secondary education or higher.

Mortality estimates by household wealth status show the expected differentials: infant and under-five mortality rates are lowest for children in households in the highest wealth quintiles and highest for those in the lowest wealth quintiles. For example, infant mortality is 21 deaths per 1,000 births in the lowest 60 percent of the population, compared with 15 deaths per 1,000 births in the highest 40 percent of the population. Thus, there are 40 percent more infant deaths in poorer households than in wealthier households.

8.5 Demographic Differentials in Childhood Mortality

Table 8.3 shows the demographic differentials in early childhood mortality rates for sex of child, age of mother at birth, birth order, and previous birth interval. As with the socio-economic differentials presented in Table 8.2, the rates are shown for the 10-year period preceding the survey.

In Albania, as in most populations, there are more deaths among male children than female children in all components of early childhood mortality. The infant mortality rate for boys is 22 deaths per 1,000 births, compared with 15 deaths per 1,000 births for girls. Similarly, the under-five mortality rate for boys is 27 deaths per 1,000 births, compared with 16 deaths per 1,000 births for girls.

Neonatal, post-neonatal, infant, child, and under-five mortality rates for the 10-year period preceding the survey, by demographic characteristics, Albania 2008-09					
Demographic characteristic	Neonatal mortality (NN)	Post-neonatal mortality $(\mathrm{PNN})^{1}$	Infant mortality $\left({ }_{1} q_{0}\right)$	Child mortality $\left({ }_{4} q_{1}\right)$	Under-five mortality $\left({ }_{5} \mathrm{q}_{0}\right)$
Child's sex					
Male	12	11	22	5	27
Female	8	7	15	1	16
Mother's age at birth 10					
<30	10	8	18	3	20
30+	11	12	22	4	26
Birth order					
1	11	5	16	2	18
2-3	10	8	17	3	20
4+	10	24	34	3	38
Previous birth interval ${ }^{2}$					
<2 years	8	36	43	5	48
2 years	6	8	14	2	16
3 years	24	6	30	4	34
$4+$ years	5	4	10	3	13
${ }^{1}$ Computed as the difference between the infant and neonatal mortality rates ${ }^{2}$ Excludes first-order births					

There is a relationship between mother's age at birth and early childhood mortality; children born to mothers age 30 and above are at greater risk of dying than children born to mothers under age 30. It should be noted, however, that the higher rates among children of women age 30 and above are driven by higher post-neonatal mortality; otherwise, there are no differences in mortality by age.

Birth order also shows an association with early childhood mortality; infant mortality is twice as high among children of birth order four or higher (34 deaths per 1,000 births) compared with first born children (16 deaths per 1,000 births). Similarly, under-five mortality rates are markedly higher for children of birth order four or higher (38 deaths per 1,000 births) than for first born children (18 deaths per 1,000 births). Again, the highest rates are driven by post-neonatal mortality (5 deaths per 1,000 births for first born children, compared with 24 deaths per 1,000 births for children of parity four and above).

Table 8.3 shows there is a strong relationship between the length of the previous birth interval and early childhood mortality rates. Among children under five, mortality is higher for children born less than 24 months after a previous birth (48 deaths per 1,000 births), compared with children born after an interval of two or more years-this high mortality rate is driven by the high level of post-neonatal mortality (36 deaths per 1,000 births). The exception to the association between the
length of the birth interval and early childhood mortality rates is the high level of neonatal mortality (24 deaths per 1,000) among children born less than three years after a previous birth; neonatal mortality for the other birth intervals ranges from 5 to 8 deaths per 1,000. The anomaly is probably due to this being a relatively rare event within a small sample.

8.6 Perinatal Mortality

Perinatal mortality rates indicate the level of mortality from the time of prenatal viability (i.e., the late foetal period beginning at 28 weeks of gestation) through labour, delivery, and the early neonatal period (i.e., the first seven days of life). Pregnancies that end without signs of life after the 28th week are referred to as stillbirths. Stillbirths and early neonatal deaths share many of the same underlying causes leading to death (e.g., congenital malformations), and for this reason, these events are aggregated into the perinatal mortality rate.

Information on perinatal mortality from the 2008-09 ADHS is reported for the five-year period preceding the survey (i.e., 2004-2008). It should be noted that data quality is always an issue when considering perinatal mortality rates because both stillbirths and early neonatal deaths are susceptible to underreporting.

Table 8.4 presents perinatal mortality rates per 1,000 pregnancies (of 7 or more month's duration) for all Albania. The overall perinatal mortality rate is 11 deaths per 1,000 pregnancies. This estimate is based on a small number of stillbirths and early neonatal deaths in the sample, and there are too few cases to disaggregate according to background characteristics.

Table 8.4 Perinatal mortality			
Number of stillbirths and early neonatal deaths, and the perinatal mortality rate for the five-year period preceding the survey, by background characteristics, Albania 2008-09			
	Number of Number of early neonatal stillbirths ${ }^{1}$ deaths ${ }^{2}$	Perinatal mortality rate ${ }^{3}$	Number of pregnancies of 7+ months duration
Total	612	11	1,583
${ }^{1}$ Stillbirths are foetal deaths in pregnancies lasting seven or more months. ${ }^{2}$ Early neonatal deaths are deaths at age 0-6 days among live-born children. ${ }^{3}$ The sum of the number of stillbirths and early neonatal deaths divided by the number of pregnancies of seven or more months' duration, expressed per 1000.			

8.7 High-risk Fertility Behaviour

Previous research has shown a strong relationship between women's fertility behaviour and the mortality risks of their children. Typically, mortality risks are greater for children born to mothers who are too young or too old, children born after a short birth interval, and children who are of high birth order. In this analysis, a mother is classified as too young if she is younger than 18 years of age and too old if she is older than 34 years of age. A short birth interval is defined as a birth occurring within 24 months of the previous birth, and a child is of high birth order if the mother has previously given birth to at least three children. First births are also typically associated with higher mortality risks; however, for purposes of this analysis, first births to mothers age 18-34 are considered an unavoidable risk and are shown as a separate risk category.

Recent research has shown that children born 24-35 months after a preceding birth are also at increased risk of dying compared with children born 36 or more months after a preceding birth (Rutstein, 2005; WHO, 2006; Conde-Agudelo et al., 2006). However, to be comparable with tabulations from other countries in the region, in this analysis, children are not considered to be at risk if
they are born 24 or more months after a previous birth and they are second or third births to women age 18-34.

The first column of Table 8.5 shows the distribution of children born in the five years preceding the survey by risk category. Nineteen percent of births are in a single high-risk category while 7 percent are subject to two or more high-risk factors. The most common avoidable risk is a short birth interval (7 percent). For multiple risks, the most common risks are mother's age greater than 34 and more than three births (4 percent of births), as well as a birth interval shorter than 24 months and more than three births (2 percent of births).

The second column of Table 8.5 compares the proportion dead among children in each of the risk categories with the proportion dead among children not in any risk category. Overall, the risk ratio for children in any high-risk category is about 60 percent higher than for children who are not in any high-risk category. The risk ratio is higher for children in two or more high-risk categories (1.95) than for children in a single high-risk category (1.48).

Table 8.5 High-risk fertility behaviour			
Percent distribution of children born in the five years preceding the survey by category of elevated risk of dying and the risk ratio, and percent distribution of currently married women by category of risk if they were to conceive a child at the time of the survey, Albania 2008-09			
	Births in the 5 years preceding the survey		Percentage of currently married women ${ }^{1}$
Risk category	Percentage of births	Risk ratio	
Not in any high-risk category	43.0	1.00	$19.7^{\text {a }}$
Unavoidable risk category			
First-order births between ages 18 and 34 years	31.1	0.94	5.7
Single high-risk category			
Mother's age <18	1.5	*	0.2
Mother's age > 34	4.6	3.20	29.5
Birth interval <24 months	7.4	0.42	4.5
Birth order > 3	5.7	0.92	4.9
Subtotal	19.1	1.48	39.2
Multiple high-risk category			
Age >34 and birth interval <24 months ${ }^{2}$	0.1	*	0.3
Age >34 and birth order >3	4.3	0.22	33.2
Age >34 and birth interval <24 months and birth order >3	0.1	(0.00)	0.4
Birth interval <24 months and birth order >3	2.2	5.57	1.5
Subtotal	6.7	1.95	35.4
In any avoidable high-risk category	25.9	1.60	74.5
Total	100.0	na	100.0
Number of births/women	1,576	na	5,001

Note: Risk ratio is the ratio of the proportion dead among births in a specific high-risk category to the proportion dead among births not in any high-risk category.
Figures in parentheses are based on 25-49 unweighted cases. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
na $=$ Not applicable
${ }^{1}$ Women are assigned to risk categories according to the status they would have at the birth of a child if they were to conceive at the time of the survey: current age less than 17 years and 3 months or older than 34 years and 2 months, latest birth less than 15 months ago, or latest birth being of order 3 or higher.
${ }^{\text {a }}$ Includes sterilized women

Finally, the third column of Table 8.5 looks to the future and addresses the question of how many currently married women have the potential for having a high-risk birth. The results were obtained by simulating the risk category into which a birth to a currently married woman would fall if she were to become pregnant at the time of the survey. For example, a woman who was age 37 at the time of the survey and has had three previous births, the last of which occurred three years earlier, would be classified in the multiple high-risk category for being too old (35 or older) and at risk of having a high-order birth (greater than three). It should be noted that the percentages in the third column represent the hypothetical maximum proportions of women who could potentially have various categories of high-risk births. Based on the hypothetical maximum proportions, only one in five currently married women are not in any high-risk category.

Overall, three-fourths (75 percent) of currently married women have the potential to give birth to a child with an elevated risk of dying. Four in ten women have the potential of having a birth that would fall into a single high-risk category (mainly older maternal age). One-third of married women have the potential for having a birth in a multiple high-risk category (mainly older maternal age and high birth order). However, because some of the women who are potentially at risk are practicing contraception and some have passed menopause and are infecund, it is unlikely that all of these women will actually have high-risk births.

The health and survival of mothers has enormous socio-economic implications and it is one of the top priorities in the area of international development. While access to health care and quality services is important for women's health in general, maternal health care is particularly important for women of childbearing age.

Improving maternal health and reducing maternal mortality have been key concerns of several international summits and conferences since the late 1980s, including the Millennium Summit held in September 2000. One of the eight Millennium Development Goals (MDGs) adopted at the Millennium Summit was improving maternal health (MDG5). Within the MDG monitoring framework, the international community committed itself to reducing the maternal mortality ratio (MMR) by threefourths between 1990 and 2015 (United Nations General Assembly, 2000).

In line with meeting the MDG5 target goal, Albania aims to reduce maternal mortality to 11 deaths per 100,000 live births by the year 2015, which is about half of the level reported in 200122.7 deaths per 100,000 live births (UNDP, 2007).

The following three-pronged strategy is key to meeting the MDG5 target for Albania:

- All women should have access to contraception to avoid unintended pregnancies.
- All pregnant women should have access to skilled care at the time of delivery.
- All pregnant women with complications should have timely access to quality emergency obstetric care.

This chapter presents the findings from the 2008-09 ADHS on several areas of importance to reproductive and maternal health including, antenatal care, assistance at delivery, and postnatal care. These indicators are useful for identifying subgroups of women who do not utilize or receive specific health services. They are also used by policy-makers and programme implementers to develop health policies and to strengthen programmes aimed at improving health service delivery to women and mothers in Albania.

The use of timely and periodic antenatal care (ANC) is essential in identifying pregnancyrelated health risks that may endanger the health of mothers and their newborns and result in perinatal morbidity and mortality. For this reason, antenatal care is identified as a priority in the national health policies of the country. Routine antenatal care in Albania includes periodic medical examination of pregnant women, a series of laboratory tests such as blood and urine tests, screening for sexually transmitted infections, and testing for the Rhesus factor.

In Albania, antenatal care and postnatal care are integrated into the primary health care system, which is organized by prefecture and district. Albanian women have free access to antenatal and postnatal care. In urban areas, antenatal care and postnatal care are offered in the women's consulting centres (konsultore) and in the outpatient centres in maternity hospitals. In rural areas, antenatal and postnatal care is provided by family doctors (general practitioners) and nurse/ midwives in health centres. According to the 2008 annual inventory maintained by the Health Statistics Sector at the Ministry of Health (which has not yet been published), there are a total of 108 women's consulting centres in urban areas and 582 health centres in rural areas

Delivery care in Albania is provided by public maternity hospitals at the district level as well as specialized (tertiary) health care facilities such as the Tirana Obstetric and Gynaecology Hospital.

The 2008-09 ADHS results provide information on the utilization of maternal health services, women's access to services, and quality of services. The findings presented in the following sections are based on live births in the five years preceding the survey.

9.1 Antenatal Care

Although many factors affect overall levels of maternal mortality-socio-economic status, women's education, maternal nutrition, and fertility rates-timely access to skilled health care providers, particularly when complications arise, is often the crucial factor determining the survival of women during pregnancy and at the time of delivery. Quality antenatal care contributes to the prevention of maternal mortality by detecting and managing potential complications and risk factors such as pre-eclampsia, anaemia, and sexually transmitted diseases. Antenatal care also provides the opportunity for women to learn the danger signs of pregnancy complications, to be immunized against tetanus, to learn about infant care, and to be treated for existing conditions, such as anaemia.

Antenatal care is most effective when it is initiated in the early stages of pregnancy, is continued throughout gestation, and is comprehensive. For the optimal health of the mother and child, it is recommended that pregnant women see a health care provider for antenatal care examinations beginning with the first trimester of pregnancy.

The health care that a mother receives from a trained health provider during pregnancy is important for the survival and well-being of both the mother and the child. The 2008-09 ADHS obtained information on a number of aspects of antenatal care including the type of provider, number of ANC visits, stage of pregnancy at the time of the first visit, and number of visits. Information was also collected on the services and information provided during ANC.

9.1.1 Antenatal Care Provider

One way to reduce the morbidity and mortality associated with pregnancy and childbirth is to increase access to skilled health care throughout pregnancy, delivery, and early postpartum period (WHO, 2002).

Table 9.1 shows the percent distribution of women who had a live birth in the five years preceding the survey by person who provided antenatal care provider for the most recent pregnancy. The results indicate that almost all pregnant women (97 percent) in Albania receive antenatal care from a skilled provider at least once during their pregnancy. The majority (75 percent) of women received antenatal care from an obstetrician or gynaecologist, 4 percent received antenatal care from a family doctor, and almost one in five (18 percent) received antenatal care from a nurse or midwife. The proportion of women who received antenatal care from a skilled provider does not vary substantially by background characteristics, although the proportion is slightly lower among women age 35-49 (94 percent), those with $4-5$ births (93 percent), women in the Mountain region (92 percent), and women in the lowest wealth quintile (93 percent). Three percent of women did not receive any antenatal care for their most recent birth in the past five years.

ANC coverage has increased substantially in recent years, from 81 percent in the 2002 RHS (CDC, IPH, and INSTAT, 2005) to 97 percent in the 2005 MICS (INSTAT, 2008) and in the 2008-09 ADHS.

Compared with estimates from recent DHS surveys conducted in other countries in Eastern Europe and the Caucasus, Albania is among those with the highest coverage for antenatal care from a trained provider. ANC coverage was 75 percent in 2006 in Azerbaijan (SSC, MOH, and Macro International, 2008), 94 percent in 2005 in Armenia (NSS, MOH, and ORC Macro, 2006), 98 percent in 2005 in Moldova (NCPM and ORC Macro, 2006), and 99 percent in 2007 in Ukraine (UCSR, SSC, and Macro International, 2008). In the neighbouring countries, 98 percent of mothers received antenatal care from a trained provider in Serbia, 97 percent in Montenegro, and 94 percent in The Former Yugoslav Republic of Macedonia (UNSD, 2009).

Table 9.1 Antenatal care								
Percent distribution of women age 15-49 who had a live birth in the five years preceding the survey by antenatal care (ANC) provider during pregnancy for the most recent birth and the percentage receiving antenatal care from a skilled provider for the most recent birth, according to background characteristics, Albania 2008-09								
	Antenatal care provider					Percentage receiving antenatal care from a skilled Total provider 1		Number of women
Background characteristic	Obstetrician/ gynaecologist	Family doctor	Nurse/ midwife	Other	$\begin{aligned} & \text { No } \\ & \text { one } \end{aligned}$			
Mother's age at birth								
<20	80.5	3.1	13.0	0.0	3.3	100.0	96.7	86
20-34	74.9	4.7	18.2	0.1	2.1	100.0	97.8	1,085
35-49	67.9	2.2	23.8	0.0	6.1	100.0	93.9	139
Birth order								
1	81.4	4.0	13.3	0.0	1.3	100.0	98.7	370
2-3	74.8	4.9	18.1	0.0	2.3	100.0	97.7	762
4-5	57.7	3.0	31.8	0.3	7.1	100.0	92.6	150
6+	(67.9)	(1.6)	(24.5)	(0.0)	(6.0)	(100.0)	(94.0)	27
Residence								
Urban	86.6	5.7	6.8	0.0	0.9	100.0	99.1	520
Rural	66.6	3.4	26.1	0.1	3.8	100.0	96.2	790
Region								
Coastal	75.1	4.1	19.8	0.0	1.0	100.0	99.0	352
Central	73.6	4.8	18.5	0.0	3.1	100.0	96.9	624
Mountain	61.2	1.9	29.4	0.4	7.2	100.0	92.4	157
Urban Tirana	88.7	5.5	5.9	0.0	0.0	100.0	100.0	177
Mother's education								
No education/Primary 4-year	(59.4)	(2.1)	(35.3)	(0.0)	(3.1)	(100.0)	(96.9)	42
Primary 8-year	70.8	4.3	21.5	0.1	3.3	100.0	96.6	797
Secondary, professional, technical	78.5	3.6	16.0	0.0	1.9	100.0	98.1	326
University+	90.4	6.8	2.2	0.0	0.6	100.0	99.4	145
Wealth quintile								
Lowest	59.0	3.7	30.6	0.0	6.7	100.0	93.3	284
Second	67.2	1.7	26.8	0.2	4.1	100.0	95.7	271
Middle	75.5	6.9	16.6	0.0	1.0	100.0	99.0	286
Fourth	85.5	4.2	10.2	0.1	0.0	100.0	99.9	251
Highest	90.0	5.2	4.1	0.0	0.7	100.0	99.3	217
Total	74.5	4.4	18.4	0.0	2.6	100.0	97.3	1,310
Note: If more than one source of antenatal care was mentioned, only the provider with the highest qualifications is considered in this tabulation. Figures in parentheses are based on 25-49 unweighted cases. ${ }^{1}$ Skilled provider includes obstetrician/gynaecologist, family doctor, and nurse, midwife.								

9.1.2 Number and Timing of Antenatal Care Visits

Early examination of pregnant women and the use of educational and preventive measures to avoid possible complications during pregnancy and delivery are elements of quality antenatal care. A successful pregnancy and delivery is most likely when a pregnant woman has her first antenatal care visit during the first trimester, and thereafter has the recommended number of antenatal care visits. For a normal pregnancy, the Albanian Ministry of Health guidelines recommend that women have at least four antenatal care visits, which is in line with WHO guidelines.

Table 9.2 shows the number of antenatal care visits and the timing of the first visit for the most recent pregnancy resulting in a live birth in the five years preceding the survey. Sixty-seven percent of women had the recommended number of ANC visits (4 or more) during pregnancy. The percentage of women who had four or more ANC visits is substantially lower in rural areas than in urban areas (57 percent compared with 82 percent).

Almost eight in ten women (78 percent) had their first ANC visit during the first trimester; the proportion is higher in urban areas (85 percent) than in rural areas (73 percent). The median gestational age at the time of the first ANC visit was 3.1 months.

The percentage of women receiving antenatal care in the first trimester has increased substantially since 2002, from 59 percent as reported in the 2002 RHS (CDC, IPH, and INSTAT, 2005) to 78 percent in 2008-09 ADHS.

9.1.3 Components of Antenatal Care

The components of care provided to pregnant women during antenatal care are an indicator of the quality of ANC services. In Albania, services provided during the antenatal visit include measuring the woman's weight, taking her blood pressure, taking urine and blood samples, performing an ultrasound, and providing iron and folic acid supplements. Pregnant women suffering certain pathologies or who are exposed to higher risks of pregnancy complications undergo additional tests and examinations. Another important component of antenatal care is the provision of educational information about the normal evolution of a pregnancy and signs of complications.

Table 9.3 shows for women who received antenatal care for the most recent live birth in the five years preceding the survey, the percentage who were informed about the signs of pregnancy complications, the percentage who had basic tests performed, and the percentage who received iron and folic acid supplements and intestinal parasite drugs.

Iron deficiency in pregnant women increases the risk of maternal death, prenatal and perinatal infant loss, and premature birth. Favourable pregnancy outcomes occur 30-45 percent less often in anaemic mothers, and their infants have less than half the normal iron reserves (Macgregor, 1963). Over the past two decades, the importance of iron deficiency and anaemia as a public health problem has been increasingly recognized by health authorities and policy-makers around the world. Taking iron supplements during pregnancy is an efficient way to prevent iron deficient anaemia. In addition, taking folic acid during pregnancy is an important way to protect the foetus against congenital
anomalies, such as spina bifida. In Albania, iron and folic acid are prescribed by the ANC provider and reimbursed by health care insurance. The 2008-09 ADHS results show that the prevalence of anaemia among pregnant women is 12 percent (see Chapter 11).

Table 9.3 shows that about one-third (34 percent) of pregnant women receive iron supplements, with coverage varying by background characteristics. Older women, age 35-49 at the time of the birth (25 percent), women with a fourth- or fifth-order birth (18 percent), women in rural areas (27 percent), and women in the Mountain region (20 percent) are less likely than other women to receive iron during pregnancy. The percentage of women who receive iron during pregnancy increases with level of education and wealth status. For example, the percentage of women taking iron supplements ranges from 21 percent among women with no education or with primary 4 -year education to 56 percent among women with university or higher education. Likewise, women in the lowest wealth quintile are the least likely to receive iron during pregnancy (21 percent), while women in the highest wealth quintile are the most likely to receive iron (55 percent).

Table 9.3 Components of antenatal care
Among women age 15-49 with a live birth in the five years preceding the survey, the percentage who took iron tablets or syrup and drugs for intestinal parasites during the pregnancy for the most recent birth, and among women receiving antenatal care (ANC) for the most recent live birth in the five years preceding the survey, the percentage receiving specific ANC services, by background characteristics, Albania 2008-09

Background characteristic	Among women with a live birth in the past five years, the percentage who during the pregnancy for their last birth:			Among women who received antenatal care for their most recent birth in the past five years, the percentage who received specific ANC services:						
	Took iron tablets or syrup	Took intestinal parasite drugs	Number of women with a live birth in the past five years	Informed of signs of pregnancy complications	Weighed	Blood pressure measured	Urine sample taken	Blood sample taken	Had ultrasound exam	Number of women with ANC for their most recent birth
Mother's age at birth										
<20	38.3	3.1	86	48.4	81.5	86.0	87.6	87.1	95.7	83
20-34	34.9	2.5	1,085	48.7	80.9	91.2	88.9	87.7	95.2	1,062
35-49	24.6	1.9	139	45.3	76.0	90.5	83.3	84.7	93.1	130
Birth order										
1	43.3	3.0	370	52.1	87.3	93.0	93.2	93.5	98.3	365
2-3	33.6	2.4	762	48.2	80.0	91.5	88.9	88.2	95.1	745
4-5	17.7	1.6	150	42.5	68.5	85.1	77.2	72.5	88.8	140
6+	(12.8)	(1.3)	27	(29.7)	(60.1)	(70.0)	(58.3)	(55.4)	(77.1)	26
Residence										
Urban	45.0	2.3	520	62.7	93.6	96.7	97.5	96.9	98.3	515
Rural	26.9	2.5	790	38.6	71.5	86.8	82.0	80.9	92.7	760
Region										
Coastal	33.5	2.7	352	41.5	84.2	90.7	89.1	88.5	97.1	348
Central	32.7	2.6	624	49.1	77.8	90.6	88.6	86.8	94.9	605
Mountain	19.6	2.5	157	32.5	62.3	81.7	71.2	71.3	88.8	146
Urban Tirana	52.9	1.2	177	72.0	96.8	99.2	99.6	100.0	96.3	177
Mother's education										
No education/										
Primary 4-year	(21.4)	(1.8)	42	(33.8)	(45.2)	(84.1)	(80.8)	(80.8)	(91.9)	41
Primary 8-year	28.0	2.6	797	41.0	77.2	87.8	84.4	83.2	93.8	771
Secondary,professional,technical										
University+	55.5	1.3	145	62.9	93.2	97.5	98.1	98.2	99.7	144
Wealth quintile										
Lowest	21.2	2.6	284	35.9	64.8	83.0	76.0	76.9	87.2	265
Second	22.9	1.7	271	37.8	64.8	83.4	79.6	76.8	91.4	260
Middle	33.3	3.9	286	47.8	85.0	93.0	91.6	90.3	99.5	283
Fourth	43.2	2.9	251	51.5	94.7	96.6	97.8	96.3	98.4	251
Highest	55.3	0.8	217	73.1	95.8	99.6	98.2	98.6	98.8	216
Total	34.1	2.5	1,310	48.3	80.4	90.8	88.3	87.3	95.0	1,275

Note: Figures in parentheses are based on 25-49 unweighted cases.

The administration of intestinal anti-parasitic drugs is substantially less common than the administration of iron supplementation during antenatal care. Only 3 percent of women received drugs to combat intestinal parasites during their last pregnancy, with slight variation by background characteristics.

About half (48 percent) of pregnant women receiving antenatal care were informed about the signs of pregnancy complications. Older women and woman with a higher birth order are less likely than other women to be informed about the signs of pregnancy complications. Women in urban areas (63 percent) are much more likely than women in rural areas (39 percent) to be informed of the signs of pregnancy complications. Seventy-two percent of women in Urban Tirana were informed about the signs of pregnancy complications, compared with 33 percent of women in the Mountain region. The percentage of women informed about the signs of pregnancy complications increases with level of education and wealth status. Eight in ten pregnant women were weighed, while about nine in ten (or more) women underwent other basic tests; 91 percent of women had their blood pressure measured, 88 percent had a urine sample taken, 87 percent of women had a blood sample taken, and 95 percent had an ultrasound examination.

There is substantial variation in the percentage of pregnant women who underwent basic tests and measurements by background characteristics. Overall, the individual percentages are lower for older women, women with higher order births, women in rural areas, and women in the Mountain region. The percentage of pregnant women who underwent basic antenatal tests and measurements increases with level of education and wealth status.

Comparison of the results of the 2008-09 ADHS and the results of the 2002 RHS shows an increase in the percentage of pregnant women receiving iron supplementation and an increase in the percentage undergoing basic tests and measurements during antenatal care (CDC, IPH, and INSTAT, 2005).

9.1.4 Tetanus Toxoid Immunization

Tetanus is an infectious disease caused by the anaerobe bacteria Clostridium tetani, which is frequently found in soil containing animal faeces. These bacteria grow in dead tissues such as in wounds or in a newborn's navel after the umbilical cord has been cut. A newborn may become infected with tetanus if the knife, blade, or other instrument used to cut the umbilical cord is contaminated. Almost all children who contract tetanus die. Women may also be exposed to tetanus disease from a postnatal uterus infection.

Since 2000, there have not been any recorded cases of tetanus reported by IPH in Albania. Newborn tetanus disease was eliminated in the country decades ago, thanks to the universal immunization of children and pregnant woman with tetanus toxoid, and to virtually all women delivering in a medical facility. Administering a tetanus toxoid (TT) vaccination to women before or during pregnancy represents one of the most efficient means of preventing neonatal tetanus, particularly in settings where the deliveries occur outside a health facility.

If a pregnant woman has not previously been vaccinated against tetanus, the World Health Organization (WHO) recommends two doses of vaccine during pregnancy to assure effective protection for the mother and child. If the pregnant woman has received only two TT doses prior to her pregnancy, another dose of the vaccine should be administered. In general, to assure sustainable protection against tetanus throughout life, at least five doses of the vaccine are recommended (WHO, 2002).

According to the requirements of the Albania National Immunization Programme, all pregnant women, even if they were vaccinated against tetanus earlier, should receive two doses of tetanus toxoid during the current pregnancy. According to the most recent information from WHO and UNICEF, almost all children in Albania (99 percent) are protected against tetanus because of
proper vaccinations, and around nine in ten (87 percent) births are protected against tetanus by TT immunizations received by the mother throughout her life (WHO/UNICEF, 2009).

To estimate tetanus vaccine coverage during pregnancy, the 2008-09 ADHS asked women who had a live birth in the five years preceding the survey about the number of tetanus vaccinations they had received in their lifetime. The estimated prevalence may underestimate the actual level of protection against tetanus because some women may have difficulty recalling the number of doses received in their lifetime, particularly the doses received during childhood.

Table 9.4 shows that 63 percent of mothers reported receiving two or more injections against tetanus during their last pregnancy. The percentage of women whose last birth was protected against neonatal tetanus is higher, 68 percent, because some women received TT injections prior to their most recent pregnancy and were already protected. Younger women under age 20 and those with a low order births are somewhat more likely than other women to receive two or more TT injections during their last pregnancy or to have their last birth protected against neonatal tetanus. Furthermore, women in urban areas and in the Coastal region, those with university or higher education, and women in the fourth and fifth wealth quintiles are more likely to have received two or more TT injections during the last pregnancy or to have their last birth protected against neonatal tetanus.

The percentage of women who received two or more TT injections during their last pregnancy increased from 47 percent ${ }^{1}$ in the 2005 MICS (INSTAT, 2008) to 63 percent in the 2008-09 ADHS.

Table 9.4 Tetanus toxoid injections
Among women age 15-49 with a live birth in the five years preceding the survey, the percentage receiving two or more tetanus toxoid injections (TTI) during the pregnancy for the last live birth and the percentage whose last live birth was protected against neonatal tetanus, by background characteristics, Albania 2008-09

Background characteristic	Percentage receiving two or more TT injections during last pregnancy	Percentage whose last birth was protected against neonatal tetanus ${ }^{1}$	Number of mothers
Mother's age at birth			
<20	75.1	79.2	86
20-34	61.5	66.2	1,085
35-49	67.8	70.5	139
Birth order			
1	64.9	70.2	370
2-3	64.5	68.0	762
4-5	55.7	61.8	150
6+	(39.4)	(47.0)	27
Residence			
Urban	68.9	71.4	520
Rural	59.2	64.9	790
Region			
Coastal	74.5	76.7	352
Central	58.4	64.4	624
Mountain	56.3	59.6	157
Urban Tirana	63.0	67.0	177
Mother's education			
No education/Primary 4-year	(42.0)	(44.5)	42
Primary 8-year	61.4	66.8	797
Secondary, professional, technical	66.0	68.2	326
University+	71.7	76.3	145
Wealth quintile			
Lowest	57.4	61.0	284
Second	60.1	65.2	271
Middle	61.3	67.0	286
Fourth	70.4	74.6	251
Highest	68.0	71.3	217
Total	63.1	67.5	1,310

Note: Figures in parentheses are based on 25-49 unweighted cases. ${ }^{1}$ Includes mothers with two TT injections during the pregnancy for the last birth, or two or more injections (the last within 3 years of the last live birth), or three or more injections (the last within 5 years of the last birth), or four or more injections (the last within 10 years of the last live birth), or five or more injections prior to the last birth.

9.2 Delivery Care

Adequate care during delivery-including accurate and speedy diagnosis and treatment of complications, and the use of technologically advanced procedures and proper hygienic conditions during delivery-can reduce the risk of complications and infections that may cause the death or serious illness of the mother and/or infant. Additionally, the provision of delivery assistance by a skilled provider can greatly improve the delivery outcome for mother and child.

According to WHO recommendations, labour and delivery should be supervised by health personnel with the midwifery skills to safely handle a normal delivery, and who are able to recognize

[^19]the onset of complications that require referral to emergency care. Women are most in need of skilled care during delivery and the immediate postpartum period, when about three-fourths of all maternal deaths occur (WHO, 2002).

The Albanian Ministry of Health recommends that all births take place in health facilities where adequately trained personnel can monitor the progress of labour and delivery. The 2008-09 ADHS collected information on the place of delivery and the person providing delivery assistance for all live births in the five years preceding the survey.

9.2.1 Place of Delivery

Table 9.5 shows that 97 percent of deliveries in the five years preceding the survey took place in a health facility. The overwhelming majority of deliveries are in public health facilities (97 percent), with less than 1 percent taking place in private facilities. Three percent of deliveries take place at home.

Table 9.5 Place of delivery							
Percent distribution of live births in the five years preceding the survey by place of delivery and percentage delivered in a health facility, according to background characteristics, Albania 2008-09							
	Health facility			Other	Total	Percentage delivered in a health facility	Number ofbirths
Background characteristic	Public sector	Private sector	Home				
Mother's age at birth							
<20	96.5	0.0	1.8	1.7	100.0	96.5	115
20-34	96.7	0.2	2.8	0.2	100.0	96.9	1,317
35-49	94.8	0.0	5.2	0.0	100.0	94.8	144
Birth order							
1	97.0	0.4	1.7	0.9	100.0	97.4	525
2-3	97.4	0.1	2.5	0.1	100.0	97.5	856
4-5	92.5	0.0	7.5	0.0	100.0	92.5	167
6+	(85.6)	(0.0)	(14.4)	(0.0)	(100.0)	(85.6)	28
Residence							
Urban	98.6	0.5	0.2	0.7	100.0	99.1	609
Rural	95.2	0.0	4.7	0.1	100.0	95.2	967
Region							
Coastal	98.4	0.3	1.1	0.3	100.0	98.7	435
Central	95.1	0.0	4.4	0.5	100.0	95.1	741
Mountain	95.2	0.0	4.8	0.0	100.0	95.2	193
Urban Tirana	98.9	0.9	0.0	0.2	100.0	99.8	207
Mother's education							
No education/Primary 4-year	93.6	0.0	6.4	0.0	100.0	93.6	54
Primary 8-year	95.3	0.0	4.3	0.4	100.0	95.3	988
Secondary, professional, technical	99.5	0.3	0.1	0.0	100.0	99.9	372
University+	98.0	1.1	0.0	0.9	100.0	99.1	163
Antenatal care visits ${ }^{1}$							
None	(85.1)	(0.0)	(14.9)	(0.0)	(100.0)	(85.1)	34
1-3	94.6	0.0	5.4	0.0	100.0	94.6	393
4+	98.3	0.1	1.1	0.5	100.0	98.4	875
Don't know	*	*	*	*	*	*	7
Wealth quintile							
Lowest	89.9	0.0	10.1	0.0	100.0	89.9	353
Second	97.7	0.0	1.9	0.4	100.0	97.7	322
Middle	98.2	0.0	1.3	0.5	100.0	98.2	351
Fourth	99.1	0.4	0.0	0.6	100.0	99.4	298
Highest	98.9	0.7	0.2	0.2	100.0	99.6	252
Total	96.5	0.2	3.0	0.3	100.0	96.7	1,576

Note: Figures in parentheses are based on 25-49 unweighted cases. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
${ }^{1}$ Includes only the most recent birth in the five years preceding the survey.

Older women (above age 35), those with higher-order births, women in rural areas, and women in the Central and Mountain regions are less likely to deliver in a health facility than other women. The percentage of women who deliver in a health facility increases with level of education and wealth status.

The proportion of women delivering in a health facility has increased from 94 percent in the 2002 RHS (CDC, IPH, and INSTAT, 2005) to 98 percent in the 2005 MICS (INSTAT, 2008); it was 97 percent in the 2008-09 ADHS.

9.2.2 Assistance during Delivery

Table 9.6 shows that virtually all deliveries (99 percent) in Albania are attended by a skilled health provider. Eighty-three percent of deliveries are attended by an obstetrician or gynaecologist (OB/GYN), while 15 percent are attended by a nurse or midwife. There are no major variations by background characteristics in the percentage of women who are assisted by a skilled health provider. Looking at the type of provider by background characteristics, women under age 35 and those with lower-order births are more likely to be attended by an OB/GYN during delivery, while older women and those with higher-order births are more likely to be attended by a nurse or midwife.

Eighty-six percent of deliveries that take place in a health facility are attended by an OB/GYN and 14 percent are attended by a nurse or midwife. The opposite is seen for deliveries occurring elsewhere (primarily at home): 70 percent of these deliveries are attended by a nurse or midwife and 10 percent are attended by an OB/GYN. Women in urban areas (94 percent) are more likely to be assisted by an OB/GYN than women in rural areas (76 percent). Conversely, women in rural areas (22 percent) are more likely than women in urban areas (6 percent) to be assisted by a nurse or midwife. By region, the percentage of women assisted at delivery by an OB/GYN ranges from 71 percent in the Mountain region to 94 percent in Urban Tirana. On the other hand, 6 percent of deliveries to women in Urban Tirana are assisted by a nurse or midwife, compared with 28 percent of deliveries to women in the Mountain region. The percentage of women assisted at delivery by an OB/GYN increases with increasing level of education and wealth status; conversely, the percentage assisted by a nurse or midwife decreases with increasing level of education and wealth status.

The percentage of women who were assisted at delivery by a skilled health provider has remained high at 99 percent since the 2005 MICS (INSTAT, 2008).

Estimates from recent Demographic and Health Surveys conducted in countries in Eastern Europe and the Caucasus show that in most countries in the region (except for Azerbaijan), more than 95 percent of women deliver in a health facility and are assisted at delivery by a health professional.

The purpose of performing a caesarean-section delivery is to reduce maternal and perinatal mortality and morbidity. According to the World Health Organization, the caesarean-section delivery rate should account for no less than 5 percent and no more than 15 percent of the total deliveries in a country (UNICEF, WHO, UNFPA, 1997). Table 9.6 shows that 19 percent of births in the five years preceding the survey were delivered by caesarean section (C-section). Caesarean deliveries are more likely to be performed on women age 35-49 (31 percent), women whose most recent birth was their first (21 percent), women in urban areas (23 percent), and women in Urban Tirana (22 percent) and the Coastal region (20 percent). Women with secondary or higher education and those in the two highest wealth quintiles are more likely than other women to have a caesarean section.

The percentage of births delivered by C-section has increased from 13 percent in 2002 (CDC, IPH, and INSTAT, 2005) to the current level of 19 percent in the 2008-09 ADHS.

Table 9.6 Assistance during delivery									
Percent distribution of live births in the five years preceding the survey by person providing assistance during delivery, percentage of births assisted by a skilled provider, and percentage delivered by caesarean-section, according to background characteristics, Albania 2008-09									
Background characteristic	Person providing assistance during delivery						Percentage delivered by a skilled provider ${ }^{1}$	Percentage delivered by C-section	Number of births
	Obstetrician/ gynaecologist	Family doctor	Nurse/ midwife	Relative/ other	No one	Total			
Mother's age at birth									
<20	85.1	0.0	14.4	0.0	0.5	100.0	99.5	12.0	115
20-34	83.4	1.0	14.9	0.7	0.0	100.0	99.3	18.0	1,317
35-49	78.6	0.2	21.0	0.3	0.0	100.0	99.7	30.6	144
Birth order									
1	87.1	0.8	12.0	0.0	0.1	100.0	99.9	20.5	525
2-3	83.6	0.7	14.9	0.8	0.0	100.0	99.2	18.5	856
4-5	68.9	2.3	27.4	1.2	0.2	100.0	98.6	15.2	167
6+	(74.5)	(0.8)	(23.3)	(1.3)	(0.0)	(100.0)	(98.7)	(13.3)	28
Place of delivery									
Health facility	85.5	0.9	13.6	0.0	0.0	100.0	100.0	19.4	1,524
Elsewhere	10.0	0.4	69.8	17.9	1.9	100.0	80.2	0.0	52
Residence									
Urban	93.8	0.6	5.6	0.0	0.1	100.0	99.9	22.7	609
Rural	76.3	1.1	21.6	0.9	0.0	100.0	99.0	16.2	967
Region									
Coastal	84.8	0.4	13.9	0.8	0.0	100.0	99.2	19.6	435
Central	82.1	1.5	15.8	0.6	0.1	100.0	99.3	19.2	741
Mountain	71.3	0.1	27.7	0.7	0.2	100.0	99.1	11.5	193
Urban Tirana	93.6	0.5	5.9	0.0	0.0	100.0	100.0	21.8	207
Mother's education									
No education/Primary 4-year	77.0	0.0	19.3	2.6	1.1	100.0	96.3	1.7	54
Primary 8-year	78.2	1.2	19.8	0.8	0.0	100.0	99.2	16.2	988
Secondary, professional, technical	91.7	0.6	7.6	0.0	0.0	100.0	100.0	25.5	372
University+	94.5	0.0	5.5	0.0	0.0	100.0	100.0	24.5	163
Wealth quintile									
Lowest	67.8	1.3	29.3	1.3	0.3	100.0	98.4	16.0	353
Second	77.0	1.9	20.4	0.8	0.0	100.0	99.2	17.8	322
Middle	84.8	0.5	14.1	0.6	0.0	100.0	99.4	11.5	351
Fourth	95.4	0.5	4.1	0.0	0.0	100.0	100.0	25.4	298
Highest	95.1	0.0	4.9	0.0	0.0	100.0	100.0	26.0	252
Total	83.0	0.9	15.4	0.6	0.1	100.0	99.3	18.7	1,576

Note: Figures in parentheses are based on 25-49 unweighted cases. If the respondent mentioned more than one person attending during delivery, only the most qualified person is considered in this tabulation
${ }^{1}$ Skilled provider includes obstetrician/gynaecologist, family doctor, and nurse/midwife.

9.3 Postnatal Care

The postnatal period is defined as the time between the delivery of the placenta and 42 days after delivery. Postnatal care received from a trained medical provider is a basic component of safe maternity. The postnatal examination plays an important role in assessing the health status of the mother and child, diagnosis and treatment of postnatal complications, and counselling and support regarding care of the infant.

Because research has shown that most maternal and infant deaths occur within the first two days after delivery, postnatal care should be provided as soon as possible after birth, within this critical period. To evaluate the extent to which postnatal care is utilized, the 2008-09 ADHS asked women who had a live birth in the five years preceding the survey whether they had received a checkup after their last birth, and the timing of the check-up.

Table 9.7 shows that most women receive a medical examination shortly after delivery, with 88 percent of all women with a birth in the past five years receiving a postnatal check-up. Fifty-nine percent received a medical check-up less than four hours after delivery, 13 percent received a checkup within the first day, 12 percent received a check-up within the first two days, and 4 percent received a check-up 3-41 days after the birth.

Overall, 12 percent of women with a live birth in the five years preceding the survey did not receive any sort of check-up during the postnatal period following the last live birth. The proportion of women not receiving a check-up following delivery varies little by age but increases with birth order. Additionally, women in rural areas are much more likely than women in urban areas to not receive a postnatal check-up (15 percent compared with 7 percent). There is an inverse relationship between not receiving a postnatal check-up and level of education and wealth status. For example, 22 percent of women with no education or with primary 4-year education did not receive a postnatal check-up, and the proportion declines to 1 percent among women with university or higher education. Similarly, while 17-18 percent of women in the two lowest wealth quintiles did not receive a postnatal check-up, the proportion declines to 3 percent among women in the highest wealth quintile.

Table 9.7 Timing of first postnatal check-up								
Among women giving birth in the five years preceding the survey, the percent distribution of the mother's first postnatal checkup for the last live birth by time after delivery, according to background characteristics,, Albania 2008-09								
	Time after delivery of mother's first postnatal check-up					$\begin{gathered} \text { No } \\ \text { check-up }{ }^{1} \end{gathered}$	Total	Number of women
Background characteristic	$\begin{gathered} \hline \text { Less than } \\ 4 \text { hours } \\ \hline \end{gathered}$	$\begin{gathered} 4-23 \\ \text { hours } \\ \hline \end{gathered}$	2 days	3-41 days	Don't know			
Mother's age at birth								
<20	53.4	16.0	17.7	2.7	0.0	10.2	100.0	86
20-34	59.4	12.6	11.0	3.9	1.2	11.9	100.0	1,085
35-49	60.4	10.8	12.1	4.2	2.6	9.9	100.0	139
Birth order								
1	64.7	11.0	13.2	3.4	1.2	6.5	100.0	370
2-3	57.6	13.9	10.5	4.0	1.4	12.6	100.0	762
4-5	52.3	11.2	13.4	3.8	0.9	18.4	100.0	150
6+	(63.4)	(7.6)	(8.4)	(6.4)	(0.0)	(14.3)	(100.0)	27
Residence								
Urban	63.5	12.6	11.9	3.6	1.6	6.9	100.0	520
Rural	56.3	12.7	11.3	4.1	1.1	14.6	100.0	790
Region								
Coastal	62.2	11.0	6.1	4.8	2.9	13.1	100.0	352
Central	58.2	13.4	11.0	3.8	0.7	12.9	100.0	624
Mountain	62.1	10.1	11.7	1.6	1.7	12.8	100.0	157
Urban Tirana	53.7	15.4	24.2	4.2	0.0	2.6	100.0	177
Education								
No education/ Primary 4-year	(57.5)	(5.7)	(10.4)	(4.2)	(0.0)	(22.2)	(100.0)	42
Primary 8-year	57.7	14.4	10.8	3.1	1.3	12.7	100.0	797
Secondary, professional, technical	60.6	9.4	11.9	5.0	1.2	11.9	100.0	326
University+	64.4	12.1	14.9	5.2	2.0	1.4	100.0	145
Wealth quintile								
Lowest	62.5	11.4	8.1	0.8	0.3	16.9	100.0	284
Second	54.7	7.8	13.2	5.5	1.2	17.6	100.0	271
Middle	54.5	17.1	10.7	5.9	1.6	10.2	100.0	286
Fourth	59.1	16.6	10.4	3.1	2.5	8.3	100.0	251
Highest	66.5	9.7	16.3	4.1	0.9	2.5	100.0	217
Total	59.1	12.6	11.5	3.9	1.3	11.5	100.0	1,310
Note: Figures in parentheses are based on 25-49 unweighted cases. ${ }^{1}$ Includes women who received a check-up after 41 days.								

These has been a substantial increase in the proportion of woman receiving a postnatal checkup, from 19 percent in the 2002 RHS (CDC, IPH, and INSTAT, 2005) to 88 percent in the 2008-09 ADHS.

Table 9.8 shows the distribution of women with a live birth in the five years preceding the survey by the person who provided the first postnatal check-up for the last live birth. This information is important because the skills of the provider are related to their ability to diagnose problems and to recommend appropriate treatment or referral. The majority of women (65 percent) received their first postnatal check-up from an obstetrician or gynaecologist, 22 percent received their first check-up from a nurse or midwife, and 1 percent received their first postnatal check-up from a family doctor. Twelve percent of women did not receive a postnatal check-up for the most recent birth in the past five years. Women with first-order births, women in urban areas, women in Urban Tirana, better educated women, and women in the highest wealth quintile are more likely than other women to receive postnatal care from a skilled provider.

Table 9.8 Type of provider of first postnatal check-up
Percent distribution of women age 15-49 with a live birth in the five years preceding the survey by provider of the first postnatal check-up for the last live birth, according to background characteristics, Albania 2008-09

Background characteristic	Provider of first postnatal check-up						$\begin{gathered} \text { No } \\ \text { check-up }{ }^{1} \end{gathered}$	Total	Number of women
	Obstetrician/ gynaecologist	Family doctor	Nurse/ midwife	Other health worker	Other	Don't know			
Mother's age at birth									
<20	73.6	0.9	15.3	0.0	0.0	0.0	10.2	100.0	86
20-34	64.6	1.1	22.5	0.0	0.0	0.0	11.9	100.0	1,085
35-49	63.4	1.4	25.3	0.0	0.0	0.0	9.9	100.0	139
Birth order									
1	74.2	1.3	18.1	0.0	0.0	0.0	6.5	100.0	370
2-3	64.5	0.9	22.1	0.0	0.0	0.0	12.6	100.0	762
4-5	44.7	1.8	35.1	0.0	0.0	0.0	18.4	100.0	150
6+	(69.1)	(1.0)	(15.6)	(0.0)	(0.0)	(0.0)	(14.3)	(100.0)	27
Residence									
Urban	75.5	0.9	16.7	0.0	0.0	0.0	6.9	100.0	520
Rural	58.2	1.2	26.0	0.0	0.0	0.0	14.6	100.0	790
Region									
Coastal	67.4	0.3	19.3	0.0	0.0	0.0	13.1	100.0	352
Central	62.3	1.4	23.4	0.0	0.0	0.0	12.9	100.0	624
Mountain	55.8	1.4	30.0	0.0	0.0	0.0	12.8	100.0	157
Urban Tirana	78.3	1.5	17.7	0.0	0.0	0.0	2.6	100.0	177
Education									
No education/ Primary 4-year	(38.9)	(0.8)	(38.1)	(0.0)	(0.0)	(0.0)	(22.2)	(100.0)	42
Primary 8-year	62.5	1.6	23.2	0.0	0.0	0.0	12.7	100.0	797
Secondary, professional, technical	65.9	0.4	21.8	0.0	0.0	0.0	11.9	100.0	326
University+	84.7	0.0	13.9	0.0	0.0	0.0	1.4	100.0	145
Wealth quintile									
Lowest	50.5	1.2	31.3	0.0	0.0	0.0	16.9	100.0	284
Second	57.0	0.6	24.9	0.0	0.0	0.0	17.6	100.0	271
Middle	62.5	2.0	25.3	0.0	0.0	0.0	10.2	100.0	286
Fourth	77.1	0.7	13.9	0.0	0.0	0.0	8.3	100.0	251
Highest	83.5	0.8	13.2	0.0	0.0	0.0	2.5	100.0	217
Total	65.0	1.1	22.3	0.0	0.0	0.0	11.5	100.0	1,310

[^20]Children are the country's future. Poor health during childhood can lead to lifelong health problems that limit social and economic opportunities. Investing in children's health is one of the best ways a country can invest in the future.

Improving the health of children, reducing childhood morbidity and mortality, and achieving the Millennium Development Goals (MDGs) are top priorities of the Albanian Ministry of Health. In Albania, health services for children age 0-14 years are free and integrated into all three levels of care: primary, secondary (district hospitals), and tertiary (specialized national hospitals).

In rural areas, primary health care (PHC) services are offered at health centres and health posts, or ambulances, where a general practitioner (or family doctor) and a nurse (or nurse/midwife) work as part of the 'patronazhi' scheme to provide child growth and monitoring and basic immunization services to children in their catchment area. There is one ambulance for each village in Albania. At the commune level (two or more villages), PHC services for children age 0-14 years are offered at the health centres, or qendra shendetesore, that are staffed by a team of family doctors and nurses or nurse/midwives.

At the city level, child growth and monitoring and basic immunization services for children are offered at children's consulting centres, or konsultore, that are part of the city health centres. The children's consulting centres are staffed by paediatricians and nurses. Sick children are diagnosed, treated, and, if necessary, referred at the secondary level, to specialized clinics in the city, otherwise known as policlinics, or poliklinika, that are staffed by specialized doctors and nurses.

The district paediatric wards, which are located in the 35 district hospitals, make up the secondary level of care for children. Services at this level are offered by specialized doctors and nurses. Specialized newborn services are offered at maternity wards in the 35 district hospitals.

The tertiary level of health care for children consists of the Paediatric Hospital in the University Hospital Centre 'Mother Teresa' in Tirana. The Centre for Child Development and Growth, which was founded in 2000 by the Prime Minister's Office, serves as a diagnostic and treatment centre for issues related to child development, as well as a training and research body concerned with child growth and development.

This chapter presents the findings from the 2008-09 ADHS on child health in Albania. Topics discussed include birth weight, immunizations, and common childhood illnesses and their treatment. Combined with information on childhood mortality, these findings can be used to plan interventions designed to improve child health.

10.1 Child's Weight and Size at Birth

Infants with a low birth weight have a higher mortality risk. In the 2008-09 ADHS, all mothers with a live birth in the five years preceding the survey were asked whether their baby was weighed at birth. For infants that were weighed at birth, information was obtained from the mother (maternal recall) or, when available, from health cards present in the home. The mother was also asked for her assessment of the size of the newborn at birth, i.e., whether the baby was very large, larger than average, average, or smaller than average.

Table 10.1 shows that birth weight information was obtained for 98 percent of all live births in the five years preceding the survey. Among children for whom birth weight was reported, 4 percent had a low birth weight (less than 2.5 kg). Low birth weight does not vary much by mother's age at birth or smoking status. First-born children are somewhat more likely to have a low birth weight (5 percent) than higher-order births (1-3 percent). There is some slight regional variation; live births in Urban Tirana and the Coastal regions (5 percent, each) are somewhat more likely to weigh below 2.5 kg than births in the Central and Mountain regions (3 percent, each). The proportion of low birth weight infants decreases as mother's level of education increases. The relationship between low birth weight and wealth status does not show a clear pattern.

Table 10.1 Child's weight and size at birth

Percent distribution of live births in the five years preceding the survey with a reported birth weight by birth weight; percentage of all births with a reported birth weight; and percent distribution of all live births in the five years preceding the survey by mother's estimate of child's size at birth, according to background characteristics and mother's smoking status, Albania 2008-09

Background characteristic	Distribution of births with reported birth weight ${ }^{1}$				Percentage of all births with a reported birth weight ${ }^{1}$	Distribution of births by mother's estimate of size of child at birth					
	$\begin{gathered} \text { Less than } \\ 2.5 \mathrm{~kg} \\ \hline \end{gathered}$	$\begin{gathered} 2.5 \mathrm{~kg} \\ \text { or more } \end{gathered}$	Total	Number of births		Very small	Smaller than average	Average or larger		Total	Number of births
Mother's age at birth											
<20	3.5	96.5	100.0	113	98.4	5.1	2.8	91.5	0.5	100.0	115
20-34	3.6	96.4	100.0	1,292	98.1	1.2	6.8	91.4	0.7	100.0	1,317
35-49	2.8	97.2	100.0	139	96.2	0.9	5.7	93.0	0.4	100.0	144
Birth order											
1	5.1	94.9	100.0	523	99.5	2.2	8.6	88.9	0.3	100.0	525
2-3	3.1	96.9	100.0	838	97.9	1.0	5.3	93.0	0.7	100.0	856
4-5	1.0	99.0	100.0	159	95.5	1.5	4.1	94.4	0.0	100.0	167
6+	(1.6)	(98.4)	(100.0)	23	(85.2)	(1.4)	(11.5)	(76.9)	(10.2)	(100.0)	28
Mother's smoking status											
Smokes cigarettes/ tobacco	(2.1)	(97.9)	(100.0)	41	(99.7)	(0.0)	(8.0)	(90.1)	(1.9)	(100.0)	41
Does not smoke	3.6	96.4	100.0	1,503	97.9	1.5	6.4	91.6	0.6	100.0	1,535
Residence											
Urban	3.9	96.1	100.0	603	99.0	1.9	5.6	92.3	0.2	100.0	609
Rural	3.3	96.7	100.0	941	97.3	1.2	6.9	91.0	0.9	100.0	967
Region											
Coastal	4.7	95.3	100.0	430	98.8	1.4	6.8	91.6	0.2	100.0	435
Central	2.6	97.4	100.0	724	97.7	1.4	6.3	91.2	1.0	100.0	741
Mountain	3.1	96.9	100.0	184	95.3	0.9	5.1	93.2	0.8	100.0	193
Urban Tirana	4.7	95.3	100.0	206	99.6	2.1	7.1	90.8	0.0	100.0	207
Mother's education											
No education/ Primary 4-year	(5.5)	(94.5)	(100.0)	51	94.9	0.0	11.0	86.8	2.3	100.0	54
Primary 8-year	3.9	96.1	100.0	963	97.5	1.6	7.1	90.5	0.9	100.0	988
Secondary, professional, technical	3.1	96.9	100.0	368	99.1	1.5	5.5	93.1	0.0	100.0	372
University+	1.6	98.4	100.0	162	99.2	1.1	3.0	95.9	0.0	100.0	163
Wealth quintile											
Lowest	3.1	96.9	100.0	330	93.3	1.7	6.2	89.4	2.7	100.0	353
Second	5.7	94.3	100.0	321	99.7	1.6	8.0	90.4	0.0	100.0	322
Middle	2.6	97.4	100.0	349	99.3	0.8	6.8	92.4	0.0	100.0	351
Fourth	2.7	97.3	100.0	296	99.3	1.3	5.6	92.9	0.3	100.0	298
Highest	3.5	96.5	100.0	250	98.9	2.0	5.0	93.0	0.0	100.0	252
Total	3.5	96.5	100.0	1,544	98.0	1.4	6.4	91.5	0.7	100.0	1,576

[^21]Only 1 percent of mothers reported that their babies were very small at birth—the proportion is 2 percent or less in most sub-groups-while 6 percent said that their newborns were smaller than average at birth. A larger proportion of births to younger mothers (under age 20) were estimated to be very small, compared with births to older mothers (5 and 1 percent, respectively).

The percentage of newborns with a birth weight of less than 2.5 kg has decreased from 5 percent in the 2002 RHS (CDC, IPH, and INSTAT, 2005) and 7 percent in 2005 (INSTAT, 2008) to 4 percent in the 2008-09 ADHS.

10.2 Vaccination Coverage

Universal immunization against vaccine-preventable diseases is crucial to reducing infant and child mortality. Immunization currently averts an estimated 2.5 million deaths worldwide every year from diphtheria, tetanus, pertussis (whooping cough), and measles (WHO, 2009). Immunization of children with the basic childhood vaccines is one of the most cost-effective health interventions available.

According to the World Health Organization, a child is considered fully vaccinated if he or she has received a BCG vaccination to prevent tuberculosis, three doses of DPT to prevent diphtheria, pertussis, and tetanus, at least three doses of polio vaccine, and one dose of measles vaccine. The vaccination schedule followed by the Albanian National Immunization Programme of the Government of Albania provides all these vaccinations as well as vaccination against hepatitis B (three doses) and against mumps and rubella. The last two are given as one injection of combined measles-mumpsrubella (MMR) vaccine. All vaccinations should be received during the first year of life, except MMR, which is given at the age of one year. Taking into consideration this vaccination schedule, the estimates for full immunization coverage from the 2008-09 ADHS are based on children age 18-29 months, to allow a reasonable time for children to have received the MMR vaccination. In January 2009, the Albanian National Immunization Programme included the pentavalent vaccine, which combines five different vaccines in one injection to protect against five diseases: Haemophilus influenzae type B (Hib) disease, diphtheria, pertussis, tetanus and hepatitis B. Children who receive pentavalent vaccine need to be immunized at age 2,4 , and 6 months; they no longer need to be vaccinated separately with DPT or the hepatitis B vaccine. Because pentavalent vaccine was introduced after the beginning of the ADHS survey, its current use does not affect the information collected on vaccination coverage for children age 18-29 months, who are the focus of this analysis.

Information on vaccination coverage was obtained for all children under five years of age. In Albania, child immunization records are routinely maintained at local health facilities, however vaccination cards and child health books are kept by the child's parent or guardian. Vaccination cards have been in use for many years while child health books were recently introduced in 1998. In the 2008-09 ADHS, information was collected from both sources, as well as the mother's verbal report. All mothers were asked to show the interviewer the vaccination card or child health book used to record the child's immunizations. If the vaccination card or child health book was available, the interviewer copied the immunization dates into the survey questionnaire. If no vaccination card or child health book was available, the interviewer proceeded to ask the mother if the child had received BCG, polio, DPT, hepatitis B, and MMR vaccines, and how many doses were received. After completing the interview in the household and collecting information about the name of the local health facility where the child's immunization records are kept, the field team supervisor visited that health facility to obtain the child's immunization information. The final estimates of vaccination coverage are based on all available sources, with information from the health centre taken as the primary source, supplemented by information from the vaccination card or child health book, and lastly by the mother's report of vaccinations received by the child.

Table 10.2 shows the percentage of children age 18-29 months who have received specific vaccinations by source of information: health facility (vaccination register), interview (vaccination card, child health book, or mother's recall). The 18-29 month age group represents the youngest cohort of children who have reached the age by which they should be fully vaccinated. Overall, 95 percent of children age 18-29 months are fully vaccinated, and less than 1 percent have never received any vaccines. Regarding coverage for specific vaccines, at least 97 percent of children have received the BCG vaccine, all three doses of DPT, polio and hepatitis B vaccines, and measles vaccine. There is a slight decline in the DPT vaccination from 100 percent for the first dose to 99 percent for the second dose, and 98 percent for the third dose, reflecting a small dropout rate of less than 2 percent. (The dropout rate is the proportion of children who received the first dose of a vaccine but did not receive the third dose.) Table 10.2 also shows vaccination coverage by 12 months of age (18 months for measles) for children age 18-29 months. The rates for vaccination by 12 months of age are slightly lower (1 percent or less) than those observed for vaccination at any age, indicating that almost all vaccinations are given within the first year of life, as recommended.

Table 10.2 Vaccinations by source of information
Percentage of children age 18-29 months who received specific vaccines at any time before the survey, by source of information (health facility register, vaccination card, child health book or mother's report), and percentage vaccinated by 12 months of age (18 months of age for measles), Albania 2008-09

Source of information	BCG	DPT			Polio			Hepatitis			Measles ${ }^{1}$	All basic vaccinations ${ }^{1,2}$	No vaccinations	Number of children
		1	2	3	1	2	3	1	2	3				
Vaccinated at any time before survey														
Health facility ${ }^{3}$														
Interview ${ }^{4}$														
Vaccination card	56.2	56.2	55.5	55.5	56.2	55.5	55.5	56.2	56.2	51.2	51.1	51.1	0.0	164
Child health book	10.1	11.5	10.9	10.9	11.5	11.5	11.5	11.5	11.5	11.5	10.2	8.8	0.0	34
Mother's report	26.9	29.4	27.4	19.1	28.3	25.9	19.9	25.9	24.3	18.4	24.3	16.8	2.5	94
Combined sources														
All written sources ${ }^{5}$	96.5	97.1	97.1	97.1	97.1	97.1	97.1	97.1	97.1	97.1	95.3	94.6	0.3	283
All sources ${ }^{6}$	97.9	99.5	98.6	97.6	98.6	98.0	98.0	98.6	98.6	97.6	96.7	95.1	0.5	292
Vaccinated by 12 months of age ${ }^{1}$	96.8	99.1	98.1	97.2	98.1	97.6	97.1	98.1	98.1	97.2	95.7	93.5	0.9	292

Note: The percentages are based on all children age 18-29 months ($\mathrm{N}=292$ children). The other numbers in the last column are the number of children for which information was available in the register, record, or report specified..
${ }^{1}$ For measles vaccine only, received by 18 months of age
${ }^{2}$ BCG, measles, and three doses each of DPT and polio vaccine
${ }^{3}$ Vaccination records for children are generally held at the local health centre.
${ }^{4}$ Information collected during the interview from vaccination card, child health book, or mother's report.
${ }^{5}$ Includes the health centre register, the vaccination card, and the child health book.
${ }^{6}$ Includes the above sources plus the mother's report.
${ }^{7}$ For children whose information was from mothers' reports, the proportion who received specific vaccinations during the first year of life was assumed to be the same as that of children with a written record of vaccinations.

Table 10.3 presents information on vaccine coverage among children age 18-29 months (from health facility records, vaccination cards, child health books, and mothers' reports), by background characteristics. Vaccination cards or child health books were seen by the interviewer for only about seven in ten children (68 percent). However, immunization records at the health facilities were seen for almost all children (96 percent) indicating that a strong immunization programme is in place in Albania.
Table 10.3 Vaccinations by background characteristics
Percentage of children age 18-29 months who received specific vaccines at any time before the survey (according to a health facility record, vaccination card, child health book, or the mother's report), and percentage with a vaccination record seen, by background characteristics, Albania 2008-09

Background characteristic	BCG	1	DPT	3	1	Polio	3	1	$\frac{\text { Hepatiti }}{2}$	3	Measles	All basic vaccinations ${ }^{1}$	No vaccinations	Percentage with a vaccination record seen during interview ${ }^{2}$	Percentage with a vaccination record seen at health facility	Number of children
Sex																
Male	97.9	100.0	97.9	96.9	97.9	97.9	97.9	97.9	97.9	96.9	96.1	95.2	0.0	63.9	94.4	131
Female	98.0	99.2	99.2	98.2	99.2	98.2	98.2	99.2	99.2	98.2	97.2	95.1	0.8	70.9	97.0	160
Birth order																
1	97.1	99.1	97.1	97.1	97.1	97.1	97.1	97.1	97.1	97.1	94.9	94.9	0.9	71.2	94.6	141
2-3	98.5	100.0	100.0	97.8	100.0	98.8	98.8	100.0	100.0	97.8	98.2	94.5	0.0	62.4	96.5	127
4+	(100.0)	(100.0)	(100.0)	(100.0)	(100.0)	(100.0)	(100.0)	(100.0)	(100.0)	(100.0)	(100.0)	(100.0)	(0.0)	(75.5)	(99.1)	24
Residence																
Urban	98.3	100.0	100.0	98.8	100.0	100.0	100.0	100.0	100.0	98.8	100.0	97.1	0.0	71.5	98.6	109
Rural	97.7	99.3	97.7	96.9	97.7	96.9	96.9	97.7	97.7	96.9	94.8	93.9	0.7	65.5	94.1	183
Region																
Coastal	96.2	98.4	98.4	98.4	98.4	98.4	98.4	98.4	98.4	98.4	97.0	94.8	1.6	66.3	96.3	83
Central	98.1	100.0	98.1	96.1	98.1	97.0	97.0	98.1	98.1	96.1	95.2	93.2	0.0	71.6	94.6	145
Mountain	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	0.0	61.6	96.2	34
Urban Tirana	(100.0)	(100.0)	(100.0)	(100.0)	(100.0)	(100.0)	(100.0)	(100.0)	(100.0)	(100.0)	(100.0)	(100.0)	(0.0)	(59.7)	(100.0)	30
Mother's education																
Primary or less	97.1	99.3	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	95.4	94.5	0.7	67.8	96.1	205
Secondary +	100.0	100.0	100.0	96.7	100.0	98.2	98.2	100.0	100.0	96.7	100.0	96.7	0.0	67.5	95.2	87
Wealth quintile																
Lowest	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	0.0	54.7	97.7	64
Second	100.0	100.0	100.0	97.5	100.0	97.5	97.5	100.0	100.0	97.5	96.9	94.4	0.0	70.5	95.4	63
Middle	95.7	98.2	98.2	98.2	98.2	98.2	98.2	98.2	98.2	98.2	93.6	91.1	1.8	79.9	95.0	74
Fourth	94.3	100.0	94.3	94.3	94.3	94.3	94.3	94.3	94.3	94.3	94.3	94.3	0.0	69.3	94.3	49
Highest	(100.0)	(100.0)	(100.0)	(96.9)	(100.0)	(100.0)	(100.0)	(100.0)	(100.0)	(96.9)	(100.0)	(96.9)	(0.0)	(59.8)	(96.9)	42
Total	97.9	99.5	98.6	97.6	98.6	98.0	98.0	98.6	98.6	97.6	96.7	95.1	0.5	67.7	95.8	292

Note: Figures in parentheses are based on 25-49 unweighted cases.
1
${ }^{1}$ BCG, measles, and three doses each of DPT and polio vaccine.
${ }^{2}$ Includes vaccination records from vaccination cards and child health books.

There are no marked differentials in vaccination coverage levels by background characteristics, although children in urban areas are somewhat more likely than children in rural areas to have received all the basic vaccinations (97 and 94 percent, respectively). Children in the Central region (93 percent) and children of mothers with primary or less education (95 percent) have slightly lower coverage rates than other children.

One way of measuring trends in vaccination coverage is to compare coverage among children of different ages in the 2008-09 ADHS. Table 10.4 shows the percentage of children who received vaccinations during the first year of life, by current age. The results show trends in vaccination coverage over the past four years. The percentage of children who received all basic vaccinations by 12 months of age has increased somewhat over the past four years, from 90 percent among children age 42-59 months to 94 percent among children age 18-29 months.

Table 10.4 Vaccinations in first year of life
Percentage of children age 18-59 months at the time of the survey who received specific vaccines by 12 months of age (18 months of age for measles), and percentage with a vaccination record seen, by current age of child, Albania 2008-09

Age in months	BCG	DPT			Polio			Hepatitis			Measles ${ }^{1}$	All basic vaccinations ${ }^{1,2}$	No vaccinations	Percentage with a vaccination record seen during interview ${ }^{3}$	Percentage with a vaccination record seen at health facility	Number of children
		1	2	3	1	2	3	1	2	3						
18-29	96.8	99.1	98.1	97.2	98.1	97.6	97.1	98.1	98.1	97.2	95.7	93.5	0.9	67.7	95.8	292
30-41	97.7	96.8	96.8	95.3	97.1	97.1	95.4	96.6	97.0	95.4	95.7	93.6	2.6	64.8	97.7	305
42-59	96.2	97.0	97.0	96.8	97.4	97.1	96.9	97.1	97.1	96.8	92.0	89.7	1.9	66.1	95.0	540
18-59	96.7	97.5	97.2	96.5	97.5	97.2	96.6	97.2	97.4	96.5	94.0	91.8	1.8	66.2	95.9	1,137

Note: Information was obtained from the vaccination card or, if there was no written record, from the mother. For children whose information was from mothers' reports, the proportion who received specific vaccinations during the first year of life was assumed to be the same as that of children with a written record of vaccinations.
${ }^{1}$ For measles vaccine only, received by 18 months of age
${ }^{2}$ BCG, measles, and three doses each of DPT and polio vaccine
${ }^{3}$ Includes vaccination records from vaccination cards and child health books.

10.3 Acute Respiratory Infections And Fever

Acute respiratory infections (ARI) are one of the main causes of infant mortality. Early diagnosis of ARI by health providers and appropriate treatment of ARI symptoms can reduce deaths among young children and facilitate progress toward Millennium Development Goal 4 (MDG4): Reduction of under-five mortality by two-thirds between 1990 and 2015. Information from the Albanian Ministry of Health and INSTAT indicates that acute respiratory infections are the primary cause of death among children under five in Albania. In 2006, deaths from ARI were responsible for 23 percent of infant deaths and 21 percent of deaths among children under age five (INSTAT, 2007). Since then, infant mortality due to ARI has been reduced by more than half, from 23 to 11 percent, and under-five mortality has declined from 21 to 14 percent, even though ARI still remains the leading cause of death among young children (INSTAT, 2009).

In the 2008-09 ADHS, the prevalence of acute respiratory infections was estimated by asking mothers whether their children under age five had been ill with a cough accompanied by short, rapid breathing that was chest-related in the two weeks preceding the survey. These symptoms are consistent with those of ARI. It should be noted that the morbidity information collected in the survey are subjective, i.e., based on the mother's perception of illness, and without validation by medical personnel. Furthermore, the prevalence of ARI is subject to seasonality; the fieldwork for the 2008-09 ADHS took place from November 2008 through April 2008-09, when ARI rates tend to be high.

Table 10.5 shows that, overall, only a small proportion (5 percent) of children under five had symptoms of ARI in the two weeks preceding the survey. The prevalence of ARI symptoms is somewhat lower among children under age 6 months (4 percent), than among older children (5 to 7 percent). The prevalence of ARI symptoms is slightly higher among boys (6 percent) than girls (5 percent). Children in households that use wood for cooking are twice as likely to experience symptoms of ARI as children in households that use electricity or gas for cooking (8 percent and 4 percent, respectively). Children in the Central region are the most likely to have ARI symptoms (7 percent), while children in Urban Tirana are the least likely (2 percent). The prevalence of ARI symptoms is lowest among children whose mothers have secondary or higher education and highest among children in the highest wealth quintile, compared with other children.

Table 10.5 Prevalence of symptoms of ARI and prevalence and treatment of fever									
Among children under age five, the percentage who had symptoms of acute respiratory infection (ARI) and fever in the two weeks preceding the survey, and among children with fever, the percentage for whom treatment was sought from a health facility or provider, and the percentage who received antibiotic drugs, by background characteristics, Albania 2008-09									
Children under age five				Children under age five with fever					
				Percentage for whom advice or treatment was sought from a health facility or provider ${ }^{2}$	Percentage who received antibiotic drugs	Number of children			
Background characteristic	Percentage with symptoms of ARI ${ }^{1}$	Percentage with fever	Number of children						
Age in months									
<6	3.6	3.3	152	*	*	5			
6-11	7.1	9.2	117	*	*	11			
12-23	5.2	12.0	265	(65.0)	(54.7)	32			
24-35	6.7	8.8	310	(75.6)	(79.1)	27			
36-47	4.8	7.8	326	*	*	25			
48-59	5.2	5.5	380	(67.3)	(57.9)	21			
Sex									
Male	6.2	8.0	783	80.9	66.4	63			
Female	4.6	7.6	767	60.7	49.4	58			
Cooking fuel									
Electricity or gas	3.9	na	na	na	na	na			
Wood ${ }^{3}$	7.7	na	na	na	na	na			
Residence									
Urban	4.6	9.0	600	73.2	64.7	54			
Rural	5.9	7.1	949	69.6	53.1	67			
Region									
Coastal	5.3	12.0	428	(68.4)	(59.7)	52			
Central	6.7	6.8	726	(81.8)	(64.7)	49			
Mountain	4.2	6.2	189	(30.3)	(29.5)	12			
Urban Tirana	2.1	4.3	207	*	*	9			
Mother's education									
Primary or less	5.9	9.0	1,024	70.1	53.8	92			
Secondary +	4.4	5.5	525	(74.7)	(72.5)	29			
Wealth quintile									
Lowest	7.5	8.1	346	(68.9)	(47.1)	28			
Second	4.8	8.7	321	(67.9)	(47.3)	28			
Middle	8.2	9.6	345	(75.9)	(71.0)	33			
Fourth	2.8	6.8	289	*	*	20			
Highest	2.4	5.0	249	*	*	13			
Total	5.4	7.8	1,550	71.2	58.3	121			
Note: Figures in parentheses are based on 25-49 unweighted cases. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed. na $=$ Not applicalbe ${ }^{1}$ Symptoms of ARI (cough accompanied by short, rapid breathing that is chest-related) are considered a proxy for pneumonia. ${ }^{2}$ Excludes pharmacy, shop, and traditional practitioner ${ }^{3}$ Includes 1 household using charcoal									

Among children with ARI, seven in ten were taken to a health facility or provider for advice or treatment, and six in ten received antibiotics (data not shown because of the small number of cases).

The prevalence of ARI among children under five has not changed much since the 2005 MICS (INSTAT, 2008), in which 4 percent of children had ARI symptoms, compared with 5 percent in the 2008-09 ADHS.

Fever is a characteristic symptom of malaria in malaria endemic regions. However, because Albania is not in a malaria endemic region, fever is regarded as a sign of childhood infection rather than malaria. The 2008-09 ADHS asked a number of questions to determine the prevalence and treatment of fever among children under five. Table 10.5 shows the percentage of children under five with fever during the two weeks preceding the survey and the percentage receiving various treatments, by background characteristics. The findings show that 8 percent of children under age five had fever in the two weeks preceding the survey. Prevalence is highest among children age 12-23 months (12 percent) and lowest among those under 6 months (3 percent). Children in urban areas (9 percent), those in the Coastal region (12 percent), children whose mothers have primary or less education (9 percent), and children in households in the three lowest wealth quintiles (8 to 9 percent) are more likely to have had fever in the past two weeks than other children.

Among children with fever, about seven in ten (71 percent) were taken to a health facility or provider for advice or treatment. Female children (61 percent), children in rural areas (70 percent), and those in the Mountain region (30 percent) are less likely than other children to be taken to a health facility or provider for advice or treatment. The relationship between care-seeking behaviours and mother's education or household wealth status could not be determined because of the small number of cases.

About six in ten children with fever (58 percent) received antibiotics. The percentage of children with fever who took antibiotics is lower among female children, children in rural areas, and children in the Mountain region.

10.4 DIARRHOEA

Dehydration caused by severe diarrhoea is a major cause of morbidity among young children and an important cause of infant and child death. Proper case management including oral rehydration therapy, continued feeding, and administration of antibiotics in cases of dysentery-along with promotion of breastfeeding and better weaning practices-are important elements in reducing the burden of diarrhoeal diseases among young children in Albania. Like ARI, diarrhoeal diseases are one of the main causes of death among young children in Albania. In 2007, deaths from diarrhoeal disease accounted for 2 percent of infant deaths and 1 percent of deaths among children under age five (INSTAT, 2009).

In the 2008-09 ADHS, the prevalence of diarrhoea was estimated by asking mothers if their child under age five years had diarrhoea in the two weeks preceding the survey. If the response was 'yes,' the mother was asked if there was any blood in the child's stool. Table 10.6 shows that 5 percent of children under age five had diarrhoea in the two weeks preceding the survey. Less than 1 percent of young children had diarrhoea with blood, a symptom of dysentery.

The age pattern of diarrhoea indicates that prevalence is highest among children under six months (8 percent) and lowest among those age $48-59$ months (2 percent); it is also slightly higher among boys (6 percent) than girls (4 percent). Diarrhoea prevalence is higher among children in households with a non-improved or shared toilet facility (8 percent) than among children in households with an improved, non-shared toilet facility (5 percent). There are no significant differences in the diarrhoea prevalence by urban-rural residence. Diarrhoea is slightly more common in urban areas than rural areas (6 and 5 percent, respectively). Looking at regions, the prevalence of diarrhoea ranges from 3 percent among children in Urban Tirana to 6 percent in the Central and Mountain regions. By level of education, prevalence decreases from 11 percent among children of women with no education or primary 4-year education to 3 percent among those whose mothers have secondary or higher education. By household wealth status, the prevalence of diarrhoea is lowest among children in the two highest wealth quintiles (3 to 4 percent).

Overall, the prevalence of diarrhoea among children under five has decreased from 7 percent in the 2005 MICS (INSTAT, 2008) to 5 percent in the 2008-09 ADHS.

In the 2008-09 ADHS, in cases where mothers reported that their children under five had had diarrhoea in the past two weeks, the mothers were asked what they did to treat the illness. Table 10.7 shows the percentage of children with diarrhoea who received specific treatments, by background characteristics. Six in ten children with diarrhoea (61 percent) were taken to a health care facility or provider for advice or treatment. Older children and boys are more likely than other children to be taken to a health facility or provider for advice or treatment when they have diarrhoea.

The prompt increase of a child's fluid intake is a simple and effective intervention to prevent diarrhoea from becoming a life-threatening illness. Table 10.7 provides information on oral rehydration therapy (ORT) among children who had diarrhoea in the past two weeks. The results show that more than two-thirds (68 percent) of children with diarrhoea received ORT, and threefourths (75 percent) of children with diarrhoea received ORT or increased fluids. Fifty-four percent were treated with a solution prepared from packets of oral rehydration salts (ORS); 31 percent were given recommended home fluids (RHF), and 37 percent received increased fluids. About four in ten (39 percent) children with diarrhoea were given antibiotic drugs, about one in ten (11 percent) received home remedies or other treatments, and one in twenty (5 percent) received zinc supplements. Overall, one in six children with diarrhoea (17 percent) did not receive any treatment.

Table 10.7 Diarrhoea treatment
Among children under age five who had diarrhoea in the two weeks preceding the survey, the percentage for whom advice or treatment was sought from a health facility or provider, the percentage given oral rehydration therapy (ORT), the percentage given increased fluids, the percentage given ORT or increased fluids, and the percentage who were given other treatments, by background characteristics, Albania 2008-09

Background characteristic	Percentage of children with diarrhoea for whom advice or treatment was sought from a health facility or provider ${ }^{1}$	Oral rehydration therapy (ORT)			ORT or Increased increased fluids fluids		Other treatments					No treatment	Number of children with diarrhoea
		ORS packets	Recommended										
		or prepackaged liquid	home fluids (RHF)	$\begin{aligned} & \text { Either } \\ & \text { ORS } \\ & \text { or RHF } \end{aligned}$			Antibiotic drugs	Antimotility drugs	Zinc supplements	Intravenous solution	Home remedy/ other		
Age in months													
0-23	(48.6)	(50.9)	(24.3)	(62.5)	(36.6)	(67.7)	(35.0)	(4.8)	(0.0)	(2.8)	(11.0)	(27.1)	40
24-59	(72.7)	(57.5)	(37.1)	(72.8)	(36.5)	(81.8)	(42.2)	(0.0)	(8.8)	(4.6)	(11.3)	(7.4)	42
Sex													
Male	(63.1)	(57.7)	(18.8)	(63.8)	(42.5)	(75.2)	(41.8)	(3.4)	(7.4)	(6.1)	(13.3)	(14.0)	50
Female	(57.7)	(49.0)	(49.7)	(73.9)	(27.2)	(74.5)	(33.9)	(0.7)	(0.0)	(0.0)	(7.7)	(21.6)	32
Residence													
Urban	(59.6)	(61.9)	(20.4)	(67.6)	(45.0)	(74.5)	(34.7)	(5.0)	(5.3)	(0.0)	(11.2)	(17.3)	34
Rural	(61.9)	(48.9)	(38.2)	(67.8)	(30.6)	(75.2)	(41.6)	(0.5)	(4.0)	(6.3)	(11.1)	(16.8)	48
Total	61.0	54.3	30.8	67.8	36.5	74.9	38.7	2.3	4.5	3.7	11.1	17.0	83

Note: ORT includes solution prepared from oral rehydration salts (ORS), pre-packaged ORS packets, and recommended home fluids (RHF). Figures in parentheses are based on 25-49 unweighted cases.
${ }^{1}$ Excludes pharmacy, shop, and traditional practitioner

In addition to being asked what was done to treat their children under five with diarrhoea, mothers were asked whether they gave these children more or less liquids than usual and more or less food than usual. Table 10.8 shows that for the majority of children under five with diarrhoea in the two weeks preceding the survey, feeding practices were not optimal. First, to prevent dehydration, fluids should be increased during a diarrhoeal episode; however, only 37 percent of children sick with diarrhoea were given more liquids than usual. More than one-third (36 percent) of children received the same amount of fluids as usual, and fluid intake was curtailed in one-fourth (26 percent) of children with diarrhoea, a practice that increases the risk of dehydration.

Table 10.8 Feeding practices during diarrhoea																				
Percent distribution of children under age five who had diarrhoea in the two weeks preceding the survey by amount of liquids and food offered compared with normal prace percentage of children given increased fluids and continued feeding during the diarrhoea episode, and the percentage of children who continued feeding and were given OR increased fluids during the diarrhoea episode, by background characteristics, Albania 2008-09																				
	Amount of liquids offered					Amount of food offered							Total	Percentage Percentage who continued given feeding and increased were given fluids and ORT and/or continued increased feeding ${ }^{1,2}$ fluids 3		Number of children with diarrhoea				
Background characteristic	More	Same as usual	Somewhat less	Much less	None	Total	More	Same as usual	Somewhat less	Much less	None	Never gave food								
Age in months																				
0-23	(36.6)	(44.1)	(13.9)	(5.4)	(0.0)	(100.0)	(19.4)	(42.6)	(15.0)	(14.8)	(0.0)	(8.2)	(100.0)	(25.7)	(55.5)	40				
24-59	(36.5)	(28.8)	(20.9)	(11.6)	(2.3)	(100.0)	(3.6)	(40.3)	(42.8)	(8.5)	(4.8)	(0.0)	(100.0)	(30.4)	(70.8)	42				
Sex																				
Male	(42.5)	(35.0)	(15.7)	(4.8)	(1.9)	(100.0)	(12.3)	(39.2)	(36.9)	(5.8)	(1.9)	(3.8)	(100.0)	(35.2)	(67.2)	50				
Female	(27.2)	(38.2)	(20.3)	(14.4)	(0.0)	(100.0)	(9.7)	(44.8)	(17.5)	(20.6)	(3.3)	(4.2)	(100.0)	(17.0)	(57.4)	32				
Residence																				
Urban	(45.0)	(32.0)	(23.1)	(0.0)	(0.0)	(100.0)	(13.3)	(36.9)	(34.5)	(10.1)	(0.0)	(5.1)	(100.0)	(35.4)	(64.3)	34				
Rural	(30.6)	(39.3)	(13.6)	(14.6)	(2.0)	(100.0)	(9.9)	(44.6)	(25.6)	(12.6)	(4.2)	(3.2)	(100.0)	(22.9)	(62.6)	48				
Total	36.5	36.3	17.5	8.6	1.2	100.0	11.3	41.4	29.3	11.6	2.4	4.0	100.0	28.1	63.3	83				
Note: Figures in parentheses are based on 25-49 unweighted cases. ${ }^{1}$ Equivalent to the UNICEF/WHO Indicator 'Home management of diarrhoea' MICS Indicator 34 ${ }^{2}$ Continued feeding includes children who were given more, same as usual, or somewhat less food during the diarrhoea episode. ${ }^{3}$ Equivalent to UNICEF MICS Indicator 35																				

It is important that children who have diarrhoea receive adequate nutrients. Thus, it is recommended that children continue receiving solid foods when they have diarrhoea. Table 10.8 shows that the majority of children with diarrhoea continued to be fed either the same amount of food as usual (41 percent) or somewhat less food (29 percent) than they received prior to becoming ill and an additional 11 percent were given more food than usual. However, 14 percent of children with diarrhoea either were given much less food than usual or no food at all to eat.

Overall, 63 percent of the children with diarrhoea in the two weeks preceding the survey continued feeding and were given ORT and/or increased fluids.

To ascertain how widespread knowledge of ORS is in Albania, women age 15-49 who gave birth in the five years preceding the survey were asked if they knew about ORS packets or ORS pre-packaged liquids. Table 10.9 shows that a large majority (81 percent) of women who gave birth in the past five years know about ORS packets. Mothers age 25 and older (83 percent) are more likely than younger mothers (73 to 74 percent) to know about ORS. As expected, mothers in rural areas are less likely to know about ORS than those in urban areas (74 and 92 percent, respectively). Among regions, the highest level of knowledge of ORS is among mothers in Tirana (99 percent) and the lowest level is in the Coastal region (77 percent). Knowledge of ORS packets or ORS pre-packaged liquids increases with women's level of education and household wealth status. For example, among women with a birth in the past five years, 73 percent of those with no education or with 4 -year primary education know about ORS, compared with 96 percent of those with a university or higher education. Knowledge of ORS ranges from 70 percent among mothers in the poorest wealth quintile to 94 percent of mothers in the highest wealth quintile.

10.5 Disposal of Stools

If human faeces are left uncontained, disease may spread by direct contact or by animal contact with the faeces. Hence, the proper disposal of children's stools is extremely important in preventing the spread of disease. Table 10.10 shows the distribution of youngest children under age five living with their mother by the manner of disposal of the child's last faecal matter. The stools of 57 percent of children are disposed of safely: 47 percent of children under five use a toilet or latrine, 8 percent of children's stools are disposed of in a toilet or latrine, and 1 percent are buried. The stools of 39 percent of children were thrown into the garbage. It should be noted that the majority of children whose stools were thrown into the garbage were still in diapers, which is not necessarily considered an unsafe manner of stool disposal. However, the garbage collection system has to be in place, functional, and reliable at all times for this method of stool disposal to be considered safe. In Albania,
because these conditions are not always the case, throwing stools into the garbage is not considered a safe disposal method.

The percentage of children whose stools are disposed of safely is somewhat lower in rural areas (56 percent) than in urban areas (59 percent); by region, the percentage ranges from 52 percent in the Central region to 68 percent in Urban Tirana. The impact of mother's education on the manner of disposal of children's stools does not show a clear pattern, but the stools of children in households in the two highest wealth quintiles (59 and 61 percent, respectively) are more likely to be disposed of hygienically than the stools of children in poorer households (55 to 56 percent).

Table 10.10 Disposal of children's stools
Percent distribution of youngest children under age five living with the mother by the manner of disposal of the child's last faecal matter, and percentage of children whose stools were disposed of safely, according to background characteristics, Albania 2008-09

Background characteristic	Manner of disposal of children's stools								Percentage of children whose stools were disposed of safely	Number of children
	Child used toilet or latrine	Put/rinsed into toilet or latrine	Buried	Put/rinsed into drain or ditch	Thrown into garbage	Rinsed away	Other	Total		
Age of child in months										
<6	11.2	8.8	0.4	4.2	70.3	3.9	1.2	100.0	20.4	151
6-11	7.9	7.7	2.2	0.7	81.5	0.0	0.0	100.0	17.8	116
12-23	18.8	6.7	2.2	2.6	67.8	0.2	1.6	100.0	27.7	250
24-35	47.6	13.3	2.4	2.2	31.7	0.7	2.0	100.0	63.3	268
36-47	76.6	6.8	0.8	2.0	12.9	0.3	0.6	100.0	84.2	247
48-59	85.2	6.0	0.2	0.3	7.1	1.1	0.0	100.0	91.4	262
0-35	25.5	9.5	1.9	2.5	58.0	1.1	1.5	100.0	37.0	785
Toilet facility										
Improved, not shared ${ }^{1}$	48.3	7.4	1.3	1.8	39.5	0.6	1.0	100.0	57.1	1,182
Non-improved or shared	37.4	17.1	1.5	3.9	35.0	3.9	1.1	100.0	56.1	112
Residence										
Urban	50.7	7.5	0.4	0.7	40.3	0.0	0.4	100.0	58.6	515
Rural	45.1	8.8	2.0	2.8	38.3	1.5	1.4	100.0	55.9	779
Region										
Coastal	48.6	7.9	0.7	1.0	40.2	0.3	1.4	100.0	57.1	345
Central	43.5	7.0	1.6	3.0	42.6	1.4	1.0	100.0	52.1	618
Mountain	46.7	15.0	2.5	2.5	31.9	1.4	0.0	100.0	64.2	155
Urban Tirana	59.0	7.7	1.0	0.0	31.2	0.0	1.1	100.0	67.7	176

Education

No education/Primary 4-year	(43.1)	(13.6)	(0.5)	0.0	(37.4)	(0.3)	(5.0)	(100.0)	(57.2)	41
Primary 8-year	45.6	8.3	1.6	2.2	40.2	1.1	0.9	100.0	55.5	791
Secondary, professional, technical	53.7	8.9	1.5	1.4	33.7	0.9	0.0	100.0	64.1	317
University+	44.3	5.4	0.0	2.4	45.7	0.0	2.2	100.0	49.7	145
Wealth quintile										
Lowest	42.9	10.1	2.0	4.1	36.6	2.9	1.5	100.0	54.9	280
Second	46.2	9.0	1.0	2.7	38.7	0.4	2.0	100.0	56.2	271
Middle	43.8	8.8	2.6	0.8	43.5	0.1	0.4	100.0	55.2	281
Fourth	52.5	6.1	0.4	0.9	38.7	1.1	0.3	100.0	59.0	246
Highest	53.3	7.0	0.5	1.0	37.7	0.0	0.5	100.0	60.8	217
Total	47.4	8.3	1.4	2.0	39.1	0.9	1.0	100.0	57.0	1,294

[^22]
10.6 Family Support for Learning

The quality of home care plays a major role in early childhood development, especially in the first 3-4 years of life, which is a period of rapid brain development. The World Declaration on the Survival, Protection and Development of Children, agreed upon at the 1990 World Summit for Children, states that the time of childhood should be one of joy and peace, of playing, learning and growing (United Nations, 1990). One of the statements in the 2002 'A World Fit for Children' declaration is that 'children should be physically healthy, mentally alert, emotionally secure, socially competent and ready to learn' (United Nations, 2002). In this context, adult involvement in activities with children, the presence of children's books in the home, and the overall conditions surrounding children in their home are important indicators of their growth and development.

In the 2008-09 ADHS, information was collected on a number of activities that support early learning in young children. Questions were asked on the involvement of adults with children in the following activities: (1) reading books or looking at picture books; (2) telling stories; (3) singing songs; (4) taking children outside the home compound or yard; (5) playing with children; (6) and spending time with children naming, counting, or drawing things.

Table 10.11 shows the percentage of children age $0-59$ months for whom adult household members engaged in activities that promote learning and school readiness during the three days preceding the survey. The results indicate that for about eight in ten children under five (79 percent), an adult was engaged in four or more activities that promote learning and school readiness in the three days preceding the survey. Adult involvement in activities with the children is higher for older children age 24-59 months (88 percent) than for younger children age $0-23$ months (62 percent), and it is higher for girls (81 percent) than for boys (77 percent). Children in rural areas (75 percent) and in the Mountain region (63 percent) are less likely than children in urban areas (86 percent) or in the other regions (78 to 93 percent) to be involved in four or more of the specified activities with an adult in the household. Adult involvement in four or more activities that promote learning and school readiness generally increases with mother's level of education and household wealth status.

Adult involvement in four or more of the specified children's activities increased from 68 percent in the 2005 MICS (INSTAT, 2008) to 79 percent in the 2008-09 ADHS. The average number of activities adults engage in with children is 4.7.

Table 10.11 also presents information on fathers' involvement in children's activities that promote learning and school readiness. The results indicate that for about 59 percent of children, the father engaged in one or more activities that promote learning and school readiness in the three days preceding the survey; the mean number of activities fathers engaged in was 1.6. Father's involvement in one or more activities that promote children's learning and school readiness is lower for younger children age $0-23$ months (54 percent) than for older children age $24-59$ months (62 percent); it is also substantially lower in rural areas (49 percent) than in urban areas (75 percent). By region, the lowest proportion of children whose fathers are involved in activities with them that support learning is in the Mountain region (42 percent), while the highest proportion is in Urban Tirana (83 percent). Father's involvement in one or more activities that promote learning and school readiness with their children increases with mother's level of education and household wealth status.

The percentage of children whose fathers are engaged in one or more activities that promote learning increased from 46 percent in the 2005 MICS (INSTAT, 2008) to 59 percent in the 2008-09 ADHS.

Table 10.11 further shows that 15 percent of children live in households without their natural father present. Children in rural areas are twice as likely as those in urban areas to not have their natural father present in the household (18 percent compared with 9 percent). By region, the percentage of children in households without their natural father ranges from 6 percent in Urban Tirana to 20 percent in the Coastal region. The percentage of children in households without their natural father present decreases substantially as mother's level of education increases, from 25 percent among children of mothers with no education or with 4-year primary education to 5 percent among children of mothers with university or higher education; it is also lowest among children in households in the highest wealth quintile (5 percent).

Table 10.11 Family support for learning

Among children age 0-59 months, the percentage for whom household members engaged in four or more activities that promote learning and school readiness during the three days preceding the survey and mean number of activities engaged in with the child, the percentage for whom the father engaged in one or more activities that promote learning and school readiness during the three days preceding the survey and mean number of activities engaged in with the child, and percentage living in a household without their natural father present, by background characteristics, Albania 2008-09

Background characteristic	Family support for learning among children age 0-59 months					Number of children
	Percentage for whom household members engaged in four or more activities that promote learning and school readiness	Mean number of activities household members engaged in with child	Percentage for whom the father engaged in one or more activities that promote learning and school readiness	Mean number of activities the father engaged in with child	Percentage living in a household without their natural father	
Age in months						
0-23	61.8	4.0	54.0	1.3	13.5	534
24-59	88.0	5.1	61.5	1.8	15.2	1,015
Sex						
Male	77.3	4.7	58.8	1.6	14.3	783
Female	80.6	4.8	59.1	1.6	15.0	767
Residence						
Urban	86.1	5.2	74.6	2.4	8.8	600
Rural	74.5	4.5	49.0	1.1	18.3	949
Region						
Coastal	81.3	4.7	56.8	1.5	20.3	428
Central	77.7	4.7	57.9	1.4	12.9	726
Mountain	63.3	3.9	41.7	0.9	18.6	189
Urban Tirana	92.9	5.6	82.6	3.3	5.5	207
Mother's education						
No education/Primary						
4-year	55.0	3.5	45.0	1.0	24.7	53
Primary 8-year	76.1	4.5	53.1	1.3	16.4	971
Secondary, professional, technical	88.1	5.3	68.2	2.1	12.7	364
University+	83.8	5.1	77.8	2.8	5.1	162
Wealth quintile						
Lowest	63.4	3.9	44.0	0.9	15.4	346
Second	72.9	4.4	48.5	1.1	18.0	321
Middle	83.8	4.9	60.0	1.6	19.3	345
Fourth	88.8	5.3	70.0	2.0	12.8	289
Highest	90.3	5.4	78.7	2.9	4.9	249
Total	79.0	4.7	58.9	1.6	14.6	1,550

[^23] three days preceding the survey are considered in this table.

10.7 Children Left Alone

Leaving children alone in the care or presence of other young children is known to increase the risk of accidents. In the 2008-09 ADHS, two questions were asked to find out whether children age 0-59 months were left in the care of children under 10 years of age at any time during the week preceding the survey, and whether they were left alone at any time during the week preceding the survey.

The results presented in Table 10.12 show that 8 percent of children age $0-59$ months were left in the care of children, while 7 percent were left alone during the week preceding the survey. Overall, combining the two care indicators, 11 percent of children were left with inadequate care during the week preceding the survey.

Table 10.12 Children left alone or with other children				
Percentage of children age 0-59 months who, in the week preceding the survey, were left in the care of children under age 10 years, were left alone, or were left with inadequate care, by background characteristics, Albania 2008-09				
Percentage of children age 0-59 months who, in the week preceding the survey, were:				
Background characteristic	Left in the car of children under age 10 years	Left alone	Left with inadequate care ${ }^{1}$	Number of children
Age in months				
0-23	5.9	6.2	8.6	534
24-59	8.6	6.9	11.7	1,015
Sex				
Male	7.6	6.7	10.4	783
Female	7.8	6.6	10.9	767
Residence				
Urban	4.8	4.6	7.9	600
Rural	9.5	8.0	12.3	949
Region				
Coastal	7.6	8.0	11.0	428
Central	8.9	5.7	11.5	726
Mountain	8.8	8.9	11.6	189
Urban Tirana	2.5	4.9	5.8	207
Mother's education				
No education/Primary 4-year	5.5	4.9	9.0	53
Primary 8-year	8.6	6.9	11.3	971
Secondary, professional, technical	6.6	6.5	10.0	364
University+	5.4	6.2	8.2	162
Wealth quintile				
Lowest	16.2	10.8	18.1	346
Second	6.2	6.5	10.8	321
Middle	6.6	5.4	8.9	345
Fourth	6.0	5.2	8.4	289
Highest	1.2	4.4	4.9	249
Total	7.7	6.6	10.6	1,550
${ }^{1}$ Inadequate care is defined as children left (in the past week) in the care of other children under age 10 years or left alone.				

A higher proportion of older children age $24-59$ months (12 percent) were left with inadequate care than younger children age $0-23$ months (9 percent). Furthermore, children in rural areas were more likely than those in urban areas to be left with inadequate care (12 percent compared with 8 percent). Looking at regional variation, children in Urban Tirana (6 percent) were the least likely to be left with inadequate care over the past week, compared with children in other regions (11 to 12 percent). The relationship between mother's level of education and children being left with inadequate care is not clear; however, the proportion of children left with inadequate care in the week preceding the survey decreases as household wealth status increases, from 18 percent among children in the lowest wealth quintile to 5 percent among those in the highest wealth quintile.

The percentage of children who are left with inadequate care has decreased from 13 percent in the 2005 MICS (INSTAT, 2008) to 11 percent in the 2008-09 ADHS.

10.8 Child Discipuine

As stated in A World Fit for Children, 'children must be protected against any acts of violence' (United Nations, 2002) and the Millennium Declaration calls for the protection of children against abuse, exploitation and violence (United Nations General Assembly, 2000). The 2006 United Nations Secretary-General’s Study on Violence Against Children (United Nations, 2006) calls for 'an end to adult justification of violence against children, whether accepted as tradition or disguised as discipline,' and asks all states to prohibit all forms of violent practice, including corporal punishment.

In the 2008-09 ADHS, household respondents were asked a series of questions on the way adults discipline their children when they misbehave. For these questions, which were part of the Child Discipline Module, information was collected on one child age 2-14 years per household (randomly selected) and covered discipline administered during the month preceding the survey. Table 10.13 shows the percentage of selected children age $2-14$ who experienced specific types of discipline, by background characteristics. The types of discipline are 1) Non-violent discipline, defined as taking away privileges, forbidding something the child likes, not allowing the child to leave the house, explaining to the child why something is wrong, or giving the child something else to do; 2) Psychological punishment, defined as shouting, yelling or screaming at the child, or calling the child dumb, lazy, or other such name; 3) Minor physical punishment, defined as shaking the child, spanking the child on the bottom with a bare hand, hitting the child on the bottom or elsewhere on the body with something like a belt, a stick or other hard object, hitting or slapping the child on the hand, arm or leg; 4) Severe physical punishment, defined as hitting or slapping the child on the face, head, or ears, or beating the child up with an implement over and over as hard as possible.

The results show that only about one in five Albanian children (22 percent) experienced nonviolent behaviour as a means of discipline or punishment. Sixty-eight percent of children were subjected to psychological punishment. Minor physical punishment was reported for 58 percent of children, while 14 percent were subjected to severe physical punishment. The proportion of children who experience severe physical punishment is somewhat higher among children age 5-9 years and among boys, compared with children in other age groups and girls. Children in rural areas are twice as likely as those in urban areas to undergo severe physical punishment (18 and 9 percent, respectively). By region, the proportion of children who experienced severe physical punishment ranges from 1 percent in Urban Tirana to 27 percent in the Mountain region. Mother's level of education and household wealth status are strongly related to the proportion of children who experience severe physical punishment. Children of mothers with no education or with primary 4-year education are seven times as likely to experience severe physical punishment as children of mothers with university or higher education (28 and 4 percent, respectively). Likewise, 22 percent of children in the lowest wealth quintile experienced severe physical punishment, compared with 4 percent of children in the highest wealth quintile.

Overall, three-fourths (75 percent) of Albanian children age 2-14 years have experienced some form of psychological or physical punishment. Children age 5-9 years, boys, children living in rural areas and in the Mountain region, children of mothers with no education or with primary education, and children in households in the lowest wealth quintile are more likely than other children to experience some form of psychological or physical punishment.

Only 13 percent of household respondents were reported to believe that a child needs to be physically punished in order to be disciplined. This low figure contrasts sharply with the other results on child discipline from the 2008-09 ADHS.

Table 10.13 Child discipline
Among randomly selected children age 2-14 years, percentage who experienced specific types of discipline, by background characteristics, Albania 2008-09

Background characteristic	Percentage of children age 2-14 years who experienced specific types of discipline								Number of selected children age 2-14 years ${ }^{1}$
	Nonviolent discipline only	Psychological punishment only	Minor physical punishment	Severe physical punish- ment	Any psychological or physical punishment	No discipline or punishment	Missing	Respondent believes that child needs to be physically punished	
Age									
2-4	27.7	59.2	55.7	14.3	68.6	3.6	0.2	11.8	603
5-9	16.2	73.2	65.1	16.5	80.4	3.3	0.0	15.8	1,251
10-14	23.9	68.2	53.8	12.8	73.5	2.6	0.0	10.9	1,831
Sex									
Male	19.3	72.1	60.5	15.1	78.3	2.3	0.1	14.0	1,954
Female	24.8	64.2	55.1	13.3	71.4	3.7	0.0	11.2	1,731
Residence									
Urban	28.2	60.7	50.8	9.1	67.7	4.0	0.1	8.8	1,531
Rural	17.5	73.9	63.0	18.0	80.3	2.3	0.0	15.5	2,154
Region									
Coastal	18.0	72.0	61.6	17.2	77.6	4.3	0.1	17.4	1,035
Central	19.3	72.4	58.3	13.2	78.8	1.9	0.0	9.4	1,755
Mountain	16.0	76.1	68.2	27.3	83.0	0.9	0.1	21.1	407
Urban Tirana	44.6	40.0	40.3	1.3	49.5	5.9	0.0	7.6	488
Mother's education									
No education/Primary									
4-year	11.6	78.3	69.2	28.3	81.3	7.1	0.0	24.7	87
Primary 8-year	15.8	75.3	65.1	17.9	81.6	2.7	0.0	16.2	1,972
Secondary, professional, technical	27.7	62.7	50.5	10.6	69.1	3.1	0.1	9.1	1,217
University+	34.5	51.3	43.8	3.9	62.6	2.8	0.1	2.7	323
Missing	44.8	44.3	41.4	7.8	49.8	5.5	0.0	8.5	85
Wealth quintile									
Lowest	15.6	76.7	67.3	22.4	83.3	1.1	0.0	20.1	817
Second	17.4	73.3	64.2	19.7	79.1	3.5	0.0	14.7	742
Middle	18.5	71.6	60.2	13.4	78.1	3.3	0.0	12.0	771
Fourth	25.0	66.3	53.0	9.6	72.5	2.3	0.2	9.5	693
Highest	35.4	51.2	41.9	4.0	59.4	5.2	0.0	5.7	662
Total	21.9	68.4	57.9	14.3	75.1	3.0	0.0	12.7	3,685

${ }^{1}$ Table is based on children age 2-14 years randomly selected during fieldwork (one child selected per household if household had any children in the age range). The household respondent was asked the questions on child discipline regarding the selected child.

Adequate nutrition is critical to early development and to the well-being of individuals throughout their life. While undernutrition is associated with infections and poor health, over-nutrition-especially excessive intake of fats and micronutrients-can affect the immune system (Samartin and Chandra, 2001). Like many other middle-income countries, Albania is undergoing a transition in the nutritional status of the population. The situation in Albania is characterized by a combination of 1) rising levels of overnutrition-especially among urban groups whose consumption of refined foods is increasing while physical activity is decreasing-and 2) residual undernutrition among vulnerable groups such as pregnant women, infants, and young children in remote areas where food security is limited along with opportunities to earn a living.

The period from birth to two years of age is important for optimal growth, health, and development. Growth faltering, micronutrient deficiencies, and common childhood illnesses such as diarrhoea and acute respiratory infections (ARI) can have severe consequences when they occur during this period. Optimal feeding practices reported in this chapter include early initiation of breastfeeding, exclusive breastfeeding during the first six months of life, continued breastfeeding through at least two years of age, timely introduction of complementary foods at six months of age, with appropriate frequency of feeding solid/semi-solid foods and appropriate diversity of food groups fed to children age 6 to 23 months. A summary indicator of the quality of infant and young child feeding (IYCF) practices for children age 6-23 months is included in this chapter.

Malnutrition in adults can result in reduced productivity, increased susceptibility to infections, slower recovery from illness and, for women, heightened risk of adverse pregnancy outcomes. Moreover, a woman who has poor nutritional status-as indicated by a low Body Mass Index (BMI), short stature, anaemia, or other micronutrient deficiencies-has a greater risk of obstructed labour, having a baby with low birth weight, producing lower quality breast milk, dying as a result of postpartum haemorrhage, and illness of both herself and her baby.

Micronutrient deficiencies are the result of inadequate intake of micronutrient-rich foods and inadequate utilization of available micronutrients by the body due to infections, parasitic infestation, and other factors that prevent absorption of micronutrients. Measures of micronutrient status (anaemia and night blindness), consumption of vitamin A-rich and iron-rich foods, micronutrient supplementation of vitamin A and iron, and micronutrient fortification (use of iodized salt) are included in this chapter for both women and children. Another topic covered is the diversity of food groups consumed by mothers who gave birth in the three years preceding the survey; this provides important information on patterns of maternal food consumption (for example, vitamin A-rich and iron-rich foods).

This chapter uses the anthropometric and dietary information obtained in 2008-09 ADHS to assess the nutritional status of children and adults. The section on children covers the following topics: anthropometric assessment of the nutritional status of children under five years of age; infant and young child feeding (IYCF) practices including breastfeeding and feeding solid/semi-solid foods; frequency of feeding; diversity of foods fed; and micronutrient status, supplementation, and fortification. The section on adults covers: anthropometric assessment of the nutritional status of women and men age 15-49; the diversity of foods eaten by mothers of children under three years; and micronutrient status, supplementation, and fortification. Finally, the chapter presents information on the prevalence of anaemia in young children, women, and men in Albania.

11.1 Breastreeding and Supplementation

Early breastfeeding is important in the successful initiation and duration of breastfeeding. It is recommended that newborns be put to the breast immediately after birth or within one hour of birth to receive the nutrient-rich colostrum produced by the mother during the first three days after delivery, prior to the regular production of breast milk. Colostrum is an important source of nutrition as well as maternal antibodies that protect against infections. The importance of proper infant and young child feeding (IYCF) practices is well-known in Albania, particularly because of problems associated with the increased use of breast-milk substitutes.

In 1999, the Albanian Parliament enacted a National Law on the Promotion of Breastfeeding, aimed at ensuring safe, appropriate and adequate feeding of infants and young children and regulating the marketing of breast-milk substitutes. This law was based on the International Code of Marketing of Breast-milk Substitutes adopted in 1981 (WHO, 1981).

In addition, the 'baby-friendly hospital' initiative has been implemented in several regions of Albania to protect, promote, and support breastfeeding. With the support of the United Nations Children's Fund (UNICEF) and the World Health Organization (WHO), the first baby-friendly hospital (BFH) in Albania was certified in 1998 in Lezha; it was the first such hospital in the Balkans region. Since 1998, the number of maternities certified as BFHs has increased in the country. The Ministry of Health, with the assistance of UNICEF and various NGOs, has conducted numerous training sessions on breastfeeding counselling for health workers and communities throughout the country. Experience shows that these actions can effectively raise breastfeeding rates, especially early initiation of breastfeeding.

11.1.1 Initiation of Breastfeeding

Early initiation of breastfeeding is important for both the mother and the child. Early suckling stimulates the release of hormones that help in the production of milk. It also stimulates contraction of the uterus after childbirth. Colostrum, which is the liquid produced from the breast in the first few days after delivery, provides natural immunity to the infant. Prelacteal feeding, the practice of giving other liquids to a child prior to breastfeeding, is discouraged because it reduces the frequency of suckling by the infant and exposes the baby to the risk of infection.

Table 11.1 shows the percentage of all children born in the past five years who were ever breastfed and, among last-born children, the percentage who started breastfeeding within one hour of birth and within one day of birth, by background characteristics. It also shows the percentage of children who received a prelacteal feed, i.e., anything other than breast milk received prior to initiation of regular breastfeeding.

The results in Table 11.1 show that 96 percent of children under age five were ever breastfed, however, only 43 percent of last-born children ever breastfed began breastfeeding within one hour of birth (as recommended). The proportion of infants who began breastfeeding within one hour of birth is lower in the mountain areas (39 percent) than in Urban Tirana (55 percent). Almost 88 percent of children under age five began breastfeeding within one day of birth.

The percentage of children who started breastfeeding within one hour and within one day of birth has increase from 30 and 74 percent, respectively, in the 2005 MICS (INSTAT, 2008) to 43 and 88 percent, respectively, in the 2008-09 ADHS.

Table 11.1 Initial breastfeeding						
Percentage of children born in the five years preceding the survey who were ever breastfed, and for the last children born in the five years preceding the survey ever breastfed, the percentage who started breastfeeding within one hour and within one day of birth and the percentage who received a prelacteal feed, by background characteristics, Albania 2008-09						
Breastfeeding among children born in past five years			Among last-born children ever breastfed:			
Background characteristic	Percentage ever breastfed	Number of children born in past five years	Percentage who started breastfeeding within 1 hour of birth	Percentage who started breastfeeding within 1 day of birth ${ }^{1}$	Percentage who received a prelacteal feed ${ }^{2}$	Number of last-born children ever breastfed
Sex						
Male	96.4	801	44.5	88.7	18.7	668
Female	95.1	775	41.2	86.1	18.6	599
Residence						
Urban	95.4	609	43.6	89.0	18.8	501
Rural	96.0	967	42.5	86.4	18.6	766
Region						
Coastal	96.0	435	42.3	86.2	15.9	342
Central	95.5	741	40.9	86.7	20.8	603
Mountain	95.6	193	38.5	85.7	17.6	151
Urban Tirana	96.4	207	55.4	94.3	17.5	171
Mother's education						
No education/Primary 4-year	91.4	54	(44.9)	(95.4)	(17.4)	39
Primary 8-year	95.9	988	42.2	87.5	18.4	775
Secondary, professional, technical	96.6	372	43.3	86.1	18.1	314
University+	94.6	163	46.0	87.8	21.7	138
Wealth quintile						
Lowest	96.5	353	39.2	87.8	19.6	276
Second	95.3	322	42.9	85.5	18.4	262
Middle	94.9	351	42.4	88.0	17.0	276
Fourth	97.4	298	44.2	86.6	18.5	246
Highest	94.6	252	47.2	89.8	20.1	207
Total	95.8	1,576	42.9	87.5	18.7	1,267
Note: Table is based on births in the past five years regardless of the survival status of the child. Figures in parentheses are based on 25-49 unweighted cases. ${ }^{1}$ Includes children who started breastfeeding within one hour of birth ${ }^{2}$ Child received something other than breast milk during the first three days of life						

Prelacteal feeding is the practice of giving other liquids to infants during the period between birth and when the mother's milk is flowing freely. Overall, 19 percent of breastfed children received a prelacteal feed. Mothers with higher education were slightly more likely to introduce prelacteal feeding than mother with less education. Mothers who gave their child something to drink other than breast milk in the three days following delivery were asked what was given to the child. The most common prelacteal liquid given was milk (other than breast milk) followed by sugar or glucose water (Figure 11.1). Other common prelacteal liquids were plain water and infant formula.

Figure 11.1 Among Last Children Born in the Five Years Preceding the Survey Who Received a Prelacteal Liquid, the Percentage Who Received Specific Liquids

ADHS 2008-09

11.1.2 Breastfeeding Status by Age

Exclusive breastfeeding is recommended for the first six months of life because it is uncontaminated and contains all the nutrients necessary for children in this age group. Additionally, the mother's antibodies present in breast milk provide substantial immunity to disease. Early supplementation of breastfeeding is discouraged for several reasons. First, it exposes infants to pathogens, thereby increasing the risk of infections such as diarrhoeal diseases. Second, it decreases infants' intake of breast milk and therefore suckling, which reduces the production of breast milk. Third, in limited socio-economic environments, supplementary foods are often nutritionally inferior to breast milk.

Table 11.2 shows the percent distribution of youngest children under three years of age living with their mother by breastfeeding status, according to age in months. Children who received nothing but breast milk during the 24 hours preceding the interview are classified as exclusively breastfed. Only 68 percent of children under two months of age are exclusively breastfed. Exclusive breastfeeding drops to 39 percent at age 2-3 months and to 18 percent at age 4-5 months. Overall, half of children age $0-3$ months and 39 percent of children age 0-5 months are exclusively breastfed. Nineteen percent of children under age six months receive breast milk and plain water only and 9 percent receive breast milk and other milk. Table 11.2 shows that (any) breastfeeding decreases substantially after one year. At $12-15$ months, only about six in ten children (61 percent) are still being breastfed, and by age 20-23 months, only one-third (31 percent) of children are being breastfed.

The results on exclusive breastfeeding among children age 0-3 months and 0-5 months from the 2008-09 ADHS are similar to those from the 2006 National Survey for Monitoring the Situation of Breastfeeding in Albania (UNICEF, MOH, and Albanian Association for Protection of Breastfeeding, 2006). In the 2008-09 ADHS, exclusive breastfeeding among children age $0-3$ months and $0-5$ months was 50 and 39 percent, respectively, compared with 49 and 40 percent, respectively, in the 2006 survey.

Table 11.2 Breastfeeding status by age									
Percent distribution of youngest children under three years living with their mother by breastfeeding status and the percentage currently breastfeeding, according to age in months, Albania 2008-09									
	Percent distribution of youngest children under three years living with their mother by breastfeeding status							Percentage currently breastfeeding	Number of youngest children under three\qquad years
			Breastfeeding and consuming:						
Age in months	Not breastfeeding	Exclusively breastfed	Plain water only	Non-milk liquids/ juice	Other milk	Complementary foods	Total		
0-1	(0.0)	(68.2)	(5.8)	(5.9)	(7.8)	(12.3)	(100.0)	(100.0)	37
2-3	3.3	39.4	10.2	12.8	17.8	16.4	100.0	96.7	61
4-5	(7.7)	(17.6)	(37.0)	(5.2)	0.0	(32.5)	(100.0)	(92.3)	54
6-8	22.6	4.7	14.9	0.7	2.0	55.1	100.0	77.4	58
9-11	30.3	0.8	0.8	2.1	0.0	66.1	100.0	69.7	58
12-17	45.7	0.0	0.0	0.0	0.0	54.3	100.0	54.3	139
18-23	67.4	0.0	0.0	0.0	0.0	32.6	100.0	32.6	111
24-35	93.3	0.0	0.0	0.0	0.0	6.7	100.0	6.7	268
0-3	2.1	50.2	8.6	10.2	14.1	14.9	100.0	97.9	97
0-5	4.1	38.6	18.7	8.4	9.0	21.2	100.0	95.9	151
6-9	24.3	4.7	12.9	2.4	1.7	53.9	100.0	75.7	67
12-15	39.4	0.0	0.0	0.0	0.0	60.6	100.0	60.6	96
12-23	55.4	0.0	0.0	0.0	0.0	44.6	100.0	44.6	250
20-23	69.0	0.0	0.0	0.0	0.0	31.0	100.0	31.0	67

Note: Breastfeeding status refers to a 24 -hour period (yesterday and the past night). Children classified as breastfeeding and consuming plain water only consumed no liquid or solid supplements. The categories not breastfeeding, exclusively breastfed, breastfeeding and consuming plain water only, non-milk liquids/juice, other milk, and complementary foods (solid or semisolid) are hierarchical and mutually exclusive, so the percentages add to 100 percent. Therefore, children who received breast milk and non-milk liquids but did not receive complementary foods are classified in the non-milk liquids/juice category even though they may also have received plain water. Children who received complementary foods are classified in that category as long as they are breastfeeding as well. Figures in parentheses are based on 25-49 unweighted cases.

The purpose of complementary feeding is to provide nutritional supplements to breast milk in order to sustain children's growth and development after the first six months. Information on supplementation was obtained by asking mothers about the current breastfeeding status of all children under five years of age and, for the youngest child born in the three years preceding the survey living with the mother, asking about foods (liquids and solids) given to the child during the 24 hours preceding the interview.

Table 11.2 and Figure 11.2 show the shift in infant feeding practices according to age. At the time of the survey, 16 percent of children age $2-3$ months and 33 percent of those age $4-5$ months were receiving complementary foods (solid and semi-solid foods) in addition to breast milk (although exclusive breastfeeding is recommended for children under six months). At age 6-8 months, more than half of children (55 percent) were receiving timely complementary feeding (breast milk and complementary foods). The level of complementary feeding increases to 66 percent at age 9-11 months and then decreases to 54 percent at age 12-17 months, when 46 percent of children are no longer being breastfed. The proportion of children receiving both breast milk and complementary foods decreases thereafter as children are weaned. At age $24-35$ months, only 7 percent of children are breastfeeding and receiving complementary foods.

Figure 11.2 Infant Feeding Practices by Age

ADHS 2008-09

11.1.3 Duration and Frequency of Breastfeeding

Both the duration and frequency of breastfeeding can affect the length of postpartum amenorrhoea. It is important for the health of the child that breastfeeding is continued for two or more years because breast milk provides useful amounts of energy, good quality protein, and important micronutrients. Table 11.3 shows the median duration of breastfeeding for last children born in the three years preceding the survey by background characteristics. The estimates of median duration of breastfeeding are based on current status information, that is, children who were being breastfed at the time of the survey. Information on current status is usually more accurate than information based on mother's recall. The median duration of any breastfeeding is 15 months; the median duration of exclusive breastfeeding is two months; and the median duration of predominant breastfeeding (breastfeeding plus plain water and/or non-milk liquids only) is four months. The duration of breastfeeding is shorter in urban areas than rural areas, and it decreases with increasing education of the mother and increasing wealth quintile.

Table 11.3 shows that almost all breastfeeding children under six months were fed six or more times during the day and night preceding the survey. The average number of feeds during the day ranges from 5.3 to 7.4 and the average number of feeds during the night ranges from 5.0 to 6.4.

Table 11.3 Median duration and frequency of breastfeeding

Median duration of any breastfeeding, exclusive breastfeeding, and predominant breastfeeding among children born in the three years preceding the survey, percentage of breastfeeding children under six months living with their mother who were breastfed six or more times in the 24 hours preceding the survey, and mean number of feeds (day/night), by background characteristics, Albania 2008-09

Background characteristic	Median duration (months) of breastfeeding among children born in the past three years ${ }^{1}$			Frequency of breastfeeding among children under six months ${ }^{2}$			
				Percentage			
	Any breastfeeding	Exclusive breastfeeding	Predominant breast- feeding	breastfed 6+ times in past 24 hours	Mean number of day feeds	Mean number of night feeds	Number of children
Sex							
Male	16.1	1.9	3.9	93.8	7.4	6.4	80
Female	13.0	2.3	4.7	96.7	5.3	5.0	65
Residence							
Urban	14.1	1.8	3.3	92.2	6.8	5.4	51
Rural	15.1	2.3	5.3	96.6	6.3	5.9	94
Region							
Coastal	14.8	*	(4.2)	(97.1)	(7.0)	(5.3)	32
Central	15.2	2.6	5.2	(94.3)	(6.9)	(6.3)	79
Mountain	13.9	2.3	3.6	(100.0)	(5.5)	(5.7)	14
Urban Tirana	(12.7)	(2.1)	(3.3)	*	*	*	20
Mother's education							
Primary or less	15.5	2.6	4.9	97.4	6.9	5.9	97
Secondary +	11.8	(1.2)	3.3	(90.4)	(5.5)	(5.3)	48
Wealth quintile							
Lowest 60\%	14.9	2.5	5.1	98.1	6.4	6.1	88
Highest 40\%	13.9	(1.2)	3.1	90.5	6.6	5.2	57
Total	14.6	2.1	4.3	95.1	6.5	5.7	145
Mean for all children	16.4	3.9	5.9	na	na	na	na

Note: Median and mean durations are based on current status. Includes all children born in the past three years regardless of survival status. Figures in parentheses are based on 25-49 unweighted cases. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
na $=$ Not applicable
${ }^{1}$ It is assumed that non-last-born children and last-born children not currently living with the mother are not currently breastfeeding.
${ }^{2}$ Excludes children with no valid information on the number of times breastfed
${ }^{3}$ Either exclusively breastfed or receives breast milk and plain water, and/or non-milk liquids only

11.1.4 Types of Complementary Foods

Table 11.4 shows for youngest children under three years living with their mother the types of foods received during the 24 hours preceding the interview, by breastfeeding status and age. For many breastfeeding children the introduction of liquids other than breast milk takes place earlier than the recommended six months. Sixteen percent of breastfeeding children age 0-5 months receive milk other than breast milk, 14 percent are given infant formula, and 23 percent receive other liquids. Twenty-one percent of breastfeeding children under six months receive solid or semi-solid foods. Consumption of milk other than breast milk increases steadily with age to 44 percent among children age 12-23 months, and is 42 percent among children age 6-35 months. For non-breastfeeding children, consumption of milk other than breast milk is 77 percent among children age 12-23 months and 78 percent among those age 6-35 months. Consumption of infant formula by non-breastfeeding children is 21 percent among those age 6-23 months, compared with 8 percent among their counterparts who are breastfeeding.

The World Health Organization recommends the introduction of solid or semi-solid foods to infants around the age of six months because by that age breast milk alone is no longer sufficient to maintain a child's optimal growth. The percentage of breastfeeding children receiving solid or semisolid foods increases with the age from 21 percent among children age $0-5$ months to 82 percent among those age 6-11 months. This rapid increase is consistent with the WHO recommendation that solid or semi-solid foods be introduced around six months of age; however, it is of concern that by age 0-5 months almost 21 percent of breastfeeding children are already receiving solid or semi-solid foods.

Table 11.4 Foods consumed by children in the 24 hours preceding the interview
Percentage of youngest children under three years living with their mother who received specific types of foods in the day and night preceding the interview, by breastfeeding status and age, Albania 2008-09

Age in months	Liquids			Solid or semi-solid foods								Any solid or semisolid food	Food made with oil, fat, or butter	Sugary foods	Number of children
				Fortified baby foods	Food made from grains ${ }^{3}$	Fruits and vegetables rich in vitamin A^{4}	Other fruits and vegetables	Food made from roots and tubers	Food made from legumes and nuts	Meat, fish, poultry, and eggs	Cheese, yogurt, other milk products				
	Infant formula	Other milk ${ }^{1}$	Other liquids ${ }^{2}$												
BREASTFEEDING CHILDREN															
0-5	14.2	16.4	22.8	2.9	12.3	1.2	4.8	0.4	0.1	6.1	5.3	20.7	0.0	5.6	145
6-11	11.5	37.8	52.0	16.5	74.3	26.5	41.7	25.1	31.2	49.5	49.2	82.4	8.4	24.6	85
12-23	5.5	44.3	64.2	4.3	95.3	54.8	71.7	47.9	33.9	87.3	82.0	100.0	29.8	52.0	112
24-35	*	*	*	*	*	*	*	*	*	*	*	*	*	*	18
6-23	8.1	41.5	58.9	9.6	86.2	42.5	58.7	38.0	32.8	71.0	67.8	92.4	20.5	40.1	197
Total	10.2	32.3	45.6	6.4	56.7	25.4	37.6	22.7	20.9	45.8	44.2	63.9	13.3	27.6	360
NON-BREASTFEEDING CHILDREN															
0-5	*	*	*	*	*	*	*	*	*	*	*	*	*	*	6
6-11	(38.6)	(83.4)	(78.5)	(23.2)	(89.8)	(42.8)	(64.9)	(22.8)	(35.9)	(67.6)	(65.9)	(92.3)	(14.1)	(40.1)	31
12-23	16.7	77.2	70.8	11.7	92.7	55.3	79.0	47.0	39.6	86.6	76.9	100.0	28.3	70.5	139
24-35	17.3	82.8	70.6	6.3	93.9	58.7	80.1	60.9	52.4	93.3	87.9	100.0	44.0	86.1	250
6-23	20.7	78.3	72.2	13.8	92.2	53.0	76.4	42.6	38.9	83.1	74.9	98.6	25.7	65.0	169
Total	19.3	80.3	71.0	9.9	93.0	56.0	77.9	52.8	46.7	88.3	82.6	99.4	36.5	76.9	425

Note: Breastfeeding status and foods consumed refer to a 24 -hour period (yesterday and the past night).
Figures in parentheses are based on 25-49 unweighted cases. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
${ }^{1}$ Other milk includes fresh, tinned, and powdered cow milk or other animal milk
${ }^{2}$ Does not include plain water
${ }^{3}$ Includes fortified baby food
${ }^{4}$ Includes pumpkins, carrots, yellow peppers, dark green leafy vegetables, apricots, peaches, and cantaloupes

Foods made from grains are the most common solid or semi-solid foods fed to breastfeeding and non-breastfeeding children age 6-23 months (86 and 92 percent, respectively) followed by meat, fish, poultry and eggs (71 and 83 percent, respectively) and, cheese, yogurt, and other milk products (68 and 75 percent, respectively). More than half (59 percent) of breastfeeding children and 76 percent of non-breastfeeding children age 6-23 months consume other fruits and vegetables. Foods made from legumes and nuts were least likely to be consumed by both breastfeeding and nonbreastfeeding children. As expected, every type of solid or semi-solid food for which information was collected is more likely to be consumed by non-breastfeeding children than by breastfeeding children.

Appropriate infant and young child feeding (IYCF) practices include timely initiation of feeding solid/semi-solid foods beginning at about age six months, feeding small amounts of food and increasing the amount given and the frequency of feedings as the child gets older, while maintaining breastfeeding. For the average, healthy breastfed child, solid/semi-solid foods should be provided 2-3 times per day at age 6-8 months and 3-4 times per day at age 9-24 months, with an additional snack being offered 1-2 times per day, as desired. However, feeding frequencies greater than necessary may lead to the displacement of breast milk, and infants with low breast milk intake may need to be fed more frequently. Non-breastfeeding children age 6-23 months should be fed milk or milk products every day. In addition, they should be fed from at least four food groups and fed four or more times per day.

Table 11.5 provides information on adherence to appropriate feeding practices for youngest children age $6-23$ months living with their mother. The percentage of children who are fed with appropriate feeding practices is calculated on the basis of the number of food groups consumed and the number of times child was fed during the 24 hours preceding the interview (yesterday and the past night). The results are shown separately for breastfed children and non-breastfed children because recommended feeding practices are different for the two groups.

Table 11.5 Infant and young child feeding (IYCF) practices
Percentage of youngest children age 6-23 months living with their mother who are fed according to three infant and young child feeding (IYCF) practices based on the number of food groups consumed and number of times fed during the day and night preceding the survey, by breastfeeding status and background characteristics, Albania 2008-09

Background characteristic	Among breastfed children 6-23 months, percentage fed:			Number of breastfed children 6-23 months	Among non-breastfed children 6-23 months, percentage fed:				Number of nonbreastfed children 6-23 months	Among all children 6-23 months, percentage fed:				Number of all children 6-23 months
			Both 3+ food groups and minimum times or more											
	$\begin{gathered} 3+ \\ \text { food } \\ \text { groups }^{1} \end{gathered}$	Minimum times or more 2			Milk or milk products ${ }^{3}$	4+ food groups	$\begin{gathered} 4+ \\ \text { times } \\ \text { or } \\ \text { more } \end{gathered}$	With 3 IYCF practices ${ }^{4}$		Breast milk or milk products ${ }^{3}$	$3+$ or $4+$ food groups ${ }^{5}$	mum times or more ${ }^{6}$	With all 3 IYCF practices	
Age in months														
6-8	39.9	64.3	35.2	45	*	*	*	*	13	100.0	42.3	64.5	35.1	58
9-11	(77.6)	(61.9)	(56.3)	41	*	*	*	*	18	96.5	75.8	57.1	50.0	58
12-17	94.6	16.6	14.1	75	98.0	96.7	13.8	13.2	63	99.1	95.5	15.3	13.7	139
18-23	100.0)	(0.0)	(0.0)	36	97.2	86.4	0.0	0.0	75	98.1	90.8	0.0	0.0	111
Sex														
Male	80.1	36.2	26.7	119	97.4	87.7	17.8	13.5	86	98.9	83.2	28.5	21.2	205
Female	79.1	29.9	22.5	78	96.2	84.2	12.2	9.1	84	98.0	81.7	20.8	15.6	162
Residence														
Urban	84.4	49.9	40.7	80	98.1	92.2	17.4	14.6	79	99.1	88.3	33.7	27.7	159
Rural	76.4	22.7	14.3	117	95.6	80.5	12.9	8.5	90	98.1	78.2	18.4	11.8	207
Region														
Coastal	67.0	38.1	22.8	57	(100.0)	(89.4)	(15.0)	(11.7)	36	100.0	75.7	29.2	18.6	93
Central	85.2	27.2	22.0	93	94.1	85.3	14.1	10.1	88	97.1	85.2	20.8	16.2	181
Mountain	73.0	33.9	22.9	24	99.1	67.5	15.2	8.1	22	99.6	70.4	25.2	16.0	46
Urban Tirana	*	*	*	23	(100.0)	(100.0)	(18.4)	(18.4)	24	100.0	98.2	33.3	31.5	46
Mother's education														
No education/ Primary 4-year	*	*	*	8	*	*	*	*	4	*	*	*	*	12
Primary 8-year	76.5	31.1	22.1	126	98.0	81.4	13.5	9.5	96	99.1	78.6	23.5	16.6	221
Secondary, professional, technical	86.5	31.4	26.8	44	93.1	92.7	13.3	11.5	48	96.4	89.7	22.0	18.8	92
University+	*	*	*	19	(99.1)	(93.0)	(28.1)	(21.1)	22	(99.5)	(91.9)	(36.2)	(28.1)	41
Wealth quintile														
Lowest	(70.5)	(30.1)	(21.6)	35	(94.6)	(77.6)	(18.6)	(13.3)	38	97.2	74.2	24.1	17.3	73
Second	(79.5)	(22.5)	(8.8)	39	(100.0)	(84.7)	(13.0)	(13.0)	31	100.0	81.8	18.3	10.7	70
Middle	(73.1)	(33.1)	(25.0)	57	(94.6)	(86.9)	(5.4)	(0.0)	36	97.9	78.5	22.4	15.4	93
Fourth	(87.7)	(45.6)	(38.1)	43	(94.7)	(91.0)	(15.5)	(12.9)	28	97.9	89.0	33.8	28.3	70
Highest	(95.0)	(37.3)	(32.9)	23	(100.0)	(90.7)	(22.0)	(17.8)	37	100.0	92.4	27.9	23.6	61
Total	79.7	33.7	25.0	197	96.8	86.0	15.0	11.4	169	98.5	82.6	25.1	18.7	366

Note: Figures in parentheses are based on 25-49 unweighted cases. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed
${ }^{1}$ Food groups: a) infant formula, milk other than breast milk, cheese or yogurt or other milk products; b) foods made from grains, roots, and tubers, including porridge, fortified baby food from grains; c) vitamin A-rich fruits and vegetables; d) other fruits and vegetables; e) eggs; f) meat, poultry, fish, and shellfish (and organ meats); g) legumes and nuts; h) foods made with oil, fat, butter.
${ }^{2}$ At least twice a day for breastfed infants age 6-8 months and at least three times a day for breastfed children age 9-23 months
${ }^{3}$ Includes commercial infant formula, fresh, tinned, and powdered animal milk, and cheese, yogurt, and other milk products
${ }^{4}$ Non-breastfed children age 6-23 months are considered fed according to IYCF practices if they receive other milk or milk products and are fed at least the minimum number of times per day and receive at least the minimum number of food groups.
${ }^{5} 3+$ food groups for breastfed children and $4+$ food groups for non-breastfed children
${ }^{6}$ Fed solid or semi-solid foods at least twice a day for infants 6-8 months, $3+$ times a day for other breastfed children, and $4+$ times a day for non-breastfed children

Table 11.5 shows that 80 percent of breastfed children age 6-23 months receive foods from three or more food groups per day (as recommended) but only 34 percent are fed the minimum number of times per day. Thus, only one in four breastfed children (25 percent) age 6-23 months both consumes foods from three or more food groups and is fed the minimum number of times per day. Among non-breastfed children age 6-23 months, 86 percent receive foods from four or more food groups per day (as recommended) but only 15 percent are fed the minimum number of times per day (four or more). Almost all non-breastfed children (97 percent) received milk or milk products the day before the survey. Eleven percent of non-breastfed children age 6-23 months are fed according to the three infant and young child feeding (IYCF) practices.

When breastfeeding and non-breastfeeding children are combined, it is seen that most children age 6-23 months are not fed according to IYCF recommendations. Only 19 percent are fed according to all three IYCF practices. The percentage of children fed the minimum number of times or more per day and the percentage fed according to all three IYCF practices increase with child's age up to 11 months and then decrease among children age 18-23 months. Girls are less likely than boys to be fed according to all three recommended IYCF practices. Similarly, children in rural areas are less likely than those in urban areas to be fed according to all three recommended IYCF practices.

11.1.5 Food and Liquids Consumed by Women

Adequate maternal nutrition is important for women's health as well as the health and development of their children. Table 11.6 presents information from mothers with children under age three on the foods and liquids the mothers consumed during the 24 -hour period preceding the survey. The information on maternal eating patterns serves as a useful proxy for assessing the quality of maternal diets.

The results in Table 11.6 show that in the day and night preceding the interview, more than nine in ten mothers consumed foods made from grains, meat, fish (including shellfish), poultry or eggs, and cheese and yogurt. The consumption of meat, fish, poultry and eggs is particularly important because these foods are good sources of protein and iron. Forty-five percent of women reported eating foods made with oil, fat, or butter and 56 percent consumed sugary foods. Thirty-three percent of the mothers did not consume milk or milk products (important sources of calcium) and 34 percent did not eat any vitamin A-rich fruits and vegetables.

Considering the differentials in Table 11.6, there are small variations by age and urban-rural residence in the proportion of women consuming foods made from grains, roots or tubers, legumes and nuts, oil, fat or butter, and tea or coffee. More variation is seen by wealth quintile in the percentage of women consuming vitamin A-rich fruits and vegetables, other fruits and vegetables, cheese and yogurt, meat, fish or shellfish, poultry, and eggs. Consumption of sugary foods varies markedly by wealth quintile, with women in the highest quintile almost twice as likely to consume sugary foods as women in lowest wealth quintile.

Table 11.6 Foods consumed by mothers in the day and night preceding the interview
Among mothers age 15-49 with a child under age three years living with them, the percentage who consumed specific foods in the day and night preceding the interview, by background characteristics, Albania 2008-09

Background characteristic	Liquids			Foods made from grains	Foods made from roots/ tubers	Foods made from legumes	Solid or semi-solid foods								
				Meat/ fish/ shellfish/				Vitamin A-rich fruits/	Other fruits/	Other solid or semi-	Foods made with				
	Milk	Tea/ coffee	Other liquids				poultry/ eggs	Cheese/ yogurt	vegetables ${ }^{1}$	vege- tables	solid food	oil/fat/ butter	Sugary foods		
Age															
15-19	(75.6)	(87.0)	(54.6)		(92.8)	(70.3)	(69.4)	(80.8)	(85.0)	(67.7)	(87.3)	(52.9)	(44.5)	(51.7)	26
20-29	69.4	79.6	57.8	92.2	59.8	55.5	90.8	90.1	67.8	80.3	31.0	45.2	57.9	477	
30-39	61.2	81.6	52.3	89.0	58.0	60.8	90.4	92.2	63.4	75.9	32.9	45.4	53.5	268	
40-49	*	*	*	*	*	*	*	*	*	*	*	*	*	14	
Residence															
Urban	68.3	85.5	66.0	91.2	58.7	58.1	95.8	92.1	72.7	82.4	33.8	46.1	63.8	305	
Rural	66.2	77.9	49.7	91.1	60.6	58.4	87.1	90.0	62.1	77.5	31.2	44.7	50.7	480	
Region															
Coastal	72.8	85.6	54.7	90.1	58.2	51.0	91.8	85.5	66.2	77.0	30.2	45.4	49.0	204	
Central	64.1	75.8	54.8	91.5	61.4	56.3	89.3	92.4	67.3	80.0	35.0	49.9	56.3	392	
Mountain	61.0	82.3	54.5	87.8	50.7	66.8	83.2	87.0	39.4	76.5	21.1	39.6	42.5	94	
Urban Tirana	72.7	90.1	65.9	95.2	66.3	73.5	99.3	99.3	88.5	84.8	36.1	31.2	81.7	95	
Education															
No education/															
Primary 4-year	(76.1)	(66.9)	(46.4)	(91.2)	(30.5)	(68.0)	(86.2)	(92.9)	(52.2)	(69.1)	(17.7)	(48.3)	(49.5)	27	
Primary 8-year	65.1	79.6	50.0	89.7	59.4	57.6	88.7	89.7	60.4	76.6	30.2	44.7	48.9	491	
Secondary, professional, technical	68.4	83.5	63.9	94.2	63.6	59.8	92.2	90.6	74.6	82.5	36.9	48.1	63.9	170	
University+	71.8	86.5	75.8	92.8	63.8	56.0	97.2	96.2	84.7	90.6	38.1	42.1	78.0	97	
Wealth quintile															
Lowest	66.6	80.4	40.5	87.5	57.3	58.4	86.1	86.6	50.2	70.1	19.3	40.9	41.0	168	
Second	71.0	77.9	55.8	88.8	61.2	57.3	87.6	91.3	61.3	80.9	36.0	46.3	57.5	165	
Middle	61.3	80.4	52.6	93.7	58.7	58.5	89.3	89.7	69.7	78.5	35.3	50.1	49.8	184	
Fourth	66.6	80.1	64.3	92.0	58.4	55.8	92.4	90.3	70.5	81.9	37.6	44.7	58.0	140	
Highest	71.1	86.7	72.9	94.4	64.8	61.7	99.3	97.7	83.9	88.1	34.0	43.3	79.3	128	
Total	67.0	80.9	56.1	91.1	59.8	58.3	90.4	90.8	66.2	79.4	32.2	45.3	55.8	785	

Note: Foods consumed refers to a 24-hour period (yesterday and the past night). Figures in parentheses are based on 25-49 unweighted cases. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
${ }^{1}$ Includes pumpkins, carrots, yellow peppers, dark green leafy vegetables, apricots, peaches, and cantaloupes

11.2 Salt IOdization

Iodine deficiency disorders (IDD) are a global public health concern. The lack of sufficient iodine in the body is known to cause goitre, cretinism (a severe form of neurological defect), spontaneous abortion, premature birth, infertility, stillbirth, and increased child mortality. IDD is the single most common cause of preventable mental retardation and brain damage. Because iodine cannot be stored for long periods by the body, tiny amounts are needed regularly. Where soil and therefore crops and grazing animals do not provide sufficient dietary iodine to the population, and where seafood is not regularly consumed, food fortification has proven to be a highly successful and sustainable intervention. The fortification of salt with iodine is the most common method of preventing IDD. Fortified salt that contains 15 parts per million (ppm) of iodine is considered adequate for the prevention of IDD. When vulnerable populations do not have access to fortified foods such as iodized salt, a short-term solution is supplementation with capsules containing iodized oil.

In the 2008-09 ADHS, interviewers measured the iodine content of cooking salt in each interviewed household using a rapid-test kit (MBI International). The test kit consists of ampoules of a stabilized starch solution and ampoules of a weak acid-based solution. Interviewers were instructed to squeeze two drops of the starch solution onto a sample of the household cooking salt. If the colour changed (from light blue through dark violet), the interviewer matched the colour of the salt as closely as possible to a colour chart provided with the test kit and recorded the iodine level as <15 or >15 ppm. If the initial test was negative (no change in colour), the interviewer conducted a second confirmatory test, adding the acid-based solution in addition to the starch solution. This test is necessary because the starch solution will not show any colour change even on iodized salt if the salt is alkaline or is mixed with alkaline free-flow agents. If the colour of the salt does not change even after the confirmatory test, the salt is not iodized.

Table 11.7 Presence of iodized salt in household
Among all households, percentage with salt tested for iodine content and percentage with no salt; and among households with salt tested, the percent distribution by level of iodine in salt (parts per million [ppm]), according to background characteristics, Albania 2008-09

Background characteristic	Among all households, the percentage:		Number of households	Among households with salt tested, percent distribution by iodine content of salt			Total	Number of households
	With salt tested	$\begin{gathered} \hline \text { With no } \\ \text { salt } \\ \hline \end{gathered}$		None $(0 \mathrm{ppm})$	Inadequate (<15 ppm)	$\begin{gathered} \text { Adequate } \\ (15+\mathrm{ppm}) \\ \hline \end{gathered}$		
Residence								
Urban	99.2	0.8	3,887	2.9	10.6	86.5	100.0	3,858
Rural	98.6	1.4	4,112	13.9	20.9	65.2	100.0	4,055
Region								
Coastal	99.6	0.4	2,364	4.9	16.5	78.6	100.0	2,355
Central	98.3	1.7	3,575	13.1	16.4	70.5	100.0	3,515
Mountain	99.4	0.6	686	13.2	20.4	66.4	100.0	682
Urban Tirana	99.0	1.0	1,374	0.6	11.4	88.0	100.0	1,360
Wealth quintile								
Lowest	98.3	1.7	1,463	21.8	26.5	51.7	100.0	1,439
Second	98.8	1.2	1,492	13.4	21.5	65.1	100.0	1,474
Middle	98.5	1.5	1,590	5.9	14.0	80.1	100.0	1,567
Fourth	99.4	0.6	1,740	2.5	10.8	86.8	100.0	1,729
Highest	99.4	0.6	1,714	1.6	9.2	89.2	100.0	1,704
Total	98.9	1.1	7,999	8.5	15.9	75.6	100.0	7,912

Table 11.7 shows the extent of salt iodization at the household level. Overall, 99 percent of households in the survey had their cooking salt tested. Among the households with salt tested, slightly more than three-quarters (76 percent) were found to be using adequately iodized salt. The 2005 MICS did not test the salt with potassium iodate; therefore, the results cannot be compared. However, in the 2000 MICS, 56 percent of households had adequately iodized salt. The results from the 2008-09 ADHS show that use of adequately iodized salt is substantially higher in urban areas (87 percent) than in rural areas (65 percent) and the proportion of households using adequately iodized salt increases with wealth quintile; 52 percent of households in the lowest wealth quintile use adequately iodized salt, compared with 89 percent of households in the highest wealth quintile. Similarly, households in Urban Tirana (88 percent) have the highest level of iodized salt, compared with households in the mountain region (66 percent).

11.3 Micronutrient Intake among Young Children

The results of the 2008-09 ADHS can be used to assess the extent to which young children are likely to be consuming adequate amounts of several important micronutrients including vitamin A , iron, and iodine.

Vitamin A is an essential micronutrient for the immune system and plays an important role in maintaining the epithelial tissue in the body. Severe vitamin A deficiency (VAD) can cause eye damage (xerophthalmia) leading to blindness and can increase the severity of infections and cause slow recovery from illness. Children who have VAD have reduced immunity and are less likely to recuperate from common childhood illnesses, such as diarrhoea, ARI, and measles.

Iron deficiency is one of the most prevalent nutrient deficiencies in the world, affecting an estimated two billion people. It slows cognitive development and is associated with increased morbidity and mortality. Foods rich in iron include meat (and organ meat), fish, poultry, and eggs. Finally, as discussed above, adequate levels of iodine are important to prevent mental retardation and to reduce child mortality. Ensuring that children have an adequate diet is one means of preventing iron and vitamin A deficiency.

Table 11.8 presents information on micronutrient intake among children age 6-59 months including several indicators that are useful for assessing the likelihood that young children are receiving adequate amounts of vitamin A, iron, and iodine. These indicators are the percentage of youngest children age 6-35 months living with their mother who consumed foods rich in vitamin A and foods rich in iron in the 24 hours preceding the interview, the percentage of all children age 6-59 months who received iron supplements in the 7 days preceding the interview and the percentage given de-worming medication in the past six months, and among children age 6-59 months in households tested for iodized salt, the percentage living in households with adequately iodized salt.

The results indicate that 88 percent of children age 6-35 months are consuming foods rich in vitamin A and 84 percent are consuming foods rich in iron on a daily basis. Consumption of both vitamin A-rich and iron-rich foods increases with age of the child and is higher among children that are not breastfeeding than among those that are breastfeeding, reflecting the increasing diversity of children's diets as they are weaned. Children in urban areas are slightly more likely to consume foods rich in these two micronutrients than those in rural areas. Children in Urban Tirana have the highest level of consumption of vitamin A-rich and iron-rich foods, while children in the mountain region have the lowest level of consumption of these foods. The likelihood that a child will consume vitamin A-rich and iron-rich foods increases with mother's level of education and wealth quintile.

Overall, the 2008-09 ADHS shows that only a small proportion (5 percent) of children age 6-59 months received iron supplements in 7 days preceding the survey. The likelihood of supplementation is, however, related with the child's age, with almost 14 percent of children age 9-11 months receiving iron supplements during the 7-day period. Similarly, only a small proportion (5 percent) of children age 6-59 months received de-worming medication in the 6 months preceding the survey. Table 11.8 shows that 76 percent of children age $6-59$ months living in households with cooking salt tested have adequately iodized salt. The availability of iodized salt is higher in urban areas than rural areas and increases with mother's level of education and wealth quintile.

Table 11.8 Micronutrient intake among children

Among youngest children age 6-35 months living with their mother, the percentage who consumed vitamin A-rich foods and iron-rich foods in the past 24 hours (day and night preceding the interview); and among all children age 6-59 months, the percentage receiving iron supplements in the 7 days preceding the survey and the percentage receiving de-worming medication in the six months preceding the survey; and among all children age 6-59 months in households with salt tested for iodine content, the percentage living in households with adequately iodized salt, by background characteristics, Albania 2008-09

Background characteristic	Among youngest children age 6-35 months living with their mother:			Among all children age 6-59 months:			Among children age 6-59 months in households with salt tested for iodine:	
	Percentage who consumed foods rich in vitamin A in past 24 hours ${ }^{1}$	Percentage who consumed foods rich in iron in past 24 hours 2	Number of children	Percentage given iron supplements in past 7 days	Percentage given deworming medication in past 6 months 3	Number of children	Percentage in households with adequately iodized salt ${ }^{4}$	Number of children
Age in months								
6-8	44.1	35.7	58	10.1	1.2	59	77.5	59
9-11	78.8	72.7	58	13.8	0.0	58	80.4	58
12-17	94.5	87.7	139	5.6	2.9	143	78.7	142
18-23	92.3	86.0	111	6.9	4.3	121	83.2	121
24-35	94.2	93.2	268	3.8	5.3	310	73.0	308
36-47	na	na	na	3.6	7.1	326	77.5	320
48-59	na	na	na	2.7	6.0	380	73.7	380
Sex								
Male	88.5	84.7	343	4.9	4.0	699	75.2	693
Female	87.2	82.3	291	4.3	6.4	699	77.2	695
Breastfeeding status								
Breastfeeding	78.7	72.7	215	7.8	1.1	223	78.7	221
Not breastfeeding	92.7	89.2	419	4.0	6.0	1,174	75.7	1,166
Mother's age at birth								
15-19	*	*	19	*	*	20	*	20
20-29	87.9	83.0	378	5.8	4.5	728	77.0	724
30-39	88.6	85.3	223	3.2	6.3	568	76.0	563
40-49	*	*	14	3.0	4.7	81	72.1	80
Residence								
Urban	90.2	86.6	252	4.9	5.2	546	86.8	544
Rural	86.4	81.6	382	4.4	5.2	852	69.3	843
Region								
Coastal	84.1	81.8	172	5.6	6.3	394	79.4	394
Central	90.0	84.1	309	5.5	3.4	643	74.0	635
Mountain	78.9	77.2	80	1.9	7.2	174	64.8	174
Urban Tirana	97.7	92.8	73	1.9	7.2	186	87.6	185
Mother's education								
No education/Primary 4-year	(82.6)	(72.6)	22	(3.0)	(6.3)	48	(67.9)	48
Primary 8-year	85.3	80.5	395	5.3	4.2	876	73.4	870
Secondary, professional, technical	92.4	88.9	149	4.0	7.8	342	78.9	339
University+	95.1	93.5	69	2.5	4.6	132	90.9	131
Wealth quintile								
Lowest	82.1	79.9	130	2.9	5.1	308	57.0	300
Second	87.8	84.0	138	4.3	5.2	294	68.0	294
Middle	84.2	77.8	157	5.7	4.6	318	82.1	317
Fourth	94.5	90.2	110	6.6	4.8	257	93.3	257
Highest	94.4	89.7	100	3.3	6.6	220	84.8	220
Total	87.9	83.6	634	4.6	5.2	1,397	76.2	1,388

Note: Information on vitamin A and iron supplements and de-worming medication is based on mother's recall. Figures in parentheses are based on 25-49 unweighted cases. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
na $=$ Not applicable
${ }^{1}$ Includes meat (and organ meat), fish, poultry, eggs, pumpkins, carrots, yellow peppers, dark green leafy vegetables, and other locally grown fruits and vegetables that are rich in vitamin A
${ }^{2}$ Includes meat, (and organ meat)
${ }^{3}$ De-worming for intestinal parasites is commonly done for helminths and for schistosomiasis.
${ }^{4}$ Salt containing 15 parts per million of iodine or more. Excludes children in households in which salt was not tested.

11.4 Micronutrient Intake among Mothers

Adequate micronutrient intake by women has important benefits for both the mother and the child. Iron supplementation of women during pregnancy protects the mother and child against anaemia. It is estimated that one-fifth of perinatal mortality and one-tenth of maternal mortality are attributable to iron deficiency anaemia (WHO, 2002b). Anaemia is associated with increased risk of premature delivery and low birth weight, and anaemia resulting from iodine deficiency is related to a number of adverse pregnancy outcomes.

Table 11.9 presents information on micronutrient intake among women age 15-49 with a child born in the past three/five years. These measures are useful in assessing the extent to which women receive adequate intake of vitamin A and iron, particularly during pregnancy, and iodine. The first two columns in Table 11.9 show consumption of vitamin A-rich and iron-rich foods in the past 24 hours by women with children under age three living with them. The results indicate that 95 percent of mothers of young children consumed vitamin A-rich foods in the 24 hours preceding the survey and 90 percent consumed iron-rich foods (i.e., meat, poultry, fish and eggs). As with micronutrient intake among children, consumption of vitamin A-rich and iron-rich foods by women is influenced by place of residence, mother's level of education, and household wealth status (quintile). Almost all women in the highest wealth quintile consume both vitamin A-rich and iron-rich foods.

Table 11.9 shows the prevalence of night blindness during pregnancy-a condition associated with vitamin A deficiency (VAD). Eight percent of women with a child born in the past five years reported night blindness during the pregnancy for the last birth. However, after adjusting for women who also reported vision problems during the day, an estimated 4 percent of Albanian women experience night blindness associated with vitamin A deficiency. The prevalence of night blindness is higher among younger women age 20-29 (4 percent) than older women (2 percent). Women in the coastal region reported higher levels of night blindness compared with women in other regions. Regarding iron supplementation during pregnancy, only 35 percent of women with a birth in the past five years reported taking iron tablets or syrup during the pregnancy for their last live birth. Among women reporting that they took iron supplements, the majority said that they took the supplements for less than 60 days. Women in urban areas, particularly those in Urban Tirana, women with a secondary or higher education, and women in the highest wealth quintile were more likely to have taken iron tablets or syrup during pregnancy than other women. Only a small proportion (3 percent) of women took de-worming medication during the pregnancy for the last live birth. Regarding iodine intake, 76 percent of women with a child born in the five years preceding the survey live in households with adequately iodized salt.
Table 11.9 Micronutrient intake among mothers
Among women age 15-49 with a child under three years living with them, the percentage who consumed vitamin A-rich foods and iron-rich foods in the 24 hours preceding the survey; among women age 15-49 with a child born in the past five years, the percentage who experienced night blindness (reported/adjusted) during the pregnancy for the last birth, the percentage who took iron
tablets or syrup for specific numbers of days during pregnancy for the last birth, and the percentage who took de-worming medication during pregnancy for the last birth; and among women age tablets or syrup for specific numbers of days during pregnancy for the last birth, and the percentage who took de-worming medication during pregnancy for the last birth; and among women age 2008-09

Background characteristic	Women with a child under three years living with them			Women with a child born in the past five years									Women with a child born in the past five years who live in households with salt tested for iodine	
				Percentage with night blindness during pregnancy for last birth		Number of days women took iron tablets or syrup during pregnancy for last birth					Percentage of women who took de-worming medication during pregnancy for last birth	Number of women	Percentage in households with adequately iodized salt ${ }^{4}$	Number of women
	Percentage who consumed vitamin Arich foods ${ }^{1}$	Percentage who consumed iron-rich foods ${ }^{2}$	Number of women											
										Don't know/				
				Reported	Adjusted 3	None	<60	60-89	$90+$	missing				
Age														
15-19	(86.2)	(80.8)	26	(9.7)	(9.7)	(58.4)	(23.5)	(4.1)	(14.0)	(0.0)	(2.8)	27	(73.1)	27
20-29	95.5	90.8	477	9.3	4.4	63.0	18.1	5.4	9.5	3.9	3.2	652	76.1	649
30-39	94.4	90.4	268	6.6	2.3	65.0	16.1	5.4	8.6	5.0	1.8	553	75.9	549
40-49	*	*	14	4.1	2.2	76.0	12.9	1.2	7.4	2.5	0.5	77	70.6	76
Residence														
Urban	97.5	95.8	305	7.0	3.6	54.3	19.0	8.3	15.3	3.2	2.3	520	87.1	517
Rural	93.2	87.1	480	8.5	3.4	71.2	15.8	3.0	5.0	4.8	2.5	790	68.1	783
Region														
Coastal	95.2	91.8	204	8.6	4.8	65.6	15.2	4.8	10.8	3.6	2.7	352	77.7	352
Central	95.3	89.3	392	7.7	3.8	65.7	16.6	3.5	9.2	5.0	2.6	624	73.8	618
Mountain	87.6	83.2	94	12.5	2.4	77.5	13.3	2.1	1.9	5.2	2.5	157	65.2	156
Urban Tirana	99.3	99.3	95	2.8	0.9	46.5	25.8	14.1	11.9	1.6	1.2	177	87.2	174
Education														
No education/Primary 4-year	(92.8)	(86.2)	27	(7.7)	(6.2)	(78.1)	(12.6)	(6.8)	(0.0)	(2.5)	(1.8)	42	(71.0)	42
Primary 8-year	93.3	88.7	491	8.7	3.8	70.5	15.1	4.2	6.1	4.1	2.6	797	71.4	791
Secondary, professional, technical	96.6	92.2	170	8.3	3.1	57.5	20.3	5.8	12.0	4.5	2.7	326	80.5	324
University+	100.0	97.2	97	2.6	2.1	43.5	22.0	8.5	21.4	4.5	1.3	145	89.4	143
Wealth quintile														
Lowest	92.5	86.1	168	11.1	4.4	77.7	14.7	0.7	3.2	3.7	2.6	284	55.1	277
Second	91.9	87.6	165	4.8	2.6	74.6	12.2	2.8	5.3	5.1	1.7	271	67.7	271
Middle	95.0	89.3	184	10.0	4.8	65.7	15.1	5.9	8.4	4.9	3.9	286	81.8	285
Fourth	96.4	92.4	140	7.4	2.2	55.8	20.9	7.0	13.7	2.6	2.9	251	90.9	250
Highest	99.8	99.3	128	5.2	3.1	43.2	24.4	10.7	17.2	4.4	0.8	217	86.2	216
Total	94.8	90.4	785	7.9	3.5	64.5	17.1	5.1	9.1	4.2	2.5	1,310	75.6	1,300

[^24]
11.5 Prevalence of Anaemia

Iron deficiency is one of the most prevalent nutrient deficiencies in the world affecting an estimated two billion people. Young children and women who are pregnant or postpartum are the most severely affected because of the high iron demands of infant growth and pregnancy. Anaemia is the condition of low levels of haemoglobin in the blood. This results in a reduced amount of oxygen being transported in the body. Iron is a main component of haemoglobin, and iron deficiency is estimated to be responsible for half of all anaemia globally. Other causes of anaemia include malaria, hookworm and other helminths, other nutritional deficiencies, chronic infections, genetic conditions that vary by region (such as sickle cell and thalassemia), HIV/AIDS, and high fertility. Anaemia is a serious concern for children because it can impair cognitive development, stunt growth, and increase morbidity from infectious diseases. Information on the prevalence of anaemia in population subgroups is useful for developing health programmes to prevent anaemia, such as promoting consumption of iron-rich foods, iron supplementation, food fortification, and de-worming programmes as appropriate. The World Health Organization has developed a system of anaemia prevalence to categorize the public health significance of anaemia: <5 percent signifies no public health problem; 5.0-19.9 percent signifies medium a public health problem; 20.0-39.9 percent indicates a high public health problem; and 40.0 percent or more is considered as very high public health problem.

The 2008-2009 ADHS included anaemia testing of children age 6-59 months and women and men age 15-49. Anaemia levels were determined by measuring the level of haemoglobin in the blood, with a decreased concentration of haemoglobin characterizing anaemia. Haemoglobin measurements were taken in the field using the HemoCue $\mathrm{Hb} 201+$ analyzer. This system uses a single drop of blood from a finger prick; the blood is drawn into a cuvette and then inserted into a portable, batteryoperated instrument. In less than one minute, the haemoglobin concentration is indicated on a digital read-out.

Prior to testing children for anaemia, the interviewer read a detailed informed consent statement to the child's parent or an adult responsible for the child's care, informing that person about anaemia, describing the procedure to be followed for the test, and emphasizing the voluntary nature of the test. The person was then asked whether or not he/she would consent to having the test done for eligible children in the household. The interviewer then signed the questionnaire to indicate that the informed consent statement had been read to the parent/responsible adult and recorded the agreement or lack of agreement to the testing. If the test was performed, at the end of the test the parent/responsible adult was given a written record of the results for each eligible child who was tested for anaemia.

11.5.1 Prevalence of Anaemia in Children

Table 11.10 shows anaemia prevalence for children age 6-59 months. Overall, 17 percent of children 6-59 months in Albania have some level of anaemia, including 11 percent of children who are mildly anaemic ($10.0-11.9 \mathrm{~g} / \mathrm{dl}$) and 6 percent who are moderately anaemic ($7.0-9.9 \mathrm{~g} / \mathrm{dl}$). Anaemia increases slightly from age 6-8 months to age 12-17 months, and declines steadily among older children. The prevalence of anaemia varies slightly by the sex of the child. Anaemia is considerably higher in rural areas than in urban areas, for children of women with no education and for lowest wealth quintile.

Compared with other DHS surveys carried out in the region that included anaemia prevalence rates for children age 6-59 months, the prevalence of anaemia among children in Albania (17 percent) is lower than the prevalence among children in Azerbaijan (37 percent) in 2006 (SSC, MOH, and Macro International, 2008), Armenia (37 percent) in 2005 (NSS, MOH, and ORC Macro, 2006), and Moldova (32 percent) in 2005 (NCPM and ORC Macro, 2006).

Table 11.10 Prevalence of anaemia in children					
Percentage of children age 6-59 months classified as having anaemia (according to haemoglobin level), by background characteristics, Albania 2008-09					
Anaemia status by haemoglobin level					
Background characteristic	$\begin{gathered} \text { Mild (10.0- } \\ 10.9 \mathrm{~g} / \mathrm{dl}) \\ \hline \end{gathered}$	$\begin{gathered} \text { Moderate } \\ (7.0-9.9 \mathrm{~g} / \mathrm{dl}) \end{gathered}$	$\begin{gathered} \text { Severe } \\ (<7.0 \mathrm{~g} / \mathrm{dl}) \end{gathered}$	$\begin{gathered} \hline \text { Any } \\ \text { anaemia } \\ (<11.0 \mathrm{~g} / \mathrm{dl}) \\ \hline \end{gathered}$	Number of children
Age in months					
6-8	16.4	9.4	0.0	25.8	41
9-11	12.8	12.4	0.0	25.2	55
12-17	20.1	11.8	0.0	31.8	137
18-23	13.0	12.8	0.0	25.8	120
24-35	11.2	6.3	0.4	18.0	296
36-47	9.4	3.9	0.0	13.2	304
48-59	8.0	2.1	0.0	10.1	369
Sex					
Male	10.9	7.2	0.0	18.1	646
Female	11.5	5.0	0.2	16.7	676
Residence					
Urban	9.5	3.6	0.0	13.1	537
Rural	12.4	7.8	0.2	20.3	785
Region					
Coastal	14.2	6.8	0.3	21.3	385
Central	9.7	6.7	0.0	16.3	595
Mountain	15.7	8.4	0.1	24.2	161
Urban Tirana	6.0	0.5	0.0	6.5	182
Mother's education					
No education/Primary 4-year	(11.0)	(8.7)	(0.0)	(19.7)	44
Primary 8-year	13.3	6.4	0.2	19.9	828
Secondary, professional, technical	7.0	5.7	0.0	12.7	311
University+	7.9	3.1	0.0	11.0	125
Wealth quintile					
Lowest	12.0	8.4	0.0	20.4	287
Second	11.1	9.5	0.0	20.6	272
Middle	11.4	5.5	0.5	17.4	297
Fourth	11.8	4.5	0.0	16.3	252
Highest	9.4	1.1	0.0	10.5	214
Total	11.2	6.1	0.1	17.4	1,322
Note: Table is based on children who slept in the household the night before the interview. Anaemia prevalence is adjusted for altitude using CDC formulas (CDC, 1998). Haemoglobin is measured in grams per decilitre (g/dl). Figures in parentheses are based on 25-49 unweighted cases.					

11.5.2 Prevalence of Anaemia in Women and Men

The same equipment and procedures used to measure anaemia in children were employed to measure anaemia in women and men. Three levels of severity of anaemia are distinguished: mild anaemia (10.0-10.9 g/dl for pregnant women, 10.0-11.9 g/dl for non-pregnant women, and 12.0-12.9 g / dl for men); moderate anaemia (7.0-9.9 g/dl for women and 9.0-11.9 g/dl for men); and severe anaemia (less than $7.0 \mathrm{~g} / \mathrm{dl}$ for women and less than $9.0 \mathrm{~g} / \mathrm{dl}$ for men). Tables 11.11.1 and 11.11.2 present anaemia prevalence by haemoglobin levels for women and men age 15-49; 19 percent of the women and 5 percent of men were found to be anaemic. Sixteen percent of women are mildly anaemic and 3 percent are moderately anaemic.

The prevalence of anaemia in women is somewhat higher among older women age 40-49 (23 percent) than younger women age 15-19 (18 percent). Anaemia tends to increase with increasing number of children ever born and decrease with increasing level of education and household wealth status. Anaemia is more prevalent among women who are breastfeeding (28 percent) and nonpregnant, non-lactating women (19 percent) than among pregnant women (12 percent). The prevalence of anaemia is also higher among rural women (23 percent) compared with urban women (15 percent).

Percentage of women age 15-49 with anaemia (according to haemoglobin level and pregnancy status), by background characteristics, Albania 2008-09						
Background characteristic	Not pregnant	Anaemia status by haemoglobin level			$\begin{gathered} \text { Any } \\ \hline<12.0 \\ \mathrm{~g} / \mathrm{dl} \end{gathered}$	Number of women
		Mild	Moderate $7.0-9.9$ $\mathrm{~g} / \mathrm{dl}$ $7.0-9.9$	Severe <7.0 g/dl		
		$\begin{gathered} 10.0-11.9 \\ \mathrm{~g} / \mathrm{dl} \\ \hline \end{gathered}$				
	Pregnant	$\begin{gathered} 10.0-10.9 \\ \mathrm{~g} / \mathrm{dl} \\ \hline \end{gathered}$	$\begin{gathered} 7.0-9.9 \\ \mathrm{~g} / \mathrm{dl} \\ \hline \end{gathered}$	$\begin{aligned} & \hline<7.0 \\ & \mathrm{~g} / \mathrm{dl} \\ & \hline \end{aligned}$	$\begin{gathered} <11.0 \\ \mathrm{~g} / \mathrm{dl} \\ \hline \end{gathered}$	
Age						
15-19		16.9	0.9	0.1	17.9	1,430
20-29		14.0	1.6	0.0	15.7	1,794
30-39		15.8	2.6	0.1	18.6	1,945
40-49		18.1	4.3	0.2	22.5	2,274
Number of children ever born						
0		13.9	1.3	0.0	15.3	2,669
1		15.1	1.7	0.0	16.8	667
2-3		17.6	3.5	0.2	21.3	3,348
4-5		19.3	3.4	0.0	22.7	642
6+		22.4	4.2	0.0	26.6	117
Maternity status						
Pregnant		7.9	4.0	0.0	11.9	149
Breastfeeding		25.7	2.3	0.0	27.9	361
Neither		16.0	2.6	0.1	18.6	6,933
Using IUD						
Yes		12.0	6.6	0.0	18.6	46
No		16.3	2.5	0.1	19.0	7,397
Smoking status						
Smokes cigare	ttes/tobacco	16.0	1.7	0.0	17.6	314
Does not smo		16.3	2.6	0.1	19.0	7,129
Residence						
Urban		13.0	1.5	0.1	14.6	3,348
Rural		19.0	3.4	0.1	22.5	4,095
Region						
Coastal		17.0	3.0	0.2	20.2	2,101
Central		18.0	3.1	0.1	21.2	3,379
Mountain		15.2	1.6	0.0	16.9	769
Urban Tirana		11.0	0.9	0.0	11.9	1,195
Education						
No education	/Primary 4-year	24.9	2.4	0.0	27.3	124
Primary 8-yea		18.1	3.2	0.2	21.4	3,641
Secondary, p technical	ofessional,	15.5	2.5	0.0	18.0	2,681
University+		10.8	0.5	0.0	11.2	996
Wealth quintile						
Lowest		19.6	3.2	0.2	23.1	1,470
Second		19.7	3.5	0.2	23.4	1,457
Middle		17.4	2.7	0.1	20.2	1,489
Fourth		13.1	2.4	0.1	15.6	1,466
Highest		11.9	1.0	0.0	12.9	1,560
Total		16.3	2.6	0.1	19.0	7,443

Comparing anaemia prevalence among women tested in other DHS surveys in the region, anaemia among women in Albania (19 percent) is lower than that in Azerbaijan (39 percent) in 2006 (SSC, MOH, and Macro International, 2008), Moldova (28 percent) in 2005 (NCPM and ORC Macro, 2006), and Armenia (25 percent) in 2005 (NSS, MOH, and ORC Macro, 2006). Additionally, recent estimates prepared by the World Health Organization (WHO, 2008), indicate that the prevalence of anaemia among pregnant women in Albania is lower than that in Bosnia and Herzegovina (35 percent) and FYR of Macedonia (32 percent), and slightly higher than the prevalence of anaemia among pregnant women in Croatia (12 percent), Italy (16 percent), and Slovenia (19 percent).

Table 11.11 .2 shows the prevalence of anaemia among men age $15-49$. Of the 2,897 men tested for anaemia, only 5 percent had some form of anaemia. In general, the pattern of anaemia prevalence for men-by age, residence, region, education, and wealth quintile-is similar to that for women. However, prevalence is higher for men age 15-19 (6 percent) than for men age 20-29 (4 percent). Anaemia increases again to 6 percent among men age $30-39$ and then drops to 3 percent among men age 40-49.

Table 11.11.2 Prevalence of anaemia in men				
Percentage of men age 15-49 with anaemia (according to haemoglobin level), by background characteristics, Albania 2008-09				
Anaemia status by haemoglobin level				
Background characteristic	{ff4d7fe50-a4db-42d1-9318-0201355a9405} Mild anaemia }$12.0-12.9 \mathrm{~g} / \mathrm{dl}$	$\begin{gathered} \begin{array}{c} \text { Moderate } \\ \text { anaemia } \end{array} \\ 9.0-11.9 \mathrm{~g} / \mathrm{dl} \end{gathered}$	$\begin{gathered} \hline \begin{array}{c} \text { Any } \\ \text { anaemia } \end{array} \\ \hline<13.0 \mathrm{~g} / \mathrm{dl} \\ \hline \end{gathered}$	Number of men
Age				
15-19	5.6	0.4	6.0	628
20-29	4.4	0.0	4.4	635
30-39	5.2	0.7	5.9	629
40-49	3.4	0.0	3.4	1,006
Smoking status				
Smokes cigarettes/tobacco	6.2	0.3	6.5	1,234
Does not smoke	3.2	0.2	3.4	1,663
Residence				
Urban	3.0	0.1	3.0	1,368
Rural	5.8	0.4	6.2	1,529
Region				
Coastal	4.4	0.1	4.5	784
Central	5.6	0.4	6.0	1,357
Mountain	4.6	0.2	4.8	270
Urban Tirana	1.5	0.0	1.5	486
Education				
No education/Primary 4-year	13.1	0.0	13.1	54
Primary 8-year	5.8	0.0	5.8	1,123
Secondary, professional, technical	3.9	0.5	4.4	1,364
University+	1.3	0.0	1.3	356
Wealth quintile				
Lowest	7.8	0.1	7.9	458
Second	5.2	0.6	5.8	578
Middle	5.5	0.4	5.8	614
Fourth	3.8	0.0	3.8	605
Highest	1.2	0.1	1.3	641
Total	4.5	0.2	4.7	2,897
Note: Anaemia prevalence is adjusted for altitude and for smoking status if known using CDC formulas (CDC, 1998).				

11.6 Nutritional Status of Children

The nutritional status of children under age five years is an important outcome measure of children's health. Marked differences, especially in height-for-age and weight-for-age, are often seen between sub-groups of a population. It has also been noted that there is often a worsening of nutritional status during the first year of life which is a critical period for growth and development. One of the major contributions of DHS surveys to the study of child health is the anthropometric measurements collected for all children under five years of age. In the 2008-09 ADHS, height (length) and weight were obtained for all eligible children. From this information, the following standard indices are used to describe the nutritional status of children:

- Height-for-age
- Weight-for-height
- Weight-for-age

The nutritional status of children in the 2008-09 ADHS presented in this chapter is assessed based on the reference population used for the 2006 World Health Organization (WHO) Child Growth Standards. ${ }^{1}$ The WHO child growth standards are based on an international sample of healthy children from Brazil, Ghana, India, Norway, Oman, and the USA, and replace the previously used NCHS/CDC/WHO reference. The use of international growth standards in analyzing the nutritional status of Albanian children is based on the finding that well-nourished children in all populations follow similar growth patterns before puberty. The international reference population serves as a point of comparison, facilitating the examination of differences in anthropometric measurements between population sub-groups and changes in nutritional status over time.

Table 11.12 shows the nutritional status of children under five according to three anthropometric indices: height-for-age, weight-for-height, and weight-for-age. Height-for-age provides an indicator of linear growth retardation (stunting) in children. Children who are below minus two standard deviations (-2 SD) from the median of the WHO reference population in terms of height-for-age are considered short for their age (stunted) or chronically malnourished. Severe linear growth retardation reflects failure to receive adequate nutrition over a number of years and may also be affected by recurrent and chronic illness. Height-for-age, therefore, represents a measure of the long-term effects of malnutrition in a population and does not vary appreciably according to the time of year in which the data were collected. Stunted children are not immediately obvious in a population because their body proportions appear to be normal. For example, a stunted three-year-old may look like a well-fed two-year-old. It should be noted that the WHO growth standards are not comparable with the older NCHS/CDC/WHO reference. As a result, levels of stunting will be greater using the WHO standards compared with the NCHS/CDC/WHO reference.

The weight-for-height index looks at body mass in relation to body length. Children who are below minus two standard deviations ($-2 \mathrm{SD} \mathrm{)} \mathrm{from} \mathrm{the} \mathrm{median} \mathrm{of} \mathrm{the} \mathrm{WHO} \mathrm{reference} \mathrm{population} \mathrm{in}$ terms of weight-for-height are considered too thin (wasted) or acutely malnourished. Wasting represents the failure to receive adequate nutrition in the period immediately before the survey and may be the result of recent illness episodes, especially diarrhoea, or seasonal variations in the food supply. The level of wasting in infancy is substantially higher using the WHO growth standards compared with the NCHS/CDC/WHO reference.

[^25]Overweight (and obesity), which are measured by weight-for-height, are becoming a problem for children in some developing countries. The percentage of children whose weight-for-height is more than two standard deviations above (+2 SD) the median of the WHO reference population are considered overweight, and are an indication of the level of the potential problem of overnutrition.

Weight-for-age (underweight) is a combined index that takes into account both chronic and acute malnutrition and is often used to monitor nutritional status on a longitudinal basis. It is presented in DHS reports to allow comparison with the results of studies or clinic-based monitoring efforts that employ the weight-for-age measure. Like weight-for-height, this index is subject to seasonal variation. The use of the new WHO growth standards results in substantial increases in underweight during the first half of infancy ($0-6$ months) and a decrease thereafter, compared with the NCHS/CDC/WHO reference.

Table 11.12 shows the percentage of children classified as undernourished by background characteristics and Figure 11.3 shows children's nutritional status by age. Overall, the 2008-09 ADHS found that 19 percent of children under age five are stunted and 11 percent are severely stunted. Stunting occurs even among children under six months of age (33 percent). Levels of stunting decrease with age, from 33 percent among children less than six months of age to 12 percent among those age 48-59 months. In-between, there are substantial fluctuations, with 18 percent of children age 12-17 months stunted and 29 percent of children age 18-23 months stunted. Thereafter, stunting declines with minor fluctuations to 12 percent in the oldest age group. Stunting is slightly higher among girls than boys (21 and 18 percent, respectively). Stunting does not vary substantially by length of the preceding birth interval.

There are some socio-economic differentials in stunting. Children in urban areas are slightly more likely to be stunted than those in rural areas (20 and 19 percent, respectively). The percentage of children stunted varies by region, ranging from 18 percent in Urban Tirana and the Central region to 28 percent in the Mountain region. Stunting levels decreased as mother's level of education increases. Children in the lowest wealth quintile are twice as likely to be stunted as children in the highest wealth quintile (27 percent compared with 13 percent).

Wasting reflects the effects of acute malnutrition on children's nutritional status, usually resulting from recent food shortages or recent episodes of diarrhoeal or other illness that contribute to malnutrition. Overall, the 2008-09 ADHS results show that 9 percent of children under five years are wasted, and 6 percent are severely wasted. Looking at the differentials by background characteristics, it can be seen that wasting is highest among children under six months (27 percent); it is higher among boys (11 percent) than girls (7 percent), higher in urban areas (11 percent) than rural areas (8 percent), and higher in Urban Tirana (13 percent) than the other regions. Twelve percent of children whose mothers have university or higher education and children in the highest wealth quintile are wasted.

Underweight in children reflects the combined effects of both chronic (long-term) and acute (short-term) malnutrition. Overall, the 2008-09 ADHS results show that 5 percent of children under five years are underweight for their age and 2 percent are severely underweight. Children under six months of age (11 percent) are most likely to be underweight, along with children in the Mountain region (9 percent), and children in the lowest wealth quintile (8 percent)

Table 11.12 shows the percentage of children considered overweight or obese by background characteristics. Overall, 22 percent of children under five years are overweight or obese and there is little difference by urban-rural residence (22 and 21 percent, respectively). The highest levels of overweight are seen among children whose prior birth interval is 24-47 months and children in the lowest (poorest) wealth quintile (28 percent each); 25 percent of children are overweight among children under six months of age, children age 18-23 months, children in the Central region, and children of mothers with university or higher education; 24 percent of children under five in Urban Tirana are overweight.

Table 11.12 Nutritional status of children													
Percentage of children under five years classified as malnourished according to three anthropometric indices of nutritional status: height-for-age, weight-for-height, and weight-for-age, by background characteristics, Albania 2008-09													
	Height-for-age			Weight-for-height				Weight-for-age				$\begin{gathered} \text { Number } \\ \text { of } \\ \text { children } \end{gathered}$	
Background characteristic	$\begin{gathered} \text { Percentage } \\ \text { below } \\ -3 \mathrm{SD} \\ \hline \end{gathered}$	$\begin{gathered} \text { Percentage } \\ \text { below } \\ -2 \text { SD }^{1} \\ \hline \end{gathered}$	Mean Z- score (SD)	$\begin{gathered} \text { Percentage } \\ \text { below } \\ -3 \mathrm{SD} \\ \hline \end{gathered}$	$\begin{gathered} \text { Percentage } \\ \text { below } \\ -2 \text { SD }^{1} \end{gathered}$	Percentage above +2 SD	Mean Z- score (SD)	$\begin{gathered} \text { Percentage } \\ \text { below } \\ -3 \mathrm{SD} \\ \hline \end{gathered}$	$\begin{gathered} \text { Percentage } \\ \text { below } \\ -2 \text { SD }^{1} \\ \hline \end{gathered}$	Percentage above +2 SD	Mean Zscore (SD)		
Age in months													
<6	19.7	32.8	-0.4	12.6	26.9	24.7	-0.0	3.3	11.3	2.4	-0.5	94	
6-8	(15.9)	(23.5)	(-0.5)	(4.1)	(10.0)	(22.4)	(0.5)	(5.7)	(8.2)	(4.0)	(-0.1)	41	
9-11	15.2	32.3	-0.4	5.2	6.9	15.4	0.4	0.0	8.3	2.5	-0.0	51	
12-17	7.1	17.9	0.0	4.4	6.7	24.3	0.7	3.4	4.0	14.5	0.5	123	
18-23	16.6	29.3	-0.6	3.4	7.0	25.2	0.6	0.5	6.4	5.1	0.1	112	
24-35	9.9	17.1	-0.3	4.9	9.4	18.4	0.5	1.1	3.9	5.9	0.2	255	
36-47	10.4	19.4	-0.5	5.6	8.0	23.8	0.7	1.3	3.7	5.8	0.2	272	
48-59	6.6	11.8	-0.4	5.3	6.9	20.5	0.6	1.4	5.0	5.5	0.2	339	
Sex													
Male	9.3	17.6	-0.3	6.7	11.2	21.1	0.4	1.8	5.8	5.3	0.1	634	
Female	11.7	20.9	-0.5	4.4	7.1	22.3	0.7	1.5	4.6	6.9	0.2	654	
Birth interval in months ${ }^{2}$													
First birth ${ }^{3}$	8.8	14.5	-0.2	6.3	10.0	19.6	0.4	2.1	5.3	6.3	0.2	426	
<24	17.6	26.5	-0.9	4.3	8.6	17.2	0.3	3.3	7.2	2.6	-0.3	128	
24-47	15.7	24.7	-0.6	4.6	7.4	27.7	0.9	1.3	5.2	7.4	0.2	295	
48+	6.3	18.0	-0.3	5.3	9.7	20.7	0.6	0.6	4.3	5.6	0.2	406	
Size at birth ${ }^{2,4}$													
Small/Very small	14.5	22.3	-0.5	2.4	8.4	20.6	0.5	0.9	3.6	2.1	0.0	97	
Average or larger	10.2	19.1	-0.4	5.7	9.2	21.7	0.6	1.6	5.2	6.1	0.2	1,150	
Mother's nutritional status ${ }^{5}$													
Normal/Thin (BMI													
Overweight/ Obes $($ BMI $\geq 25)$	Overweight/ Obese											564	
Residence													
Urban	10.6	19.8	-0.4	6.1	10.6	22.1	0.5	1.9	4.6	6.2	0.2	522	
Rural	10.5	18.9	-0.4	5.1	8.2	21.4	0.6	1.5	5.7	6.0	0.1	766	
Region													
Coastal	9.4	17.9	-0.6	4.2	8.1	15.3	0.4	1.8	6.0	3.8	-0.1	382	
Central	10.1	18.4	-0.3	5.4	8.8	25.3	0.7	1.0	4.2	6.1	0.3	590	
Mountain	16.7	27.8	-1.0	3.7	9.1	21.7	0.6	4.0	9.2	8.1	-0.1	144	
Urban Tirana	9.3	18.3	-0.0	10.4	12.8	23.6	0.4	1.6	3.5	9.2	0.3	173	
Mother's education 20.20 .6													
Primary 4-year	(23.3)	(31.2)	(-0.7)	(5.5)	(16.9)	(13.6)	(0.0)	(1.8)	(11.0)	(3.7)	(-0.4)	45	
Primary 8-year	11.0	19.7	-0.5	5.3	8.5	21.9	0.6	1.3	5.2	4.9	0.1	801	
Secondary, professional, technical	6.2	17.2	-0.3	5.3	8.9	20.2	0.6	2.0	4.7	7.3	0.2	294	
University+	11.5	17.0	0.0	7.6	11.6	25.0	0.6	2.9	5.1	11.1	0.4	137	
Wealth quintile													
Lowest	15.8	27.0	-0.9	3.7	6.4	28.2	0.8	2.0	7.9	6.8	-0.0	270	
Second	9.2	15.4	-0.3	6.3	11.7	16.1	0.4	1.9	3.5	4.5	0.1	247	
Middle	8.9	18.9	-0.3	5.5	9.3	21.7	0.6	1.2	5.9	3.5	0.3	302	
Fourth	10.0	20.6	-0.5	4.6	6.9	19.2	0.5	1.4	4.7	7.4	0.1	247	
Highest	8.6	13.3	0.0	7.7	11.9	22.8	0.5	1.8	3.6	9.1	0.3	223	
Total	10.5	19.3	-0.4	5.5	9.1	21.7	0.6	1.7	5.2	6.1	0.2	1,289	
Note: Table is based on children who slept in the household the night before the interview. Each of the indices is expressed in standard													
deviation units (SD) from the median of the WHO Child Growth Standards adopted in 2006. The indices in this table are NOT comparable to those based on the previously used NCHS/CDC/WHO reference. Table is based on children with valid dates of birth (month and year) and valid													
measurement of both height and weight. Figures in parentheses are based on 25-49 unweighted cases. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.													
${ }^{1}$ Includes children who are below -3 standard deviations (SD) from the WHO Child Growth standards population median													
${ }^{2}$ Excludes children whose mothers were not interviewed													
${ }^{3}$ First born twins (triplets, etc.) are counted as first births because they do not have a previous birth interval.													
${ }^{4}$ Excludes 7 cases in which information on the child's size at birth was missing													
${ }^{5}$ Excludes children whose mothers were not weighed and measured. Mother's nutritional status in terms of BMI (Body Mass Index) is presented													

The results from the 2005 MICS found that 20 percent of children age $0-59$ months were overweight, with weight-for-height more than two standard deviations above the median of the reference population. Overweight was distributed across all age groups, but higher among children age 18-23 months and under six months (25 percent each). Urban Tirana and the Central region have higher proportions of overweight children (24 and 25 percent, respectively). Children with mothers who have higher education and those in the lowest wealth quintile are more likely to be overweight (28 and 23 percent, respectively) that other children.

Figure 11.3 Nutritional Status of Children by Age

Note: Stunting reflects chronic malnutrition; wasting reflects acute malnutrition; underweight reflects chronic or acute malnutrition or a combination of both. Plotted values are smoothed by a five-month moving average.

11.7 Trends in Child Nutrition

As noted earlier, the 2008-09 ADHS nutritional status findings are based on the WHO Child Growth Standards adopted in 2006 and, therefore, are not comparable with the previously used NCHS/CDC/WHO reference. However, to assess the nutritional status of Albanian children over time, the 2008-09 nutritional indices were also run using the NCHS/CDC/WHO reference, then compared with the findings from the 2000 (INSTAT, 2002) and 2005 MICS (INSTAT, 2008) surveys (see Figure 11.4). The nutritional status of Albanian children has improved gradually over the past decade. Stunting among children under five has declined from 32 percent in 2000 to 22 percent in 2005 to 16 percent in 2008-09. The proportion of children who are wasted has dropped from 11 percent in 2000 to 7 percent in 2005 to 7 percent in 2008-09. Finally, the percentage of underweight children has decreased from 14 percent in 2000 to 8 percent in 2005 to 6 percent in 2008-09.

11.8 Nutritional Status of Women and Men

The 2008-09 ADHS collected information on the height and weight of women and men age 15-49. The scales and measuring boards used to measure the children were also used for measuring women and men. Two indicators of nutritional status are presented for adults-height and body mass index (BMI). Adult height is the outcome of several factors but is particularly affected by nutritional status during childhood and adolescence. Therefore, height can be used to identify women at risk of having a difficult delivery; short stature is related to small pelvis size. The risk of having a baby with low birth weight is also higher for women with short stature. The height cut-off point, below which a woman can be identified as at risk, varies among populations, but it is usually considered to be in the range of $140-150$ centimetres. The cut-off point used for the 2008-09 ADHS is 145 cm .

The body mass index (BMI), which is calculated from height and weight measurements, is the ratio, weight in kilograms divided by height in metres squared $\left(\mathrm{kg} / \mathrm{m}^{2}\right)$. This BMI excludes women who were pregnant at the time of the survey and women who gave birth during the two months preceding the survey. A cut-off point of 18.5 is used to define undernutrition while a BMI of 25 defines overnutrition (overweight); a BMI of 30 defines obesity.

Tables 11.13.1 and 11.13.2 present the results from the 2008-09 ADHS on nutritional status of women and men using mean values and percentages for height and BMI. The BMI risk categories range from <18.5 to ≥ 30.0. The results are presented according to background characteristics. Persons for whom there was no information on height and/or weight or for whom a BMI could not be estimated are excluded from the analysis. Less than 1 percent of women are under 145 cm in height and the mean height for women is 161 cm . The percentage of women who are below 145 cm does not vary much by age. There is a positive relationship between height and wealth status, with the shortest mean height among women in the lowest (poorest) wealth quintile (159 cm) and the tallest mean height among women in the highest (richest) wealth quintile (164 cm). Women in urban areas are taller on average than women in rural areas (163 cm and 160 cm , respectively), and women in Urban Tirana (165 cm) are about five centimetres taller than women in the other regions (160 cm each).

Table 11.13.1 Nutritional status of women

Among women age 15-49, the percentage with height under 145 cm , mean height, mean body mass index (BMI), and the percentage with specific BMI levels, by background characteristics, Albania 2008-09

Background characteristic	Height			Mean Body Mass Index (BMI)	Body Mass Index ${ }^{1}$								
				Normal $18.5-$ 24.9 (total normal)	Thin			Overweight/obese			Number of women		
						<17	≥ 25.0						
	Percent- age below $145 \mathrm{~cm}$	Mean height	Number of women		<18.5 (total thin)	$\begin{gathered} 17.0- \\ 18.4 \\ \text { (mildly } \\ \text { thin) } \\ \hline \end{gathered}$	(moderately and severely thin)	(total overweight or obese)	$\begin{gathered} 25.0- \\ 29.9 \\ \text { (over- } \\ \text { weight) } \\ \hline \end{gathered}$	$\begin{gathered} \geq 30.0 \\ \text { (obese) } \\ \hline \end{gathered}$			
Age													
15-19	0.5	161.1	1,458		21.6	83.6	8.5	6.9	1.7	7.9	6.5	1.4	1,442
20-29	0.5	161.8	1,806	23.1	72.8	4.5	3.8	0.7	22.8	19.4	3.4	1,690	
30-39	0.7	160.7	1,952	25.4	49.9	1.1	1.0	0.1	49.0	37.7	11.3	1,904	
40-49	0.9	160.3	2,296	26.6	36.3	0.6	0.5	0.1	63.1	45.0	18.1	2,294	
Residence													
Urban	0.3	162.5	3,370	24.4	57.8	3.6	2.9	0.7	38.6	29.3	9.3	3,293	
Rural	1.0	159.6	4,141	24.5	57.3	2.9	2.4	0.4	39.8	29.9	9.9	4,037	
Region													
Coastal	0.6	160.2	2,120	25.0	52.5	3.0	2.7	0.4	44.5	32.9	11.6	2,071	
Central	0.8	160.2	3,426	24.6	56.6	2.7	2.0	0.7	40.8	30.0	10.8	3,341	
Mountain	1.0	160.3	768	24.1	63.5	2.6	2.1	0.4	33.9	27.3	6.5	750	
Urban Tirana	0.1	164.6	1,197	23.5	65.5	5.2	4.5	0.6	29.4	24.2	5.2	1,169	
Education													
No education/													
Primary 4-year	0.0	160.4	124	23.7	65.2	5.3	3.9	1.5	29.5	23.4	6.1	120	
Primary 8-year	1.0	159.7	3,672	24.9	54.0	2.2	1.8	0.4	43.9	32.9	10.9	3,569	
Secondary, professional, technical	0.4	161.4	2,711	24.5	57.5	3.6	2.9	0.7	38.9	29.0	9.9	2,668	
University+	0.1	164.3	1,003	23.2	69.9	5.4	4.8	0.6	24.8	20.0	4.8	974	
Wealth quintile													
Lowest	1.5	159.2	1,483	24.0	64.7	2.5	1.9	0.6	32.8	26.0	6.8	1,452	
Second	0.6	159.5	1,472	24.7	55.1	2.3	1.9	0.4	42.6	31.9	10.7	1,439	
Middle	0.9	160.5	1,516	24.9	51.9	4.4	3.6	0.8	43.7	32.3	11.4	1,477	
Fourth	0.3	161.4	1,474	24.6	58.1	2.2	1.9	0.3	39.8	29.5	10.2	1,446	
Highest	0.1	163.8	1,567	24.3	58.0	4.4	3.8	0.6	37.6	28.4	9.2	1,517	
Total	0.7	160.9	7,511	24.5	57.5	3.2	2.6	0.5	39.3	29.6	9.7	7,330	

Note: The Body Mass Index (BMI) is expressed as the ratio of weight in kilogrammes to the square of height in metres $\left(\mathrm{kg} / \mathrm{m}^{2}\right)$.
${ }^{1}$ Excludes pregnant women and women with a birth in the preceding 2 months

Table 11.13 .1 shows substantial variation in the BMI for women age 15-49 in Albania. The mean BMI is 24.5 , varying from 22 to 27 among different sub-groups. Chronic energy deficiency is usually indicated by a BMI of less than 18.5. Just over 3 percent of women in Albania have a BMI below 18.5, indicating a low level of nutritional deficiency. Among women who are thin, almost all are mildly thin. On the other hand, 39 percent of women are overweight or obese (30 percent are overweight and 10 percent are obese). Overweight and obesity are substantial problems among some groups, particularly older women and women in the Coastal region. Levels of overweight and obesity increase substantially by age. Comparing women age 15-19 with women age 40-49, overweight increases from 7 to 45 percent and obesity increases from 1 to 18 percent. Women in the lowest quintile have lower levels of overweight and obesity; however, there is no overall pattern by wealth quintile.

Table 11.13 .2 shows the results from the 2008-09 ADHS on the nutritional status of men age $15-49$. The mean body mass index for men (25.4) is similar to that for women (24.5) and increases with age from 23.0 among men age 15-19 to 26.9 among men age 40-49. Only 1 percent of men age 15-49 are thin, compared with 3 percent of women. The patterns of thinness among sub-groups of men are similar to those for women; however, the percentage overweight is higher for men (53 percent) than for women (39 percent); men are slightly less likely to be obese than women (9 and 10 percent, respectively). Looking at differentials in nutritional status, the patterns of overweight and obesity are similar for men and women by age, with men age 40-49 substantially more likely to be overweight or obese (74 percent) than men age 15-19 (21 percent). Only 46 percent of men and 58 percent of women have a BMI within the normal range of 18.5-24.9.

Table 11.13.2 Nutritional status of men
Among men age 15-49, mean body mass index (BMI), and the percentage with specific BMI levels, by background characteristics, Albania 2008-09

Background characteristic	Body Mass Index								
	Mean Body Mass Index (BMI)	Normal $18.5-24.9$ (total normal)	Thin			Overweight/obese			Number of men
			$\begin{aligned} & <18.5 \\ & \text { (total } \\ & \text { thin) } \end{aligned}$	$\begin{gathered} 17.0- \\ 18.4 \\ \text { (mildly } \\ \text { thin) } \\ \hline \end{gathered}$	<17 (moderately and severely thin)	≥ 25.0 (total over- weight or obese)	$\begin{gathered} 25.0- \\ 29.9 \\ \text { (over- } \\ \text { weight) } \end{gathered}$	$\begin{aligned} & \geq 30.0 \\ & \text { (obese) } \\ & \hline \end{aligned}$	
Age									
15-19	23.0	76.7	2.8	2.3	0.6	20.5	19.2	1.3	657
20-29	24.5	60.8	1.1	0.8	0.3	38.1	35.2	3.0	649
30-39	26.4	30.6	0.3	0.3	0.0	69.1	59.8	9.3	635
40-49	26.9	25.7	0.2	0.2	0.0	74.1	58.0	16.1	1,031
Residence									
Urban	25.5	44.0	0.6	0.5	0.0	55.5	46.7	8.7	1,389
Rural	25.3	47.2	1.4	1.0	0.4	51.4	43.2	8.3	1,583
Region									
Coastal	25.6	45.2	0.7	0.5	0.2	54.1	44.0	10.0	795
Central	25.3	46.3	1.3	1.1	0.3	52.4	44.3	8.0	1,414
Mountain	25.0	50.1	0.6	0.4	0.2	49.3	44.3	5.0	271
Urban Tirana	25.6	42.3	0.7	0.7	0.0	57.0	47.7	9.3	492
Education									
No education/Primary 4-year	24.9	54.0	1.9	1.9	0.0	44.1	40.6	3.4	54
Primary 8-year	25.5	45.7	0.7	0.4	0.3	53.7	45.1	8.5	1,164
Secondary, professional, technical	25.3	45.9	1.2	1.2	0.0	53.0	44.5	8.4	1,396
University+	25.6	43.9	1.2	0.6	0.6	54.9	45.5	9.3	359
Wealth quintile									
Lowest	25.1	49.5	1.1	0.7	0.4	49.5	43.5	6.0	466
Second	25.0	49.0	2.0	1.4	0.7	49.0	40.3	8.6	593
Middle	25.4	47.1	0.7	0.7	0.0	52.2	44.9	7.2	645
Fourth	25.7	41.1	1.0	1.0	0.0	57.8	48.2	9.7	618
Highest	25.7	42.9	0.3	0.3	0.0	56.8	46.6	10.2	651
Total	25.4	45.7	1.0	0.8	0.2	53.3	44.8	8.5	2,972
Note: The Body Mass Index (BMI) is expressed as the ratio of weight in kilogrammes to the square of height in metres ($\mathrm{kg} / \mathrm{m}^{2}$) .									

HIV/AIDS-RELATED KNOWLEDGE, ATTITUDES, AND BEHAVIOUR

Acquired immune deficiency syndrome (AIDS) is caused by a human immunodeficiency virus (HIV) that weakens the immune system, making the body susceptible to and unable to recover from other diseases. HIV/AIDS is an international pandemic, with cases reported from every country. As of the end of 2008, Albania was still considered a low HIV prevalence country. However, there is an upward trend in the number of new case diagnosed, and estimates indicate higher numbers of undiagnosed cases. As of November 2008, 291 persons were diagnosed with HIV in Albania. About 90 percent of HIV infections occurred as a result of sexual contact (Epidemiological Situation Report, IPH, 2009).

Most cases of HIV in Albania have been diagnosed among women and men age 25-44. Since 2000, however, an increasing proportion of women have contracted HIV/AIDS. Sixteen cases of mother-to-child transmission have been identified (Epidemiological Situation Report, IPH, 2009).

The National Programme for Prevention and Control of HIV/AIDS (NPPC) was established at the Institute of Public Health (IPH) by the Ministry of Health (MoH) in August 1987 with direct support from the World Health Organization (WHO). The programme aimed to establish a comprehensive, organized, and scientific, evidence-based prevention and control programme for HIV/AIDS.

Highlights in the development of Albania's national programme include:

- The recruitment of a multidisciplinary team of physicians, epidemiologists, psychologists and social workers at IPH with the responsibility for coordinating HIV/AIDS prevention activities and monitoring Albania's epidemiological situation.
- The establishment in 2003 of an inter-ministerial HIV/AIDS committee which aimed to strengthen political efforts for fighting HIV/AIDS.
- Establishing Albania's Country Coordinating Mechanism (CCM), which meets regularly, with participation of government, non-governmental organizations (NGOs), and people living with HIV/AIDS.
- The establishment of the CCM paved the way for Albania's successful application for a Global Fund grant of approximately US $\$ 5$ million to be monitored by IPH and to be implemented in two phases over five years beginning in early 2007.
- The strengthening of the behavioural and biological surveillance system through second generation surveillance and the establishment of a single monitoring and evaluation system in 2005.
- The provision of free medical treatment for patients with AIDS since 2004 with support from foreign donors and UN agencies.
- The third national conference on HIV/AIDS, which took place in March 2004, adopted the National Strategy for HIV/AIDS Prevention and Control in Albania, which was revised in 2008. There is a detailed implementation plan relating to this strategy. The key implementation structure is the NPPC, located within the Institute of Public Health. The programme seeks to coordinate activities of governmental structures, NGOs, and inter-
national organizations and to ensure that all activities are conducted according to agreed national policies and standards. Staff of the programme collaborate closely with the National Reference Laboratory, also located at the Institute of Public Health. This laboratory is responsible for the laboratory diagnosis of HIV infection and other STIs.
- In 2005, a detailed HIV/AIDS monitoring and evaluation plan was introduced based on the national strategy.

The new national law on HIV and AIDS was proclaimed in July 2008. This law addresses prevention and control of the spread of HIV, and related social issues. The prevention programme is coordinated by the Ministry of Health but, importantly, involves key line-ministries and institutions such as the Ministry of Education and the Ministry of Social Affairs. The law also provides social and financial care and support to people living with HIV, which is based on fundamental international standards.

This chapter presents information on levels of HIV/AIDS knowledge, attitudes, and related behaviour for the general adult population of Albania. It then focuses on HIV/AIDS knowledge and sexual activity among young people because youth are the main target of many HIV prevention efforts. The findings in this chapter will assist the AIDS control programme in Albania to identify particular groups of people most in need of HIV/AIDS information and services and most vulnerable to the risk of HIV infection.

12.1 KNOWLEDGE OF HIV/AIDS

Table 12.1 shows that knowledge of AIDS—although not universal—is high in Albania, with 93 percent of women and 94 percent of men reporting that they have heard of AIDS.

The level of awareness of AIDS does not vary substantially by age or marital status, although never-married women and men who have had sexual intercourse (99 and 98 percent, respectively) are more likely to have heard of AIDS than never-married women and men who have never had sexual intercourse (94 and 91 percent, respectively). Respondents in urban areas are more likely to have heard of AIDS than those in rural areas (98 percent of both women and men in urban areas, compared with 90 percent of women and 91 percent of men in rural areas). Women and men in the Mountain region (88 and 85 percent, respectively) are least likely to have heard of AIDS, while those in Urban Tirana are most likely to have heard of AIDS (99 percent for both women and men).

The level of awareness of AIDS increases substantially with education among both women and men. Almost all women with university or higher education (>99 percent) have heard of AIDS, compared with 76 percent of women with no education or primary 4-year education. Similar proportions are seen for men with university or higher education (>99 percent), compared to men with no education or primary 4-year education (75 percent). Knowledge of AIDS increases with household wealth status (wealth quintile).

Table 12.1 Knowledge of AIDS				
Percentage of women and men age 15-49 who have heard of AIDS, by background characteristics, Albania 2008-09				
	Women		Men	
Background characteristic	Has heard of AIDS	Number of women	Has heard of AIDS	Number of men
Age				
15-24	94.5	2,454	94.0	1,062
15-19	94.9	1,478	92.7	670
20-24	93.8	976	96.1	393
25-29	92.9	848	94.9	269
30-39	93.7	1,962	95.0	644
40-49	92.0	2,319	93.6	1,037
Marital status				
Never married	94.7	2,357	94.2	1,291
Ever had sex	99.4	367	97.9	580
Never had sex	93.9	1,990	91.3	711
Married/living together	92.7	5,001	94.0	1,703
Divorced/separated/widowed	93.8	226	*	19
Residence				
Urban	97.9	3,380	97.9	1,391
Rural	89.7	4,204	90.9	1,622
Region				
Coastal	95.1	2,129	93.7	800
Central	91.7	3,477	94.5	1,443
Mountain	87.9	777	84.5	277
Urban Tirana	98.5	1,201	99.3	493
Education				
No education/Primary 4-year	75.8	127	75.1	55
Primary 8-year	88.9	3,712	90.3	1,183
Secondary, professional, technical	97.8	2,740	96.6	1,415
University+	99.9	1,005	99.8	361
Wealth quintile				
Lowest	85.7	1,513	81.9	475
Second	91.0	1,486	90.3	600
Middle	94.5	1,533	98.1	661
Fourth	96.4	1,480	97.9	625
Highest	99.1	1,573	99.0	652
Total	93.4	7,584	94.1	3,013

Note: An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.

12.2 Knowledge of Ways to Reduce AIDS Transmission

HIV/AIDS prevention programmes focus their messages and efforts on three important aspects of behaviour, called the ABC message: Abstinence-delaying sexual debut in young persons; Being faithful to one partner/limiting the number of sexual partners; Consistent use of condoms. To ascertain whether programmes have effectively communicated these messages, the 2008-09 ADHS asked specific questions about whether it is possible to reduce the risk of getting the AIDS virus by having just one faithful sexual partner who is HIV negative, using a condom at every sexual encounter, and abstaining from sex.

Table 12.2 shows the percentage of women and men who, in response to prompted questions, gave positive responses to the questions on specific ways to avoid AIDS.

Table 12.2 Knowledge of HIV prevention methods
Percentage of women and men age 15-49 who, in response to prompted questions, say that people can reduce the risk of getting the AIDS virus by using condoms every time they have sexual intercourse, by having just one partner who is HIV negative and has no other partners, and by abstaining from sexual intercourse, by background characteristics, Albania 2008-09

Note: An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
${ }^{1}$ Using condoms every time they have sexual intercourse
${ }^{2}$ Partner who has no other partners

Using condoms (74 percent), limiting sexual intercourse to one partner who is HIV negative and has no other partners (78 percent), and abstaining from sex (72 percent) were each recognized by about three-fourths of all women as ways to reduce the risk of getting HIV. About seven in ten women (67 percent) mentioned both using condoms and limiting sex to one HIV-negative partner who has no other partners as ways to prevent transmission of HIV.

Older women age 40-49 are less likely than younger women to be aware of HIV prevention methods. Never-married women are more likely to know of ways to prevent the transmission of HIV than women who are currently married, previously married, or cohabiting. Furthermore, nevermarried women who have ever had sexual intercourse are substantially more likely than nevermarried women who have never had sex to know each of the specified methods of HIV prevention. Women in urban areas are more likely to know HIV prevention methods than women in rural areas. Looking at regional variation, with the exception of abstinence, where knowledge is lowest among women in the Central region, women in the Mountain region are least likely to know any methods of HIV prevention, while women in Urban Tirana region are most likely to know HIV prevention methods. There is a clear, positive relationship between respondent's level of education and knowledge of ways to prevent transmission of HIV. For example, 92 percent of women with university or higher education say that the risk of getting the AIDS virus can be reduced by using condoms and limiting sexual intercourse to one HIV-negative partner, compared with only 35 percent of women with no education or primary 4 -year education. The results of the 2008-09 ADHS indicate that there has been a slight increase in the proportion of women who know HIV prevention methods, compared with the results of the 2005 MICS survey (INSTAT, 2008), except for abstinence, which increased substantially, from 50 percent in the 2002 ARHS (CDC, IPH, INSTAT, 2005) to 72 percent in the 2008-09 ADHS.

Men are more likely than women to know of ways to avoid HIV. The most frequently cited way to prevent transmission of HIV was use of condoms (83 percent). The two other methods of HIV/AIDS prevention-limiting sex to one partner who is HIV negative and has no other partners, and abstaining from sexual intercourse-were mentioned by 81 and 76 percent of men, respectively. These figures are higher than those reported in the 2002 ARHS, where 77 percent of men mentioned condoms and 66 percent mentioned abstinence as HIV prevention methods. In the 2008-09 ADHS, three-fourths of men (76 percent) reported that using condoms and limiting sexual intercourse to one HIV-negative partner can reduce the risk of getting HIV.

Among men, knowledge of HIV prevention methods is highest in the age group 25-29 years. Marital status is not strongly associated with knowledge of HIV prevention; however, never-married men who have ever had sexual intercourse are more likely than never-married men who have never had sexual intercourse to know of ways to avoid getting the AIDS virus. Men in rural areas and men in the Mountain region are less likely than other men to be aware of HIV prevention methods, while men urban Tirana region are more likely. Knowledge of HIV prevention methods among men increases with level of education and wealth status (wealth quintiles).

12.3 Comprehensive Knowledge about HIV/AIDS

The 2008-09 ADHS included questions to assess the prevalence of common misconceptions about AIDS and HIV transmission. Respondents were asked whether they think it is possible for a healthy-looking person to have the AIDS virus. They were also asked whether a person can get AIDS from mosquito bites or by touching or sharing food with a person who has AIDS. Results for women and men are presented in Tables 12.3.1 and 12.3.2.

The results indicate that many Albanian adults lack accurate knowledge about the ways in which the AIDS virus can and cannot be transmitted. Sixty-seven percent of women and 58 percent of men know that a healthy-looking person can have (and thus transmit) the virus that causes AIDS. Women and men with university or higher levels of schooling (89 and 79 percent, respectively), those in the highest wealth quintile (83 and 74 percent, respectively), and those living in urban areas (75 and 67 percent, respectively) are more likely than other respondents to know that a healthy-looking person can have the AIDS virus. Regionally, the level of knowledge is highest in Urban Tirana (74 percent for women and 75 percent for men), and lowest in the Mountain region (54 percent for women and 55 percent for men).

Table 12.3.1 Comprehensive knowledge about AIDS: Women
Percentage of women age 15-49 who say that a healthy-looking person can have the AIDS virus and who, in response to prompted questions, correctly reject local misconceptions about AIDS transmission or prevention, and the percentage with a comprehensive knowledge about AIDS, by background characteristics, Albania 2008-09

Background characteristic	Percentage of women who say that:				Percentage who say that a healthylooking person can have the AIDS virus and who reject the two most common local misconceptions ${ }^{1}$	Percentage with a comprehensive knowledge about AIDS ${ }^{2}$	Number of women
	A healthylooking person can have the AIDS virus	AIDS cannot be transmitted by mosquito bites	A person cannot become infected by sharing food with a person who has AIDS	A person cannot become infected by touching a person who has AIDS			
Age							
15-24	69.2	59.3	66.5	73.3	40.8	35.9	2,454
15-19	70.8	61.2	67.6	76.0	41.3	35.8	1,478
20-24	66.8	56.4	64.8	69.1	40.0	36.0	976
25-29	68.4	50.1	58.8	64.5	35.3	31.8	848
30-39	66.1	45.0	53.6	61.0	28.2	25.1	1,962
40-49	63.3	40.4	52.7	58.5	26.0	22.1	2,319
Marital status							
Never married	71.2	62.8	69.6	75.6	44.6	39.6	2,357
Ever had sex	85.8	71.9	84.2	87.4	59.7	56.1	367
Never had sex	68.6	61.2	66.9	73.4	41.8	36.5	1,990
Married/living together	64.3	42.5	53.0	59.5	27.0	23.4	5,001
Divorced/separated/widowed	65.3	41.1	49.0	61.7	25.1	22.0	226
Residence							
Urban	74.7	59.4	73.9	79.1	44.1	40.3	3,380
Rural	60.0	40.2	45.4	52.9	23.0	18.8	4,204
Region							
Coastal	70.8	49.3	59.0	63.4	34.1	29.6	2,129
Central	64.0	45.1	50.8	60.4	27.4	23.0	3,477
Mountain	54.4	38.8	46.5	49.1	20.3	17.3	777
Urban Tirana	74.0	65.1	85.0	89.0	51.8	49.2	1,201
Education							
No education/Primary 4-year	37.3	18.3	20.2	27.4	5.7	5.0	127
Primary 8-year	55.6	34.8	40.8	48.2	17.6	14.2	3,712
Secondary, professional, technical	74.5	56.9	70.9	77.2	39.9	35.0	2,740
University+	88.7	82.3	91.5	95.4	69.9	66.0	1,005
Wealth quintile							
Lowest	54.1	32.2	35.7	43.5	17.3	13.1	1,513
Second	59.6	39.0	46.4	54.3	21.6	17.9	1,486
Middle	66.2	47.9	54.0	61.8	27.9	23.3	1,533
Fourth	69.6	53.0	67.9	73.8	37.4	33.0	1,480
Highest	82.5	70.9	85.4	88.7	56.7	53.7	1,573
Total	66.5	48.8	58.1	64.6	32.4	28.4	7,584

${ }^{1}$ Two most common local misconceptions: AIDS can be transmitted by mosquito bites and a person can become infected by sharing food with a person who has AIDS
${ }^{2}$ Comprehensive knowledge means knowing that consistent use of condoms during sexual intercourse and having just one partner who is HIV negative and has no other partners can reduce the risk of getting the AIDS virus, knowing that a healthy-looking person can have the AIDS virus, and rejecting the two most common local misconceptions about AIDS transmission or prevention.

Many women and men erroneously believe that a person can contract HIV by sharing food with a person who has AIDS; however, 58 percent of women and 55 percent of men reject this common misconception. Variations in the knowledge that HIV cannot be transmitted through sharing food are similar to, but stronger than the variations in knowledge about the asymptomatic nature of the AIDS virus: women and men with university or higher schooling (95 and 90 percent, respectively), those in the highest wealth quintile (85 and 80 percent, respectively), and those living in urban areas (74 and 69 percent, respectively) are more likely than other respondents to know that AIDS cannot be transmitted through sharing food with a person who has AIDS. At the same time, however, less than half of women and men are aware that the AIDS virus cannot be transmitted by mosquito bites (49 and 40 percent, respectively). The proportion of women and men who correctly reported that a person cannot be infected with HIV by touching someone who has AIDS is 65 percent. Overall, only one-third of women (32 percent) and less than one-fourth of men (22 percent) know that a healthy-looking person can have the AIDS virus and reject the two most common misconceptions about AIDS transmission and prevention-that AIDS can be transmitted by mosquito bites and by sharing food with a person who has AIDS.

Tables 12.3 .1 and 12.3 .2 provide an assessment of the level of comprehensive knowledge about HIV/AIDS prevention and transmission. Comprehensive knowledge is defined here as: 1) knowing that both condom use and limiting sexual intercourse to one HIV-negative partner who has no other partners can reduce the risk of getting the AIDS virus, 2) being aware that a healthy-looking person can have HIV, and 3) rejecting the two most common local misconceptions about AIDS, namely, that AIDS can be transmitted by mosquito bites and by sharing food with a person who has AIDS. Using this measure of knowledge about HIV/AIDS transmission and prevention, the 2008-09 ADHS results indicate that comprehensive knowledge of AIDS in Albania is low: less than three in ten women (28 percent) and just one in five men (20 percent) in Albania have comprehensive knowledge of HIV/AIDS transmission and prevention. Tables 12.3.1 and 12.3.2 show the variations in knowledge by background characteristics.

Table 12.3.2 Comprehensive knowledge about AIDS: Men
Percentage of men age 15-49 who say that a healthy-looking person can have the AIDS virus and who, in response to prompted questions, correctly reject local misconceptions about AIDS transmission or prevention, and the percentage with a comprehensive knowledge about AIDS, by background characteristics, Albania 2008-09

Background characteristic	Percentage of men who say that:				Percentage who say that a healthy looking person can have the AIDS virus and who reject the two most common local misconceptions ${ }^{1}$	Percentage with a comprehensive knowledge about AIDS ${ }^{2}$	Number of men
	A healthylooking person can have the AIDS virus	AIDS cannot be transmitted by mosquito bites	A person cannot become infected by sharing food with a person who has AIDS	A person cannot become infected by touching a person who has AIDS			
Age							
15-24	58.4	42.7	57.6	66.8	24.3	22.0	1,062
15-19	55.9	43.4	54.7	64.3	23.2	21.2	670
20-24	62.7	41.4	62.5	71.1	26.2	23.4	393
25-29	58.4	40.8	56.9	66.3	22.0	20.6	269
30-39	58.2	41.2	55.0	64.7	22.7	21.3	644
40-49	57.7	38.1	50.5	61.4	20.2	17.8	1,037
Marital status							
Never married	60.4	43.3	58.9	68.0	25.5	23.8	1,291
Ever had sex	69.1	48.2	68.3	77.7	29.9	28.5	580
Never had sex	53.3	39.3	51.2	60.2	22.0	20.0	711
Married/living together	56.2	38.7	51.1	61.7	19.9	17.5	1,703
Divorced/separated/widowed	*	*	*	*	*	*	19
Residence							
Urban	66.5	50.4	69.0	77.4	31.6	29.5	1,391
Rural	50.9	32.2	42.1	53.4	14.4	12.3	1,622
Region							
Coastal	65.6	37.0	54.3	63.2	21.9	19.8	800
Central	48.8	38.4	47.9	59.9	16.6	14.9	1,443
Mountain	54.6	37.6	37.0	45.5	16.5	12.1	277
Urban Tirana	75.2	54.9	84.1	90.7	43.3	41.4	493
Education							
No education/Primary 4-year	24.3	19.3	33.2	46.6	8.1	5.8	55
Primary 8-year	46.1	27.5	39.6	46.9	10.4	7.8	1,183
Secondary, professional, technical	64.3	44.4	58.8	72.3	25.5	24.1	1,415
University+	78.8	72.3	89.9	94.1	51.4	48.3	361
Wealth quintile							
Lowest	40.5	22.1	32.6	37.1	9.2	6.8	475
Second	51.7	30.8	39.9	53.8	14.8	12.5	600
Middle	54.4	42.4	49.2	61.9	18.1	16.7	661
Fourth	65.4	42.6	64.3	75.0	24.8	22.6	625
Highest	73.7	59.5	80.0	86.8	40.8	38.7	652
Total	58.1	40.6	54.5	64.5	22.4	20.3	3,013

Note: An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
${ }^{1}$ Two most common local misconceptions: AIDS can be transmitted by mosquito bites and a person can become infected by sharing food with a person who has AIDS
${ }^{2}$ Comprehensive knowledge means knowing that consistent use of condoms during sexual intercourse and having just one partner who is HIV negative and has no other partners can reduce the risk of getting the AIDS virus, knowing that a healthy-looking person can have the AIDS virus, and rejecting the two most common local misconceptions about AIDS transmission or prevention.

The proportion of women and men who have comprehensive knowledge about AIDS is highest in age group 20-24 (36 percent for women and 23 percent for men) and higher in urban areas (40 and 30 percent, respectively) than in rural areas (19 and 12 percent, respectively). Variation is also seen by region; women and men in the Mountain region have the lowest level of comprehensive knowledge about AIDS (17 and 12 percent, respectively). Education and wealth status are directly related to comprehensive knowledge of HIV/AIDS transmission and prevention. Among women, for example, 66 percent of women with university or higher education have comprehensive knowledge about AIDS, compared with only 14 percent of women with primary 8 -year education. Similarly, among men, the level of comprehensive knowledge is 48 percent among men with higher education, compared with 8 percent among men with primary 8 -year education. Looking at wealth status, 13 percent of women in the lowest quintile have comprehensive knowledge about AIDS, compared with 54 percent of women in the highest wealth quintile. Among men, the level of comprehensive knowledge about AIDS increases with wealth quintile from 7 percent in the lowest wealth quintile to 39 percent in the highest wealth quintile.

12.4 Knowledge about Mother-to-Child Transmission

Increasing the level of knowledge about the transmission of HIV from mother to child and reducing the risk of transmission from mother to child through the use of anti-retroviral drugs is critical to reducing mother-to-child transmission (MTCT) of HIV. To assess MTCT knowledge, respondents were asked if the virus that causes AIDS can be transmitted from mother to child through breastfeeding, and whether a mother with HIV can reduce the risk of transmitting the virus to her baby by taking special drugs during pregnancy. These two questions were tabulated together to produce an indicator measuring the proportion who responded correctly to both questions. Table 12.4 shows the percentage of women and men who know that: 1) HIV can be transmitted from mother to child by breastfeeding; 2) the risk of mother-to-child transmission of HIV can be reduced by the mother taking special drugs during pregnancy, and 3) knowing both of the above.

Women are more likely than men to know of the risk of mother-to-child transmission of HIV through breastfeeding (75 and 51 percent, respectively). Generally, women and men with university or higher education (88 and 52 percent, respectively), those living in urban areas (83 and 54 percent, respectively), those in Urban Tirana (86 and 56 percent, respectively), and those in the highest wealth quintile (86 and 55 percent, respectively) are more likely to know that HIV can be transmitted through breastfeeding than other women and men. Compared with information from the 2005 MICS (INSTAT, 2008), there was a substantial increase in the proportion of women who know that HIV can be transmitted through breastfeeding, from 58 percent in 2005 to 75 percent in the 2008-09 ADHS.

About one in three women (31 percent) and one in four men (27 percent) know that the risk of mother-to-child transmission of HIV can be reduced by the mother taking special drugs during pregnancy. As seen for knowledge of mother-to-child transmission, women and men in urban areas (35 and 30 percent, respectively), those with university or higher education (51 and 48 percent, respectively), those living in Urban Tirana (39 and 31 percent, respectively) and those in the highest wealth quintile (43 and 37 percent, respectively) are more likely to know about special drugs to prevent mother-to-child transmission than other respondents.

Table 12.4 Knowledge of prevention of mother to child transmission of HIV
Percentage of women and men who know that HIV can be transmitted from mother to child by breastfeeding and that the risk of mother-to-child transmission (MTCT) of HIV can be reduced by mother taking special drugs during pregnancy, by background characteristics, Albania 2008-09

Background characteristic	Women				Men			
	Percentage who know that:				Percentage who know that:			
	HIV can be transmitted by breastfeeding	Risk of MTCT can be reduced by mother taking special drugs during pregnancy	HIV can be transmitted by breastfeeding and risk of MTCT can be reduced by mother taking special drugs during pregnancy	Number of women	HIV can be transmitted by breastfeeding	Risk of MTCT can be reduced by mother taking special drugs during pregnancy	HIV can be transmitted by breastfeeding and risk of MTCT can be reduced by mother taking special drugs during pregnancy	Number of men
Age								
15-24	72.2	31.9	28.3	2,454	53.2	24.6	16.4	1,062
15-19	71.3	30.7	27.6	1,478	51.9	22.9	16.3	670
20-24	73.6	33.6	29.4	976	55.6	27.5	16.5	393
25-29	76.0	27.5	23.9	848	51.2	28.7	14.4	269
30-39	77.7	31.1	28.9	1,962	51.3	30.6	18.5	644
40-49	75.2	31.1	28.1	2,319	49.6	26.4	14.9	1,037
Marital status								
Never married	72.4	33.1	29.2	2,357	52.1	25.8	16.4	1,291
Ever had sex	85.9	46.3	41.7	367	51.5	33.7	19.3	580
Never had sex	69.9	30.7	26.9	1,990	52.6	19.3	14.1	711
Married/living together	76.1	30.0	27.4	5,001	50.7	27.7	15.8	1,703
Divorced/separated/ widowed	77.8	29.0	27.1	226	*	*	*	19
Currently pregnant								
Pregnant	74.4	31.9	29.5	150	na	na	na	na
Not pregnant or not sure	75.0	31.0	27.9	7,434	na	na	na	na
Residence								
Urban	82.5	35.3	32.2	3,380	54.1	30.0	15.3	1,391
Rural	68.9	27.5	24.5	4,204	49.0	24.2	16.9	1,622
Region								
Coastal	79.9	35.7	33.7	2,129	54.1	26.7	21.6	800
Central	70.9	28.1	24.7	3,477	49.2	27.2	15.3	1,443
Mountain	63.1	19.3	17.4	777	46.7	18.6	13.6	277
Urban Tirana	85.9	38.6	33.9	1,201	56.1	30.8	11.1	493
Education								
No education/Primary 4-year	49.9	7.1	6.4	127	27.2	6.4	3.2	55
Primary 8-year	67.7	22.8	20.5	3,712	48.6	20.4	13.8	1,183
Secondary, professional, technical	81.4	36.0	32.8	2,740	54.6	27.7	17.4	1,415
University +	87.6	50.6	44.8	1,005	51.6	48.0	21.0	361
Wealth quintile								
Lowest	63.6	19.2	17.3	1,513	47.9	15.5	13.3	475
Second	70.0	28.0	24.8	1,486	51.6	26.1	18.1	600
Middle	75.8	31.6	28.9	1,533	48.1	25.7	15.5	661
Fourth	79.0	32.3	29.2	1,480	54.1	27.3	17.4	625
Highest	86.1	43.2	38.8	1,573	54.6	36.7	15.8	652
Total	75.0	31.0	27.9	7,584	51.4	26.9	16.1	3,013

[^26]Overall, 28 percent of women and 16 percent of men know that HIV can be transmitted through breastfeeding and that the risk of mother-to-child transmission can be reduced by the mother taking special drugs during pregnancy. A larger proportion of women in urban areas than in rural areas know about mother-to-child transmission through breastfeeding and the use of special drugs to reduce the risk of mother-to-child transmission (32 and 25 percent, respectively) while the reverse is seen among men (15 percent of men in urban areas compared with 17 percent of men in rural areas). By region, knowledge of mother-to-child transmission among women ranges from 17 percent in the Mountain region to 34 percent in Urban Tirana. Among men, this knowledge ranges from 11 percent in Urban Tirana to 22 percent in the Coastal region.

12.5 Accepting Attitudes Towards People Living with HIV/AIDS

Knowledge and beliefs about AIDS affect how people treat those whom they know to be living with HIV. In the 2008-09 ADHS, women and men who had heard of AIDS were asked questions to assess the level of stigma associated with HIV/AIDS, including questions about whether they would take care of a relative who has the AIDS virus in their own home; their willingness to buy fresh vegetables from a shopkeeper with the AIDS virus; whether an HIV-positive female teacher who is not sick should be allowed to continue teaching; and whether they would want to keep secret the HIV-positive status of a family member. Table 12.5 .1 and 12.5 .2 show the percentages who express positive attitudes towards people with HIV among women and men who have heard of HIV/AIDS, by background characteristics.

Both women and men tended to express more positive attitudes to the question on care for a family member sick with AIDS than to the questions about the HIV-positive shopkeeper selling vegetables, the HIV-positive female teacher, or preferences regarding keeping secret a relative’s HIV positive status. Eighty six percent of women and 85 percent of men said they would be willing to care for a family member sick with AIDS in their home. In contrast, only 27 percent of women and 23 percent of men said that they would not want to keep secret that a family member had the AIDS virus. Likewise, only 29 percent of women and 31 percent of men would buy fresh vegetables from a shopkeeper with the AIDS virus, and 41 percent of women and 31 percent of men said that an HIVpositive female teacher should be allowed to continue teaching.

Overall, the percentage expressing accepting attitudes on all four measures is low: just 6 percent of women and men reported that they would care for an HIV-positive family member in their own home, buy fresh food from a shopkeeper with AIDS, allow an HIV-positive female teacher to continue teaching, and not want to keep secret the HIV-positive status of a family member.

For women, accepting attitudes towards persons who are HIV positive decrease as age increases, from 8 percent among women age 15-19 to 5 percent among women age 30-49. Women in Urban Tirana (8 percent) are more likely to express accepting attitudes than women in the other regions. Accepting attitudes are associated with increasing level of education (1 percent among women with no education or primary 4 -year education, compared with 13 percent among women with university or higher education), and increasing wealth quintile (3 percent among women in the lowest wealth quintile, compared with 9 percent among those in the highest wealth quintile).

For men, accepting attitudes towards persons who are HIV positive on all four indicators are most common among men in urban areas (9 percent), in Urban Tirana (14 percent), those with university or higher education (12 percent), and those in the highest wealth quintile (11 percent).

In the 2008-09 ADHS women and men were also asked whether an HIV-positive pupil who is not sick should be allowed to continue in school with other pupils. Around four in ten women and men said that a pupil with the AIDS virus who is not sick should be allowed to continue in class with other children (43 and 40 percent, respectively).

Table 12.5.1 Accepting attitudes towards those living with HIV/AIDS: Women
Among women age 15-49 who have heard of AIDS, percentage expressing specific accepting attitudes towards people with HIV/AIDS, by background characteristics, Albania 2008-09

Background characteristic	Percentage of women who:				Percentage expressing accepting attitudes on all four indicators	Percentage of women who say that a pupil with the AIDS virus and is not sick should be allowed to continue in class with other children	Number of women who have heard of AIDS
	Are willing to care for a family member with the AIDS virus in the respondent's home ${ }^{1}$	Would buy fresh vegetables from shopkeeper who has the AIDS virus	Say that a female teacher with the AIDS virus and is not sick should be allowed to continue teaching	Would not want to keep secret that a family member has the AIDS virus			
Age							
15-24	85.3	38.5	54.6	25.2	8.0	56.3	2,318
15-19	87.6	39.7	57.5	25.2	8.1	59.8	1,402
20-24	81.7	36.7	50.1	25.3	7.9	50.9	916
25-29	84.7	34.2	41.2	25.5	6.0	44.8	788
30-39	85.5	24.8	33.9	27.4	5.0	35.1	1,839
40-49	87.9	20.4	31.7	29.2	5.1	34.5	2,135
Marital status							
Never married	84.1	41.6	58.2	26.4	8.6	59.5	2,233
Ever had sex	81.5	56.7	71.0	26.9	9.7	73.2	365
Never had sex	84.6	38.7	55.6	26.3	8.3	56.9	1,868
Married/living together	87.1	22.9	32.5	27.4	4.9	35.2	4,636
Divorced/separated/widowed	85.1	28.3	39.8	24.2	7.4	39.0	212
Residence							
Urban	82.1	35.1	50.1	27.4	6.8	51.3	3,309
Rural	89.5	23.6	32.7	26.7	5.5	35.6	3,772
Region							
Coastal	91.1	31.5	38.1	22.0	6.3	41.6	2,026
Central	91.9	23.3	38.9	25.1	5.5	41.5	3,189
Mountain	83.6	24.0	30.2	31.9	6.0	30.1	683
Urban Tirana	63.1	43.1	56.7	38.0	7.6	56.6	1,183
Education							
No education/Primary 4-year	76.6	6.2	10.5	24.3	1.4	11.8	96
Primary 8-year	87.8	17.1	24.6	26.3	3.5	27.3	3,301
Secondary, professional, technical	86.4	32.6	48.3	26.6	7.1	50.6	2,679
University+	80.3	60.6	77.2	30.7	12.5	77.1	1,004
Wealth quintile							
Lowest	86.8	17.8	25.1	23.8	3.3	26.6	1,296
Second	90.0	21.9	34.0	27.8	6.4	37.1	1,352
Middle	90.5	26.0	37.2	25.3	5.3	40.8	1,448
Fourth	86.6	32.4	44.3	27.2	6.4	46.0	1,426
Highest	77.4	44.1	60.0	30.4	8.8	60.9	1,558
Total	86.1	29.0	40.8	27.0	6.1	43.0	7,081

[^27]Table 12.5.2 Accepting attitudes towards those living with HIV/AIDS: Men
Among men age 15-49 who have heard of HIV/AIDS, percentage expressing specific accepting attitudes towards people with HIV/AIDS, by background characteristics, Albania 2008-09

Background characteristic	Percentage of men who:					Percentage of men who say that a pupil with the AIDS virus and is not sick should be allowed to continue in class with other children	Number of men who have heard of AIDS
	Are willing to care for a family member with the AIDS virus in the respondent's home	Would buy fresh vegetables from shopkeeper who has the AIDS virus	\qquad	Would not want to keep secret that a family member has the AIDS virus	Percentage expressing accepting attitudes on all four indicators		
Age							
15-24	83.8	33.7	45.3	20.5	5.9	42.9	998
15-19	82.2	30.7	40.4	22.3	6.0	39.5	621
20-24	86.4	38.6	53.4	17.5	5.7	48.7	377
25-29	84.7	38.0	51.1	16.4	6.0	47.5	255
30-39	85.0	30.6	41.3	21.9	7.1	38.4	612
40-49	86.1	25.9	39.0	26.8	6.2	36.7	970
Marital status							
Never married	85.2	35.2	47.1	19.4	5.6	44.0	1,217
Ever had sex	89.0	39.5	55.2	16.0	3.8	50.0	567
Never had sex	81.8	31.4	40.1	22.4	7.2	38.7	649
Married/living together	84.8	27.4	39.3	24.9	6.7	37.2	1,601
Divorced/separated/widowed	*	*	*	*	*	*	18
Residence							
Urban	90.3	39.4	54.8	22.1	8.9	50.2	1,362
Rural	79.9	22.7	31.8	23.0	3.8	31.0	1,475
Region							
Coastal	83.3	21.6	32.1	27.8	4.2	36.1	749
Central	82.0	29.3	39.5	20.5	5.0	38.3	1,364
Mountain	86.0	19.6	25.3	21.4	5.5	22.3	234
Urban Tirana	94.8	54.1	77.0	21.0	13.5	60.8	489
Education							
No education/Primary 4-year	(89.8)	(10.5)	(19.1)	(15.0)	(3.5)	(18.9)	41
Primary 8-year	79.5	19.8	30.0	22.5	3.9	27.7	1,069
Secondary, professional, technical	86.1	31.1	44.4	24.0	6.7	42.9	1,367
University+	95.7	64.1	77.5	18.2	12.0	69.9	360
Wealth quintile							
Lowest	75.4	10.7	19.8	24.1	3.2	20.2	389
Second	80.6	21.9	29.3	24.2	4.1	25.8	542
Middle	81.4	27.2	37.9	23.4	4.9	40.1	649
Fourth	89.3	38.0	51.6	21.0	7.0	46.9	612
Highest	93.6	46.9	64.7	21.0	10.6	58.2	645
Total	84.9	30.7	42.8	22.6	6.3	40.2	2,836

Note: Figures in parentheses are based on 25-49 unweighted cases. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.

12.6 Attitudes Towards Negotiating Safer Sex

Knowledge about HIV transmission and ways to prevent it are of little use if people feel powerless to negotiate safer sex practices with their partners. In an effort to assess the ability of women to negotiate safer sex with their spouse who has a sexually transmitted infection (STI), in the 2008-09 ADHS, respondents were asked two questions: 1) whether a wife is justified in refusing to have sexual intercourse with her husband when she knows he has an infection that can be transmitted through sexual contact; and 2) whether a wife in the same circumstances is justified in asking her husband to use a condom.

Table 12.6 shows that 77 percent of women and 73 percent of men believe that a woman is justified in refusing to have sexual intercourse with her husband if she knows he has an STI, and 82 percent of women and 86 percent of men agreed that a woman is justified in asking her husband to use a condom if he has an STI. Overall, 88 percent of women and 89 percent of men believe that a woman may either refuse to have sexual intercourse with her husband or ask him to wear a condom if she knows he has an STI.

Table 12.6 Attitudes towards negotiating safer sexual relations with husband								
Percentage of women and men age 15-49 who believe that, if a husband has a sexually transmitted infection, his wife is justified in refusing to have sexual intercourse with him or asking that they use a condom, by background characteristics, Albania 2008-09								
	Women				Men			
	Woman is justified in:				Woman is justified in:			Number of men
Background characteristic	Refusing to have sexual intercourse with husband	Asking that they use a condom		Number of women	Refusing to have sexual intercourse with husband	Asking that they use a condom	Refusing sexual intercourse or asking that they use a condom	
Age								
15-24	75.2	81.0	86.1	2,454	71.4	84.7	86.8	1,062
15-19	74.9	80.0	85.0	1,478	71.7	83.4	85.8	670
20-24	75.8	82.6	87.9	976	70.8	87.0	88.4	393
25-29	78.8	84.9	90.8	848	77.1	89.9	90.9	269
30-39	78.1	84.1	89.9	1,962	71.5	85.8	88.5	644
40-49	78.1	79.8	88.5	2,319	73.9	86.3	89.8	1,037
Marital status								
Never married	76.4	80.9	86.1	2,357	72.9	85.7	87.5	1,291
Ever had sex	92.1	96.9	98.7	367	77.9	91.6	92.6	580
Never had sex	73.5	77.9	83.8	1,990	68.7	81.0	83.4	711
Married/living together	77.6	82.1	89.2	5,001	72.9	86.1	89.3	1,703
Divorced/separated/widowed	80.0	86.8	92.8	226	*	*	*	19
Residence								
Urban	84.3	89.1	93.1	3,380	77.3	89.5	90.5	1,391
Rural	71.6	76.0	84.5	4,204	68.9	82.9	86.9	1,622
Region								
Coastal	76.9	83.2	89.4	2,129	70.0	84.5	87.4	800
Central	74.1	78.8	86.7	3,477	71.4	85.5	88.5	1,443
Mountain	71.8	75.6	83.0	777	70.4	84.0	87.8	277
Urban Tirana	90.5	92.5	94.8	1,201	82.7	90.8	90.8	493
Education								
No education/Primary 4-year	59.7	51.4	67.0	127	41.6	57.2	61.2	55
Primary 8-year	70.8	74.2	83.4	3,712	66.8	81.4	85.6	1,183
Secondary, professional, technical	82.7	88.6	93.0	2,740	75.9	88.3	90.0	1,415
University+	88.4	95.8	96.7	1,005	85.1	95.9	96.7	361
Wealth quintile								
Lowest	66.8	69.1	80.1	1,513	65.1	75.7	84.1	475
Second	72.3	76.8	84.9	1,486	68.7	82.2	85.0	600
Middle	76.9	82.1	88.7	1,533	70.9	89.2	90.3	661
Fourth	81.3	88.1	92.6	1,480	74.3	88.0	89.8	625
Highest	88.5	92.8	95.1	1,573	82.7	91.7	92.1	652
Total	77.3	81.9	88.3	7,584	72.8	85.9	88.5	3,013
Note: An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.								

Young women and men age 15-24 are less likely than older women and men to express accepting attitudes toward negotiating safer sex. However, the higher a respondent's educational attainment, the more likely he or she is to say that a woman can refuse sexual intercourse or propose using a condom. Women and men living in urban areas (93 and 91 percent, respectively) are also more likely than those in rural areas (85 and 87 percent, respectively) to support women’s negotiating rights. Never-married women and never-married men who have had sexual intercourse are more likely to support women's negotiating rights than those who have never had sexual intercourse. Supportive attitudes towards women's negotiating rights are most common in Urban Tirana (95 percent of women and 91 percent of men), and increase with both level of education and wealth status. For example, 97 percent of women and men with university or higher education support women negotiating rights, compared with 67 percent of women and 61 percent of men with no education or primary 4-year education. Similarly, supportive attitudes increase from 80 percent of women and 84 percent of men in the lowest wealth quintile to 95 percent of women and 92 percent of men in the highest wealth quintile.

12.7 Adult Support of Education About Condom Use to Prevent AIDS

The 2008-09 ADHS asked respondents over age 18 whether they supported teaching children age 12-14 about using condoms to avoid HIV/AIDS. Table 12.7 shows that 61 percent of women and 57 percent of men agree that children age 12-14 should be taught about condom use to avoid AIDS.

Table 12.7 Adult support of education about condom use to prevent AIDS				
Percentage of women and men age 18-49 who agree that children age 12-14 years should be taught about using a condom to avoid AIDS, by background characteristics, Albania 2008-09				
	Women 18-49		Men 18-49	
Background characteristic	Percentage who agree	Number of women	Percentage who agree	Number of men
Age				
18-24	67.2	1,448	63.5	624
18-19	69.5	472	65.9	231
20-24	66.2	976	62.2	393
25-29	63.8	848	60.9	269
30-39	58.8	1,962	55.2	644
40-49	56.9	2,319	52.0	1,037
Marital status				
Never married	71.1	1,378	64.8	852
Married or living together	57.6	4,974	52.5	1,703
Divorced/separated/widowed	63.5	226	*	19
Residence				
Urban	74.1	3,011	61.7	1,232
Rural	49.2	3,567	51.8	1,342
Region				
Coastal	65.5	1,839	61.8	671
Central	51.2	2,993	49.9	1,230
Mountain	42.4	651	38.7	222
Urban Tirana	89.0	1,095	75.5	451
Education				
No education/Primary 4-year	27.2	117	34.9	50
Primary 8-year	47.6	3,331	48.4	1,030
Secondary, professional, technical	69.2	2,126	59.7	1,134
University+	89.3	1,005	73.1	361
Wealth quintile				
Lowest	41.2	1,280	41.7	393
Second	48.8	1,276	53.0	488
Middle	57.0	1,309	52.7	563
Fourth	69.8	1,299	61.0	545
Highest	83.7	1,415	69.0	585
Total 18-49	60.6	6,578	56.6	2,574
Note: An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.				

Adult support of education about condom use to prevent AIDS by background characteristics is similar for women and men but variations are larger for women. Support among younger women and men age 18-24 (67 and 64 percent, respectively) is higher than support among older women and men age 40-49 (57 and 52 percent, respectively). Women and men with no education or with primary 4-year education (27 and 35 percent, respectively) are less likely to favour teaching about condom use than women and men with university or higher education (89 and 73 percent, respectively). Differences by wealth quintile range from 41 and 42 percent, respectively, in the lowest wealth quintile to 84 and 69 percent, respectively, in the highest wealth quintile.

12.8 Multiple Sexual Partners and Higher-Risk Sex

Given that most HIV infections are the result of heterosexual contact, information on sexual behaviour is important in designing and monitoring intervention programmes to control the spread of the epidemic. In the context of HIV/AIDS prevention, limiting the number of sexual partners and having protected sex are crucial to combating the epidemic.

The 2008-09 ADHS included questions about respondents' number of sexual partners during the 12 months preceding the survey, and for each of up to three sex partners in the 12 months preceding the survey, whether the partner was their spouse or a non-marital, non-cohabiting partner, which is the definition of 'higher-risk sex. For each sex partner in the past 12 months, respondents were asked whether they used a condom the last time they engaged in sexual intercourse with that partner. The mean number of lifetime sexual partners was also determined. Because these questions cover sensitive topics, when considering the results presented in this section it is important to remember that respondents' answers may be subject to some degree of reporting bias.

Tables 12.8.1 and 12.8.2 present several indicators of behaviour related to multiple sex partners and higher-risk sexual intercourse. The information was collected from women and men age 15-49 about their sexual partners during the 12 months preceding the survey, and over their lifetime.

The first two indicators in Tables 12.8.1 and 12.8.2 assess the prevalence of multiple partners and higher-risk sexual intercourse among all women and men; the next two indicators assess the prevalence of multiple partners and higher-risk sexual intercourse among women and men who reported having intercourse during the 12 months preceding the survey. Higher-risk sex involves sexual intercourse with a person who is neither a spouse nor a cohabiting partner.

The fifth indicator shows, for women who had higher-risk sexual intercourse in the past 12 months, the percentage who used a condom at last sexual intercourse with that person. For men, the fifth indicator shows for men who had two or more partners in the past 12 months, the percentage who used a condom at last sexual intercourse. Then, for men who had higher-risk sexual intercourse in the past 12 months, there is the indicator, the percentage who used a condom at last sexual intercourse with that person.

Condom use during last sexual intercourse for women with two or more partners in the past 12 months is not shown because there were too few women with two or more partners in the past year.

The last indicator, the mean number of sexual partners that a woman or man has during his or her lifetime, provides an assessment of lifetime exposure to one of the primary components of higherrisk sex—multiple partners.

Tables 12.8 .1 and 12.8 .2 show that while 5 percent of men and less than 1 percent of women, reported having had two or more sex partners in the 12 months preceding the survey, substantially more men and women (20 and 5 percent, respectively) reported having had higher-risk sexual intercourse in the past 12 months.

Table 12.8.1 Multiple sexual partners and higher-risk sexual intercourse in the past 12 months: Women
Among all women age 15-49, the percentage who had sexual intercourse with more than one partner and the percentage who had sexual intercourse with a non-marital, non-cohabiting partner in the past 12 months; among women age 15-49 who had sexual intercourse in the past 12 months, the percentage who had sexual intercourse with more than one partner and the percentage who had sexual intercourse with a nonmarital, non-cohabiting partner; and among women age 15-49 who had sexual intercourse in the past 12 months with a non-marital, noncohabiting partner, the percentage who used a condom at last sexual intercourse with that person; and the mean number of sexual partners during lifetime for women who ever had sexual intercourse, by background characteristics, Albania 2008-09

Background characteristic	All women			Women who had sexual intercourse in the past 12 months			Women who had intercourse in the past 12 months with a nonmarital, noncohabiting partner		Women who ever had sexual intercourse	
	Percentage who had $2+$ partners in the past 12 months	Percentage who had sexual intercourse in the past 12 months with a non-marital, noncohabiting partner	Number of women	Percentage who had $2+$ partners in the past 12 months	Percentage who had intercourse in the past 12 months with a non-marital, noncohabiting partner	Number of women	Percentage who used a condom at last sexual intercourse with that person	Number of women	Mean number of sexual partners in lifetime	Number of women
Age										
15-24	0.1	9.3	2,454	0.4	36.3	632	25.3	229	1.1	698
15-19	0.1	6.3	1,478	0.6	54.2	173	20.3	94	1.0	181
20-24	0.1	13.9	976	0.2	29.5	459	28.8	136	1.1	516
25-29	0.3	8.2	848	0.4	10.9	638	25.4	69	1.1	710
30-39	0.1	1.1	1,962	0.1	1.2	1,772	*	22	1.1	1,887
40-49	0.0	0.8	2,319	0.0	0.9	2,104	*	18	1.0	2,294
Marital status										
Never married	0.2	10.6	2,357	1.9	100.0	249	27.8	249	1.4	367
Married or living together	0.1	1.5	5,001	0.1	1.6	4,869	16.5	77	1.0	4,997
Divorced/separated/ widowed	0.0	5.5	226	(0.0)	(44.8)	28	*	12	1.1	224
Residence										
Urban	0.1	6.5	3,380	0.2	9.6	2,290	34.2	220	1.1	2,551
Rural	0.1	2.8	4,204	0.1	4.2	2,857	7.7	119	1.0	3,036
Region										
Coastal	0.1	4.4	2,129	0.2	6.3	1,477	19.4	93	1.1	1,586
Central	0.0	3.5	3,477	0.1	5.1	2,420	11.7	122	1.0	2,590
Mountain	0.0	2.1	777	0.0	3.4	484	(11.4)	17	1.0	513
Urban Tirana	0.2	8.9	1,201	0.3	13.9	766	46.9	106	1.2	899
Education										
No education/Primary										
4-year	0.1	1.5	127	0.2	2.4	82	*	2	1.1	97
Primary 8-year	0.1	2.6	3,712	0.1	3.6	2,738	8.4	97	1.0	2,923
Secondary, professional, technical	0.1	3.1	2,740	0.2	5.0	1,699	24.8	84	1.1	1,845
University+	0.2	15.4	1,005	0.3	24.7	628	34.7	155	1.2	723
Wealth quintile										
Lowest	0.0	2.5	1,513	0.0	3.9	984	(11.6)	38	1.0	1,052
Second	0.1	2.7	1,486	0.1	3.9	1,012	(3.0)	40	1.0	1,086
Middle	0.1	3.3	1,533	0.1	4.7	1,069	(14.9)	50	1.0	1,143
Fourth	0.2	5.5	1,480	0.3	8.0	1,007	23.9	81	1.1	1,100
Highest	0.1	8.2	1,573	0.2	12.0	1,074	40.1	129	1.1	1,206
Total	0.1	4.5	7,584	0.1	6.6	5,146	24.9	338	1.1	5,588

Note: Figures in parentheses are based on 25-49 unweighted cases. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.

Sexual behaviours differ by residence, with women in urban areas more than twice as likely as those in rural areas to have had higher-risk sexual intercourse during the 12 months before the interview (7 and 3 percent, respectively). Similarly, men in urban areas are more likely than those in rural areas to have had higher-risk sexual intercourse during the 12 months before the interview (25 and 15 percent, respectively).

The prevalence of higher-risk sexual intercourse is also higher among women and men in Urban Tirana (9 and 28 percent, respectively), university educated women and men (15 and 42 percent, respectively), and women and men in the highest wealth quintile (8 and 28 percent, respectively) than among other women and men.

Among women and men who had sexual intercourse in the past 12 months, 7 and 27 percent, respectively, had sexual intercourse with a higher-risk partner. Less than 1 percent of women and just 7 percent of men who had sexual intercourse in the past year had sexual intercourse with two or more partners. The patterns of sexual behaviour for women and men who had sexual intercourse in the past 12 months are similar to those for all women and men (first two columns in Tables 12.8.1 and 12.8.2).

Among men who had two or more partners in the 12 months preceding the survey, 40 percent used a condom during the last sexual intercourse. However, too few men reported having two or more partners to provide reliable information by most background characteristics, although never-married men (56 percent) were more likely to use a condom at last sexual intercourse than currently married men (15 percent). Men in rural areas (44 percent) were also more likely to use a condom at last sexual intercourse than those in urban areas (37 percent)

Among women who had higher-risk sexual intercourse in the 12 months preceding the survey, one-fourth (25 percent) used a condom at last sexual intercourse with such a partner. Women in urban areas (34 percent), those with university or higher education (35 percent), and those in the highest wealth quintile (40 percent) were more likely to use a condom at last sexual intercourse with a higher-risk partner than other women.

Among men who had higher-risk sexual intercourse in the past 12 months, half (51 percent) used a condom the last time they had sexual intercourse with such a partner, which is twice the percentage of women. Differentials by background characteristics are similar to those for women, that is, higher levels of condom use among men with university or higher education (57 percent) and men in the highest wealth quintile (57 percent).

Table 12.8.2 Multiple sexual partners and higher-risk sexual intercourse in the past 12 months: Men												
Among all men age 15-49, the percentage who had sexual intercourse with more than one partner and the percentage who had sexual intercourse with a non-marital, non-coh past 12 months; among men age 15-49 who had sexual intercourse in the past 12 months, the percentage who had sexual intercourse with more than one partner and the sexual intercourse with a non-marital, non-cohabiting partner; among men age 15-49 who had sexual intercourse with more than one partner in the past 12 months, the pe condom during last sexual intercourse; and among men age 15-49 who had sexual intercourse in the past 12 months with a non-marital, non-cohabiting partner, the percentage at last sexual intercourse with that person; and the mean number of sexual partners during lifetime for men who ever had sexual intercourse, by background characteristics, Albania												
	All men			Men who had sexual intercourse in the past 12 months			Men who had 2+ partners in the past 12 months		Men who had sexual intercourse in the past 12 months with a non-marital, non-cohabiting partner		Men who ever had sexual intercourse	
Background characteristic	Percentage who had $2+$ partners in the past 12 months	Percentage who had intercourse in the past 12 months with a non-marital, non-cohabiting partner	Number of men	Percentage who had $2+$ partners in the past 12 months	Percentage who had intercourse in the past 12 months with a non-marital, non-cohabiting partner	Number of men	Percentage who used a condom during last sexual intercourse	\qquad	Percentage who used a condom at last sexual intercourse with that person	Number of men	Mean number of sexual partners in lifetime	Number of men
Age												
15-24	6.4	30.7	1,062	19.3	92.9	351	54.9	68	54.5	326	3.0	395
15-19	1.6	16.2	670	9.7	97.2	112	*	11	55.6	108	1.9	129
20-24	14.5	55.4	393	23.7	90.9	239	(49.8)	57	54.0	217	3.5	266
25-29	10.9	49.3	269	12.8	58.0	229	(42.9)	29	51.3	133	3.3	242
30-39	4.8	13.9	644	5.1	14.6	610	(29.7)	31	46.9	89	3.1	621
40-49	3.2	4.7	1,037	3.4	4.9	995	(19.0)	33	(38.6)	49	2.1	1,023
Marital status												
Never married	7.4	39.2	1,291	18.9	100.0	507	56.0	96	52.6	507	3.6	573
Married or living together	3.6	4.6	1,703	3.7	4.8	1,665	14.5	62	43.6	79	2.4	1,689
Divorced/separated/widowed	*	*	19	*	*	13	*	4	*	11	*	19
Residence												
Urban	5.7	24.9	1,391	7.5	33.0	1,053	36.6	79	51.9	347	3.1	1,085
Rural	5.1	15.4	1,622	7.3	22.1	1,132	44.1	82	50.7	250	2.3	1,196
Region												
Coastal	6.5	20.4	800	7.3	27.8	587	(37.8)	52	49.0	163	2.8	608
Central	5.1	18.7	1,443	7.1	25.8	1,042	43.4	74	49.1	269	2.5	1,105
Mountain	2.3	9.9	277	3.7	15.8	174	*	6	45.7	28	1.9	180
Urban Tirana	6.0	27.7	493	7.7	35.8	381	*	29	59.9	137	3.3	388
												ntinued...

Table 12.8.2-Continued												
	All men			Men who had sexual intercourse in the past 12 months			Men who had 2+ partners in the past 12 months		Men who had sexual intercourse in the past 12 months with a non-marital, non-cohabiting partner		Men who ever had sexual intercourse	
Background characteristic	Percentage who had $2+$ partners in the past 12 months	Percentage who had sexual intercourse in the past 12 months with a non-marital, non-cohabiting partner	Number of men	Percentage who had $2+$ partners in the past 12 months	Percentage who had intercourse in the past 12 months with a non-marital, non-cohabiting partner	Number of men	Percentage who used a condom during last sexual intercourse	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { men } \\ \hline \end{gathered}$	Percentage who used a condom at last sexual intercourse with that person	Number of men	Mean number of sexual partners in lifetime	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { men } \\ \hline \end{gathered}$
Education												
No education/Primary 4-year	1.7	15.9	55	(2.3)	(22.5)	38	*	1	*	9	(2.8)	41
Primary 8-year	5.5	15.6	1,183	7.6	21.5	860	40.9	65	44.2	185	2.3	901
Secondary, professional, technical	4.4	17.8	1,415	6.5	26.2	962	42.0	63	54.8	252	2.9	1,012
University+	9.0	42.1	361	10.0	46.8	324	(37.6)	33	57.3	152	3.1	328
Wealth quintile												
Lowest	2.1	6.5	475	3.3	10.4	298	*	10	(32.8)	31	2.2	333
Second	5.5	16.4	600	7.9	23.6	417	*	33	52.0	98	2.4	438
Middle	4.6	19.2	661	6.2	26.0	488	(23.6)	30	42.2	127	2.2	504
Fourth	6.9	25.1	625	9.1	33.0	476	(46.2)	43	55.6	157	2.6	497
Highest	6.9	28.2	652	8.8	36.3	507	(35.7)	45	56.7	184	3.7	509
Total	5.4	19.8	3,013	7.4	27.3	2,184	40.4	161	51.4	597	2.7	2,281
Note: Figures in parentheses are based on 25-49 unweighted cases. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.												

On average, men have had 2.7 sexual partners over their lifetime. The mean number of sexual partners varies by level of education, with a higher number of partners among men with university or higher education (3.1), men in the highest wealth quintile (3.7), and never-married men (3.6). The mean number of lifetime partners for women is much lower (1.1) and shows little variation by background characteristics.

Paid sex is considered a special category of higher-risk sex. Male respondents in the 2008-09 ADHS who reported having had sexual intercourse in the 12 months preceding the survey were asked whether they paid anyone for sexual intercourse. Men who paid for sexual intercourse were asked about condom use during the last paid sexual encounter.

Table 12.9 shows that only 1 percent of men age 15-49 years reported paying for sexual intercourse in the 12 months preceding the survey. Of these men, three in four (data not shown) used a condom the last time they paid for sexual intercourse.

12.9 Testing for HIV

Knowledge of HIV status helps people who are HIV negative make specific decisions that will help reduce the risk of contracting HIV. For those who are HIV positive, knowledge of their status allows them to take action to protect themselves and their sexual partners, to access treatment, and to plan for the future.

To assess awareness and coverage of HIV testing services, the ADHS respondents were asked whether they knew where to get an HIV test, whether they were ever tested for HIV and, if so, whether they received the results.

Table 12.10.1 shows the results on HIV testing for women age 15-49. Only one-fourth (26 percent) of women age 15-49 know where to get an HIV test. Women in rural areas (14 percent), those living in the Mountain region (13 percent), women with no education or with primary 4 -year education (8 percent), and women in the poorest households (9 percent) are less likely than other women to know a place where they can get an HIV test. For example, 12 percent of women with primary 8 -year education know where to get an HIV test, compared with 66 percent of women with university education. The proportion of women who know where to get an HIV test according to the 2008-09 ADHS (26 percent) is comparable to the proportion reported in the 2005 MICS (28 percent).

Overall, the proportion of women ever tested for HIV is very low (2 percent); almost all of these women received their results. The proportion of women ever tested is highest among women in Urban Tirana (5 percent), women with university or higher education (6 percent), and women in the highest wealth quintile (5 percent). Less than 1 percent of women were tested for HIV in the 12 months preceding the survey, and received the results.

Table 12.10.1 Coverage of prior HIV testing: Women
Percentage of women age 15-49 who know where to get an HIV test, percent distribution of women age 15-49 by testing status and by whether they received the results of the last test, the percentage of women ever tested, and the percentage of women age 15-49 who received their test results the last time they were tested for HIV in the past 12 months, according to background characteristics, Albania 2008-09

Background characteristic	Percentage who know where to get an HIV test	Percent distribution of women by testing status and by whether they received the results of the last test			Total		Percentage who received results from last HIV test taken in the past 12 months	Number of women
		Ever tested and received results	Ever tested did not receive results	Never tested ${ }^{1}$		Percentage ever tested		
Age								
15-24	25.7	1.0	0.1	98.9	100.0	1.1	0.3	2,454
15-19	21.3	0.5	0.1	99.4	100.0	0.6	0.3	1,478
20-24	32.4	1.7	0.1	98.2	100.0	1.8	0.3	976
25-29	29.8	3.2	0.0	96.8	100.0	3.2	0.2	848
30-39	27.3	2.1	0.1	97.8	100.0	2.2	0.2	1,962
40-49	23.1	0.9	0.1	98.9	100.0	1.1	0.2	2,319
Marital status								
Never married	28.7	1.3	0.1	98.6	100.0	1.4	0.2	2,357
Ever had sex	52.7	6.8	0.0	93.2	100.0	6.8	0.4	367
Never had sex	24.3	0.3	0.1	99.6	100.0	0.4	0.1	1,990
Married/living together	24.2	1.6	0.1	98.3	100.0	1.7	0.2	5,001
Divorced/separated/widowed	30.0	1.6	0.0	98.4	100.0	1.6	0.7	226
Residence								
Urban	40.9	2.6	0.1	97.3	100.0	2.7	0.4	3,380
Rural	13.6	0.6	0.1	99.3	100.0	0.7	0.1	4,204
Region								
Coastal	24.7	1.1	0.1	98.8	100.0	1.2	0.1	2,129
Central	16.4	0.8	0.1	99.1	100.0	0.9	0.3	3,477
Mountain	13.0	0.4	0.0	99.6	100.0	0.4	0.0	777
Urban Tirana	63.0	4.9	0.1	95.0	100.0	5.0	0.4	1,201
Education								
No education/Primary 4-year	8.2	0.0	0.0	100.0	100.0	0.0	0.0	127
Primary 8-year	12.0	0.6	0.0	99.3	100.0	0.7	0.1	3,712
Secondary, professional, technical	30.6	1.3	0.1	98.6	100.0	1.4	0.3	2,740
University+	65.9	5.4	0.2	94.4	100.0	5.6	0.6	1,005
Wealth quintile								
Lowest	8.9	0.4	0.0	99.6	100.0	0.4	0.0	1,513
Second	12.1	0.1	0.0	99.9	100.0	0.1	0.0	1,486
Middle	17.9	1.3	0.1	98.6	100.0	1.4	0.3	1,533
Fourth	32.9	1.1	0.2	98.7	100.0	1.3	0.2	1,480
Highest	55.9	4.4	0.1	95.4	100.0	4.6	0.5	1,573
Total	25.8	1.5	0.1	98.4	100.0	1.6	0.2	7,584

${ }^{1}$ Includes 'don't know'

Table 12.10.2 shows the results on HIV testing for men age 15-49. Men are more likely than women to know where to get an HIV test (40 percent compared with 26 percent). As with women, knowledge of a place to get an HIV test is lowest among men who have never had sexual intercourse, men with primary education or less, men in rural areas, and men in the lowest wealth quintile.

Although knowledge of a place to be tested for HIV is higher among men than women, only 3 percent of men have ever been tested for HIV and less than 3 percent received the results. Men in urban areas, never-married men who have had sexual intercourse, men with university or higher education, and men in households in the highest wealth quintile are more likely than other men to have ever been tested for HIV and received the results. Less than 1 percent of men were tested for HIV in the 12 months preceding the survey and received the results.

Table 12.10.2 Coverage of prior HIV testing: Men
Percentage of men age 15-49 who know where to get an HIV test, percent distribution of men age 15-49 by testing status and by whether they received the results of the last test, the percentage of men ever tested, and the percentage of men age 15-49 who received their test results the last time they were tested for HIV in the past 12 months, according to background characteristics, Albania 2008-09

Background characteristic	Percentage who know where to get an HIV test	Percent distribution of men by testing status and by whether they received the results of the last test			Total	Percentage ever tested	Percentage who received results from last HIV test taken in the past 12 months	Number of men
		Ever tested and received results	Ever tested did not receive results	Never tested ${ }^{1}$				
Age								
15-24	37.3	1.7	0.1	98.2	100.0	1.8	0.5	1,062
15-19	32.8	0.4	0.0	99.6	100.0	0.4	0.2	670
20-24	45.0	3.9	0.3	95.8	100.0	4.2	1.1	393
25-29	50.3	5.1	0.4	94.6	100.0	5.4	1.4	269
30-39	44.5	5.0	0.2	94.8	100.0	5.2	0.7	644
40-49	37.9	1.6	0.3	98.2	100.0	1.8	0.3	1,037
Marital status								
Never married	40.6	2.4	0.1	97.5	100.0	2.5	0.4	1,291
Ever had sex	53.0	4.9	0.2	94.9	100.0	5.1	1.0	580
Never had sex	30.4	0.3	0.0	99.7	100.0	0.3	0.0	711
Married/living together	40.0	2.8	0.3	96.9	100.0	3.1	0.6	1,703
Divorced/separated/widowed	*	*	*	*	*	*	*	19
Residence								
Urban	48.5	3.8	0.2	96.1	100.0	3.9	0.8	1,391
Rural	33.1	1.7	0.2	98.1	100.0	1.9	0.4	1,622
Region								
Coastal	35.6	2.7	0.4	97.0	100.0	3.0	0.7	800
Central	44.0	2.0	0.2	97.7	100.0	2.3	0.4	1,443
Mountain	30.9	1.5	0.0	98.5	100.0	1.5	0.5	277
Urban Tirana	41.8	5.1	0.0	94.9	100.0	5.1	0.7	493
Education								
No education/Primary 4-year	9.4	0.0	0.0	100.0	100.0	0.0	0.0	55
Primary 8-year	30.8	1.0	0.2	98.8	100.0	1.2	0.4	1,183
Secondary, professional, technical	42.8	3.1	0.2	96.7	100.0	3.3	0.5	1,415
University+ +	65.5	6.6	0.4	93.0	100.0	7.0	1.3	361
Wealth quintile								
Lowest	18.4	0.7	0.0	99.3	100.0	0.7	0.3	475
Second	36.4	2.0	0.2	97.8	100.0	2.2	0.1	600
Middle	38.8	1.3	0.4	98.3	100.0	1.7	0.6	661
Fourth	46.4	3.3	0.1	96.6	100.0	3.4	0.5	625
Highest	55.2	5.5	0.2	94.3	100.0	5.7	1.2	652
Total	40.2	2.6	0.2	97.1	100.0	2.9	0.6	3,013

Note: An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
${ }^{1}$ Includes 'don't know'

12.10 Male Circumcision

Circumcision as a strategy to reduce the transmission of STIs and HIV has received a great deal of international attention, and there is increasing evidence that circumcision helps reduce the risk of STIs and HIV in men.

Table 12.11 shows that almost half of all men (48 percent) in Albania have been circumcised. The 2008-09 ADHS found that men in Urban Tirana (73 percent) and men with university or higher education (53 percent) are most likely to have been circumcised, while those living in the Coastal region (36 percent) and those with no education or with primary 4 -year education (37 percent) are least likely to have been circumcised.

Table 12.11 Male circumcision		
Percentage of men age 15-49 circumcised, by background characteristics, Albania		
2008-09		

12.11 Reports of Recent Sexually Transmitted Infections

Information about the incidence of sexually transmitted infections (STIs) is not only useful as an indicator of unprotected sexual intercourse, but also as a co-factor for HIV transmission. The 200809 ADHS asked respondents who had ever had sexual intercourse whether they had experienced an STI in the 12 months preceding the survey, or if they had ever experienced either of two symptoms associated with STIs (bad-smelling/abnormal genital discharge; genital sore/ulcer). Additionally, men were asked for such STI symptom as pain or burning during urination and pain during sexual intercourse. These symptoms have been shown to be useful in identifying STIs in men. They are less easily interpreted in women because women are more likely to experience non-STI specific conditions of the reproductive tract that produce a discharge. Table 12.12 shows the self-reported prevalence of STIs and STI symptoms among women and men.

Just 2 percent of women and 1 percent of men age $15-49$ reported having an STI in the 12 months preceding the survey. Ten percent of women and 1 percent of men reported having a bad smelling/abnormal genital discharge, while more men than women reported having a genital sore or ulcer in the 12 months before the survey (3 and 2 percent, respectively). Eight percent of men experienced pain or burning during urination and 3 percent reported having pain during sexual intercourse. Overall, 11 percent of women and 5 percent of men reported having an STI, an abnormal discharge, or a genital sore in the 12 months preceding the survey, and 12 percent of men reported having an STI or one of the other symptoms associated with STIs.
Table 12.12 Self-reported prevalence of sexually transmitted infections (STIs) and STI symptoms
Among women and men age 15-49 who ever had sexual intercourse, the percentage who reported having an STI and/or symptoms of an STI in the past 12 months, by background characteristics,
Albania 2008-09 Albania 2008-09

Background characteristic	Women					Men							
	Percentage of women who reported having in the past 12 months:				Number of women who ever had sexual intercourse	Percentage of men who reported having in the past 12 months:							Number of men who ever had sexual intercourse
	STI	Bad- smelling/ abnormal genital discharge	Genital sore/ulcer	STI/genital discharge/ sore or ulcer		STI	Bad- smelling/ abnormal genital discharge	Genital sore/ulcer	STI/genital discharge/ sore or ulcer	Pain or burning during urination	Painful sexual intercourse	STI/genital discharge/sore or ulcer/ painful urination/ painful intercourse	
Age													
15-24	1.1	8.2	2.5	9.5	698	0.6	0.8	3.2	3.9	7.9	3.6	11.9	397
15-19	0.0	6.3	2.9	6.3	181	0.0	0.0	0.6	0.6	4.8	3.3	8.4	129
20-24	1.5	8.9	2.3	10.6	516	0.8	1.2	4.4	5.5	9.5	3.7	13.7	268
25-29	3.2	9.2	3.6	12.8	711	0.3	0.9	2.3	3.2	9.3	1.9	13.2	244
30-39	2.3	9.8	2.1	11.8	1,887	1.0	1.5	3.0	5.2	7.3	3.1	11.9	628
40-49	1.7	9.7	2.0	11.3	2,294	0.4	1.5	3.6	5.0	7.2	3.4	12.2	1,033
Marital status													
Never married	1.2	5.1	2.4	6.7	367	0.5	0.9	2.4	3.3	7.9	3.5	11.6	580
Married or living together	2.1	9.9	2.4	11.9	4,998	0.6	1.5	3.3	5.0	7.4	3.1	12.2	1,703
Divorced/separated/widowed	1.8	7.7	0.6	8.3	225	*	*	*	*	*	*	*	19
Male circumcision ${ }^{1}$													
Circumcised	na	na	na	na	na	0.6	1.1	2.2	3.5	6.5	3.5	10.6	1,079
Not circumcised	na	na	na	na	na	0.5	1.6	4.1	5.8	8.6	2.8	13.6	1,220
Residence													
Urban	2.5	7.1	2.0	9.5	2,552	0.5	1.5	2.1	3.6	5.9	2.2	9.9	1,097
Rural	1.6	11.5	2.6	13.1	3,038	0.6	1.2	4.2	5.7	9.1	4.0	14.3	1,205
Region													
Coastal	2.6	7.8	2.1	10.2	1,586	1.1	1.4	4.1	5.7	8.2	2.4	12.2	610
Central	1.6	12.0	2.9	13.6	2,593	0.3	1.5	3.7	5.4	7.4	3.8	13.2	1,114
Mountain	1.0	12.3	2.0	13.6	513	1.0	1.1	2.2	3.5	7.7	3.5	11.0	181
Urban Tirana	2.8	3.8	1.1	5.9	899	0.2	0.8	0.8	1.6	7.0	2.4	9.9	397
Education 170.7													
No education/Primary 4-year	3.9	16.7	2.7	17.6	99	(0.0)	(2.0)	(3.2)	(5.2)	(3.9)	(2.5)	(11.6)	41
Primary 8-year	1.6	11.2	2.1	12.8	2,923	0.6	1.3	4.0	5.4	7.3	3.8	13.1	909
Secondary, professional, technical	2.6	9.4	3.1	11.7	1,846	0.6	1.5	3.2	5.0	8.8	3.4	13.0 6.9	1,021
Wealth quintile													
Lowest	1.4	13.8	2.7	15.1	1,054	0.2	0.7	6.4	6.6	9.3	2.8	14.7	333
Second	1.5	10.6	1.9	11.8	1,086	0.6	1.7	3.9	5.9	9.4	5.4	14.8	442
Middle	2.7	12.3	2.5	14.4	1,143	1.0	1.2	3.1	5.1	7.8	3.4	13.4	508
Fourth	2.6	7.1	2.4	9.8	1,100	0.5	2.0	2.0	3.8	5.2	1.9	9.1	500
Highest	1.8	4.4	2.1	6.5	1,207	0.3	0.9	1.9	2.9	7.0	2.5	10.1	519
Total	2.0	9.5	2.3	11.4	5,590	0.6	1.3	3.2	4.7	7.6	3.2	12.2	2,302

Note: An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed. Figures in parentheses are based on 25-49 unweighted cases. ${ }^{1}$ Total includes 3 men who refused to answer whether they were circumcised

Married women (12 percent), women in rural areas (13 percent), those with no education or only primary 4 -year education (18 percent), and those in the lowest wealth quintile (15 percent) are more likely to report having an STI or symptoms related to STIs. The pattern for men is similar to the pattern for women, with men in rural areas (14 percent) and men in the two lowest wealth quintiles (15 percent) most likely to report having had an STI or symptoms of an STI in the 12 months preceding the survey. Men who are not circumcised (14 percent) are more likely than circumcised men (11 percent) to have had an STI or symptoms of an STI.

Respondents who had an STI or symptoms of an STI in the 12 months preceding the survey were asked if they sought advice or treatment from any source. The findings indicate that about half of women (49 percent) and 88 percent of men with an STI or symptoms of an STI did not seek any treatment or professional medical advice for the infection (Figure 12.1).

It should be noted that these STI-related estimates are likely to be underestimates because respondents may have been reluctant or embarrassed to admit having an STI or STI symptoms.

Figure 12.1 Women and Men Seeking Advice or Treatment for STIs

12.12 Comprehensive HIV/AIDS Knowledge and Source of Condoms among Youth

Youth are one of the main targets of HIV prevention programmes. Knowledge of how HIV is transmitted is crucial to enabling young people to avoid contracting the disease, especially those who may engage in risky sexual behaviours such as multiple partners and shorter relationships.

Table 12.13 presents information on comprehensive knowledge of HIV/AIDS and knowledge of a source for condoms among young people age 15-24. Condom use among young adults plays an important role in the prevention of HIV and other sexually transmitted infections, as well as unwanted pregnancies. Knowledge of a source for condoms is a proxy for assessing the ability of young adults to obtain and use condoms. Young respondents were asked the same set of questions about methods of HIV transmission and prevention as other respondents. Tables 12.2, 12.3.1, and 12.3.2 present information for women and men age 15-24 on knowledge of the major ways to avoid HIV and rejection of local misconceptions about HIV.

Table 12.13 Comprehensive knowledge about AIDS and of a source of condoms among youth
Percentage of young women and young men age 15-24 with comprehensive knowledge about AIDS and percentage with knowledge of a source of condoms, by background characteristics, Albania 2008-09

Background characteristic	Women age 15-24			Men age 15-24		
	Percentage with comprehensive knowledge of AIDS ${ }^{1}$	Percentage who know a condom source ${ }^{2}$	Number of women	Percentage with comprehensive knowledge of AIDS ${ }^{1}$	Percentage who know a condom source ${ }^{2}$	Number of men
Age						
15-19	35.8	77.9	1,478	21.2	85.3	670
15-17	36.2	76.0	1,006	22.9	83.9	439
18-19	34.9	81.9	472	17.8	87.9	231
20-24	36.0	81.5	976	23.4	92.9	393
20-22	36.6	82.2	634	17.8	91.9	270
23-24	35.0	80.3	342	35.6	95.1	123
Marital status						
Never married	38.5	79.8	1,973	22.4	88.1	1,023
Ever had sex	51.8	95.0	221	26.6	96.7	358
Never had sex	36.9	77.9	1,753	20.1	83.5	665
Ever married	25.0	77.2	481	(11.8)	(86.8)	39
Residence						
Urban	50.5	92.9	1,007	30.7	96.3	462
Rural	25.7	69.9	1,447	15.3	81.8	600
Region						
Coastal	39.2	85.3	688	18.8	84.6	280
Central	30.1	73.3	1,099	18.8	88.9	506
Mountain	21.1	65.7	290	12.3	77.3	109
Urban Tirana	58.0	96.3	378	43.4	98.5	168
Education						
No education/Primary 4-year	(4.6)	(46.5)	47	*	*	13
Primary 8-year	18.1	66.8	1,043	10.8	81.8	370
Secondary, professional, technical	44.9	86.7	974	25.6	90.9	558
University+	64.8	98.3	391	41.0	97.2	121
Wealth quintile						
Lowest	19.9	61.6	539	10.1	71.7	170
Second	26.1	70.5	493	15.5	82.6	224
Middle	30.1	82.3	505	20.2	92.4	241
Fourth	46.9	89.9	445	23.5	94.7	202
Highest	60.2	95.6	472	38.0	95.4	225
Total 15-24	35.9	79.3	2,454	22.0	88.1	1,062

Note: An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed. Figures in parentheses are based on 25-49 unweighted cases.
${ }^{1}$ Comprehensive knowledge means knowing that consistent use of condoms during sexual intercourse and having just one partner who is HIV negative and has no other partners can reduce the risk of getting the AIDS virus, knowing that a healthylooking person can have the AIDS virus, and rejecting the two most common local misconceptions about AIDS transmission or prevention. The components of comprehensive knowledge are presented in Tables 12.2, 12.3.1, and 12.3.2
${ }^{2}$ Friends, family members, and home are not considered sources for condoms.

As discussed in Section 12.3, comprehensive knowledge about AIDS means knowing that consistent use of condoms during sexual intercourse and having just one partner who is HIV negative and has no other partners can reduce the risk of getting the AIDS virus, knowing that a healthylooking person can have the AIDS virus, and rejecting the two most common local misconceptions about AIDS transmission or prevention. In Albania, the most common local misconceptions are that AIDS can be transmitted by mosquito bites and by sharing food with a person who has AIDS.

The results of the 2008-09 ADHS indicate that young women have a higher level of comprehensive knowledge of AIDS than young men (36 percent compared with 22 percent). Comprehensive knowledge of AIDS is highest among never-married women and men who ever had sexual intercourse (52 and 27 percent, respectively) and lowest among those who are ever married (25 and 12 percent, respectively). Women and men in urban areas have substantially higher levels of
comprehensive knowledge (51 and 31 percent, respectively) than their rural counterparts (26 and 15 percent, respectively).

By region, comprehensive knowledge is lowest for young women and young men age 15-24 in the Mountain region (21 and 12 percent, respectively), and highest in Urban Tirana (58 and 43 percent, respectively). Comprehensive knowledge increases with education; for example, while 18 percent of women with primary 8 -year education have comprehensive knowledge of AIDS, the proportion increases to 65 percent among women with university or higher education. For both women and men, comprehensive knowledge about AIDS is lowest in the lowest wealth quintile (20 and 10 percent, respectively).

With regard to condom sources, only responses about formal sources were considered, so responses about obtaining condoms from friends, family members, or other informal sources, were not included. Table 12.13 shows that 79 percent of young women and 88 percent of young men know at least one source of condoms. Consistent with trends for other indicators, respondents who are more educated and live in wealthier households are more likely than other respondents to know a source of condoms, but the differentials are smaller for men than for women. While almost all young women and men in Urban Tirana know source for condoms (96 and 99 percent, respectively), young women and men in other regions are less likely to know a source where condoms can be obtained.

Figure 12.2 shows the distribution of young women and young men age 15-24 by characteristics of sexual activity in the 12 months preceding the survey, according to the ABC method for preventing transmission of HIV-Abstinence, Being faithful (to one partner), and Condom use.

Figure 12.2 Abstinence, Being Faithful, and Condom Use (ABC) Among Young Women and Men Age 15-24

Note: Number of partners refers to the 12 months preceding the survey.

12.13 Age at First Sexual Intercourse

Because HIV transmission in Albania occurs predominantly through heterosexual intercourse between an HIV-positive person and an HIV-negative person, age at first sexual intercourse marks the time when most individuals first risk exposure to the AIDS virus.

Table 12.14 shows that about 1 percent of young women and men age $15-24$ had sexual intercourse before age 15. This proportion rises quickly and by age 18, 15 percent of young women age 18-24 and 23 percent of young men age 18-24 had experienced sexual intercourse.

Young women with primary 8-year education (19 percent) are more likely than those with some secondary (15 percent) or university education (8 percent) to have had sexual intercourse by age 18. For young men, the pattern is reversed- 19 percent of men with primary 8 -year education had sexual intercourse before age 18, compared with 24 percent of men with some secondary education and 26 percent of men with university or higher education. Young women in households in the middle wealth quintile (23 percent) are most likely to have had sexual intercourse by age 18. Young women and men in the Coastal region are more likely to have sexual debut by age 18 (20 and 27 percent, respectively).

Table 12.14 Age at first sexual intercourse among youth								
Percentage of young women and of young men age 15-24 who had sexual intercourse before age 15 and percentage of young women and of young men age 18-24 who had sexual intercourse before age 18, by background characteristics, Albania 2008-09								
	Women age 15-2		Women age 18-24		Men age 15-24		Men age 18-24	
Background characteristic	Percentage who had sexual intercourse before age 15	Number of women	Percentage who had sexual intercourse before age 18	Number of women	Percentage who had sexual intercourse before age 15	Number of men	Percentage who had sexual intercourse before age 18	Number of men
Age								
15-19	0.6	1,478	na	na	1.4	670	na	na
15-17	0.5	1,006	na	na	1.2	439	na	na
18-19	0.8	472	17.1	472	1.7	231	24.9	231
20-24	0.4	976	14.5	976	0.8	393	21.8	393
20-22	0.6	634	13.5	634	1.2	270	22.0	270
23-24	0.1	342	16.5	342	0.0	123	21.4	123
Marital status								
Never married	0.1	1,973	5.1	994	1.2	1,023	22.3	585
Ever married	2.1	481	38.0	454	(0.0)	39	(33.0)	39
Knows condom source ${ }^{1}$								
Yes	0.4	1,947	16.1	1,182	1.2	936	24.2	568
No	0.9	507	12.1	266	1.2	126	10.4	56
Residence								
Urban	0.4	1,007	15.1	638	0.6	462	21.8	303
Rural	0.6	1,447	15.6	810	1.6	600	24.0	320
Region								
Coastal	0.9	688	19.5	397	1.7	280	26.6	151
Central	0.5	1,099	16.5	615	1.3	506	26.0	292
Mountain	0.1	290	8.5	165	0.8	109	3.7	54
Urban Tirana	0.2	378	11.0	272	0.0	168	19.7	127
Education								
No education/Primary 4-year	(4.6)	47	(36.0)	37	*	13	*	9
Primary 8-year	1.0	1,043	19.0	661	1.0	370	19.2	217
Secondary, professional, technical	0.0	974	14.6	360	1.6	558	24.4	278
University+	0.0	391	7.8	390	0.0	121	25.8	121
Wealth quintile								
Lowest	0.2	539	10.9	307	1.4	170	17.5	88
Second	1.3	493	15.7	283	2.7	224	22.0	112
Middle	0.4	505	22.8	281	1.0	241	25.6	143
Fourth	0.7	445	15.1	264	0.7	202	27.4	122
Highest	0.0	472	13.1	314	0.0	225	20.8	159
Total 15-24	0.5	2,454	15.4	1,448	1.2	1,062	22.9	624
Note: Figures in parentheses are based on 25-49 unweighted cases. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed. na $=$ Not available ${ }^{1}$ Friends, family members, and home are not considered sources for condoms.								

12.14 Condom Use at First Sexual Intercourse

Consistent condom use is advocated by HIV control programmes to reduce the risk of sexual transmission of HIV among young adults who are sexually active. Young adults who use condoms at first sexual intercourse (sexual debut) are more likely to continue condom use later in life. Condom use at first sexual intercourse serves as an indicator of reduced risk of exposure at the beginning of sexual activity.

Table 12.15 shows that half of young men (50 percent) used a condom the first time they had sexual intercourse, compared with one-fifth of young women (19 percent). For almost all background characteristics, men are more likely than women to report condom use. For example, among respondents age 15-19, 54 percent of men reported using a condom at first sexual intercourse, compared with 17 percent of women. For the age 20-24, the percentages are 48 percent for men and 20 percent for women.

Table 12.15 Condom use at first sexual intercourse among youth
Among young women and young men age 15-24 who have ever had sexual intercourse, percentage who used a condom the first time they had sexual intercourse, by background characteristics, Albania 2008-09

Background characteristic	Women age 15-24		Men age 15-24	
	Percentage who used a condom at first sexual intercourse	Number of women who have ever had sexual intercourse	Percentage who used a condom at first sexual intercourse	Number of men who have ever had sexual intercourse
Age				
15-19	16.8	181	54.2	129
15-17	(13.5)	54	(61.0)	51
18-19	18.2	127	49.8	78
20-24	20.2	516	47.6	268
20-22	22.6	295	51.3	167
23-24	17.1	221	41.4	101
Marital status				
Never married	45.6	221	52.1	358
Ever married	7.2	477	(27.9)	39
Knows condom source ${ }^{1}$				
Yes	22.7	579	50.2	380
No	2.8	119	*	17
Residence				
Urban	37.0	301	52.2	195
Rural	6.0	396	47.3	203
Region				
Coastal	12.8	199	46.4	101
Central	8.0	307	50.1	197
Mountain	8.6	63	24.9	19
Urban Tirana	61.8	129	59.0	80
Education				
No education/Primary 4-year	(0.9)	24	*	4
Primary 8-year	5.9	371	36.9	120
Secondary, professional, technical	18.1	135	53.0	177
University+	52.7	167	61.6	96
Wealth quintile				
Lowest	5.7	126	(39.8)	38
Second	0.9	139	40.0	73
Middle	10.8	162	45.2	95
Fourth	23.3	120	53.0	92
Highest	53.4	152	61.9	99
Total 15-24	19.3	698	49.7	397

[^28]Women in urban areas are much more likely than those in rural areas to report condom use at first sexual intercourse (37 percent compared with 6 percent); the same urban-rural difference is seen for men, only smaller (52 percent compared with 47 percent). Use of condoms at first sexual intercourse by young women is lowest in the Central region (8 percent) and highest in Urban Tirana (62 percent). For men, the percentages range from 25 percent in the Mountain region to 59 percent in Urban Tirana. For both young women and young men, there is a positive relationship between level of education and wealth quintile and use of a condom at first sexual intercourse.

12.15 Premarital Sex and Condom Use among Young Women and Men

The period between age at first sexual intercourse and age at marriage is often a time of sexual experimentation, which can be risky because of the possibility of contracting STIs or HIV. Table 12.16 presents information on premarital sexual intercourse and condom use among young people: the percentage of never-married young women and men age 15-24 who have never had sexual intercourse, the percentage who had sexual intercourse in the 12 months preceding the survey, and the percentage who used a condom at last (most recent) sexual intercourse.

The results from the 2008-09 ADHS show that 89 percent of never-married young women age 15-24 have never had sexual intercourse, compared with 65 percent of men. Young women age 15-19 have a high level of abstinence (95 percent) than women age 20-24 (75 percent). The figures differ substantially for men: 82 percent of young men age 15-19 have never had sexual intercourse, compared with 35 percent of young men age 20-24.

Young people in rural areas are more likely to abstain from sexual intercourse (93 percent for women and 69 percent for men) than young people in urban areas (83 percent for women and 60 percent for men). The percentage of never-married young women and men who have never had sexual intercourse is highest in the Mountain region (95 and 86 percent, respectively) and lowest in Urban Tirana (74 and 53 percent, respectively). Less educated young women and men, and those in the lower wealth quintiles are more likely than other young people to abstain from sexual intercourse.

Among never-married women and men age 15-24, 9 percent of women and 30 percent of men had sexual intercourse in the 12 months preceding the survey. Five percent of women age 15-19 had sexual intercourse, compared with 18 percent of women age 20-24; among young men, 16 percent of those age 15-19 were sexually active in the past 12 months, compared with 57 percent of men age 2024. Young people in urban areas are more likely to have had sexual intercourse in the past 12 months (12 percent of young women and 36 percent of young men) than young people in rural areas (6 percent of young women and 26 percent of young men). Across regions, 17 percent of young women in Urban Tirana had sexual intercourse in the past year, compared with 5 percent in the Mountain region. As with young women, the percentage of young men who had sexual intercourse in the 12 months preceding the survey was highest in Urban Tirana (44 percent) and lowest in the Mountain region (12 percent). Less educated women and men age $15-24$ are less likely than those with university or higher education to report recent sexual intercourse. Sexual intercourse among young people increases with household wealth status (quintile).

Among never-married women and men age 15-24 who had sexual intercourse in the past 12 months, 28 percent of women and 55 percent of men used a condom at last sexual intercourse. Women age 20-24 are more likely than those age 15-19 to use a condom at last sexual intercourse (32 and 22 percent, respectively). The opposite is seen for men: young men age 15-19 are more likely than those age 20-24 to use a condom at last sexual intercourse (57 and 54 percent, respectively). Notably, never-married young women in urban areas are much more likely to use condoms than those in rural areas (43 and 7 percent, respectively). Use of condoms among young people increases with level of education.

Table 12.16 Premarital sexual intercourse and condom use during premarital sexual intercourse among youth

Among never-married women and men age 15-24, the percentage who have never had sexual intercourse, the percentage who had sexual intercourse in the past 12 months, and, among those who had premarital sexual intercourse in the past 12 months, the percentage who used a condom at the last sexual intercourse, by background characteristics, Albania 2008-09

Background characteristic	Never-married women age 15-24					Never-married men age 15-24				
	Percentage who have never had sexual intercourse	Percentage who had sexual intercourse in the past 12 months	Number of nevermarried women	Among women who had sexual intercourse in the past 12 months:		Percentage who have never had sexual intercourse	Percentage who had sexual intercourse in the past 12 months	Number of nevermarried men	Among men who had sexual intercourse in the past 12 months:	
				Percentage who used condom at last sexual intercourse	Number of women				Percentage who used condom at last sexual intercourse	Number of men
Age										
15-19	94.8	4.8	1,365	22.4	65	81.5	15.8	663	57.4	105
15-17	97.2	2.4	979	*	24	88.4	9.2	439	(53.9)	40
18-19	88.8	10.6	387	(31.1)	41	68.0	28.8	225	59.5	65
20-24	75.3	17.8	608	31.8	108	34.5	57.4	360	53.5	206
20-22	78.2	16.6	433	35.8	72	40.7	52.4	253	51.5	132
23-24	68.1	20.6	175	(23.7)	36	19.9	69.2	107	57.0	74
Knows condom source ${ }^{1}$										
Yes	86.7	10.3	1,575	30.1	162	61.6	33.6	902	56.3	303
No	97.3	2.7	398	*	11	90.3	7.2	121	*	9
Residence										
Urban	83.0	12.0	850	43.2	102	59.9	36.2	447	53.8	162
Rural	93.2	6.3	1,123	6.7	71	68.9	26.0	576	55.9	150
Region										
Coastal	90.8	8.7	535	(16.2)	47	65.3	30.7	274	50.1	84
Central	92.0	6.8	860	(8.2)	59	64.3	29.9	479	57.1	143
Mountain	94.5	4.7	240	(15.6)	11	85.9	11.5	104	(46.7)	12
Urban Tirana	73.7	16.6	338	61.7	56	53.2	43.7	166	57.1	72
Education										
No education/Primary										
4-year	(97.7)	(2.3)	24	*	1	${ }^{*}$	*	12	*	2
Primary 8-year	91.9	7.4	727	(3.2)	54	71.8	24.9	347	49.8	86
Secondary, professional, technical	95.0	4.3	882	(26.5)	38	69.5	24.5	549	56.8	135
University+	65.6	23.5	340	46.2	80	21.1	76.8	115	57.8	89
Wealth quintile										
Lowest	94.4	5.0	436	*	22	81.4	11.1	162	*	18
Second	92.7	6.7	382	*	26	70.6	24.8	214	(54.4)	53
Middle	92.9	6.4	368	*	23	63.5	32.9	229	43.0	76
Fourth	87.7	10.0	371	(28.4)	37	56.2	38.6	196	66.0	76
Highest	76.8	15.5	416	53.6	65	56.8	40.3	222	57.1	89
Total 15-24	88.8	8.8	1,973	28.2	173	65.0	30.4	1,023	54.8	312

Note: An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed. Figures in parentheses are based on 25-49 unweighted cases.
${ }^{1}$ Friends, family members, and home are not considered sources for condoms.

12.16 Higher-Risk Sex and Condom Use among Young Adults

Table 12.17 show the proportion of young women and men age 15-24 who engaged in higherrisk ${ }^{1}$ sexual intercourse in the 12 months preceding the survey. The table also shows the proportion who used a condom at last higher-risk sexual intercourse.

[^29]Table 12.17 Higher-risk sexual intercourse among youth and condom use at last higher-risk intercourse in the past 12 months
Among young women and men age 15-24 who had sexual intercourse in the past 12 months, the percentage who had higher-risk sexual intercourse in the past 12 months, and among those having higher-risk intercourse in the past 12 months, the percentage who used a condom at last higher-risk sexual intercourse, by background characteristics, Albania 2008-09

Background characteristic	Women age 15-24 who had sexual intercourse in the past 12 months		Women age 15-24 who had higher-risk sexual intercourse ${ }^{1}$ in the past 12 months		Men age 15-24 who had sexual intercourse in the past 12 months		Men age 15-24 who had higher-risk sexual intercourse ${ }^{1}$ in the past 12 months	
						Number of men		
	Percentage who had higher-risk sexual intercourse in the past 12 months ${ }^{1}$	Number of women	Percentage who used a condom at last higher-risk sexual intercourse ${ }^{1}$	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { women } \\ \hline \end{gathered}$	Percentage who had higher-risk sexual intercourse in the past 12 months ${ }^{1}$		Percentage who used a condom at last higherrisk sexual intercourse ${ }^{1}$	Number of men
Age								
15-19	54.2	173	20.3	94	97.2	112	55.6	108
15-17	(66.9)	50	(18.7)	33	(100.0)	40	(53.9)	40
18-19	49.1	123	21.2	60	95.6	71	56.6	68
20-24	29.5	459	28.8	136	90.9	239	54.0	217
20-22	34.7	268	29.7	93	93.8	149	52.9	140
23-24	22.2	191	(26.9)	42	86.2	90	55.9	77
Marital status								
Never married	100.0	173	28.2	173	100.0	312	55.2	312
Ever married	12.3	459	(16.3)	56	(36.5)	39	*	14
Knows condom source ${ }^{2}$								
Yes	40.9	518	27.4	212	93.8	337	56.2	316
No	15.3	114	*	18	*	14	*	10
Residence								
Urban	49.1	255	39.0	125	94.6	177	53.2	168
Rural	27.6	377	8.8	104	91.3	173	55.9	158
Region								
Coastal	34.6	191	16.6	66	96.7	90	49.0	87
Central	30.6	286	10.6	87	90.9	170	57.2	154
Mountain	24.5	59	(12.0)	15	(75.5)	17	(45.1)	12
Urban Tirana	64.1	95	59.1	61	96.8	75	57.1	72
Education								
No education/Primary 4-year	*	21	*	1	*	4	*	2
Primary 8-year	21.3	351	6.4	75	86.1	109	50.9	94
Secondary, professional, technical	48.2	129	21.7	62	95.6	144	57.1	138
University+	70.2	130	43.4	92	98.4	94	55.4	92
Wealth quintile								
Lowest	29.4	120	(12.6)	35	(74.7)	26	*	19
Second	26.6	130	(3.4)	34	(93.3)	63	(56.9)	59
Middle	24.6	155	(8.7)	38	89.4	87	41.8	78
Fourth	43.1	108	(27.4)	47	97.3	81	62.9	79
Highest	62.5	120	48.5	75	97.2	93	58.9	90
Total 15-24	36.3	632	25.3	229	92.9	351	54.5	326

Note: Figures in parentheses are based on 25-49 unweighted cases. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
${ }^{1}$ Sexual intercourse with a non-marital, non-cohabiting partner
${ }^{2}$ Friends, family members, and home are not considered sources for condoms.

Overall, 36 percent of women age 15-24 had higher-risk sexual intercourse during the 12 months preceding the survey. Younger women age 15-19 are more likely to engage in higher-risk sexual intercourse than those age 20-24 (54 and 30 percent, respectively). Twelve percent of evermarried young women had higher-risk sexual intercourse. Women in urban areas are more likely to have higher-risk sexual intercourse than women in rural areas (49 and 28 percent, respectively). The percentage of young women who had higher-risk sexual intercourse in the past 12 months increases with level of education and household wealth status.

Only one-fourth (25 percent) of women age 15-24 who had higher-risk sexual intercourse in the 12 months preceding the survey used a condom at last higher-risk sexual intercourse. Women age 20-24 are more likely to have used a condom at last higher-risk sexual intercourse than women age 15-19 (29 and 20 percent, respectively). Condom use at last higher-risk sexual intercourse was reported by 39 percent of young women in urban areas, compared with only 9 percent of those in rural areas. By region, young women in Urban Tirana are most likely to have used a condom (59 percent) at last higher-risk sexual intercourse. Higher education and wealth status are positively associated with use of a condom at last higher-risk sexual intercourse among young women.

Ninety-three percent of young men age 15-24 who had sexual intercourse in the 12 months preceding the survey engaged in higher-risk sexual intercourse during that period, and more than half of them (55 percent) reported using a condom at last higher-risk sexual intercourse. Higher-risk sexual intercourse is more common among men age 15-19 than those age 20-24 (97 percent compared with 91 percent). There are no major differences in levels of higher-risk sexual intercourse and condom use among young men by urban-rural residence or region; however, unlike women, men in rural areas have a slightly higher level of condom use at last higher-risk sexual intercourse than men in urban areas (56 and 53 percent, respectively). There are no substantial variations in condom use at last higher-risk sexual intercourse by level of education or household wealth status.

12.17 Age-Mixing in Sexual Relationships

In many societies, young women have sexual relationships with men who are considerably older than they are. This practice can contribute to the spread of HIV and other STIs because if a younger, uninfected partner has sexual intercourse with an older, infected partner, this can introduce the virus into a younger, less exposed cohort.

This section examines the prevalence of sexual intercourse between partners with large age differences. Women age $15-24$ who had higher-risk sexual intercourse in the 12 months before the survey were asked the age of all their partners. In the event they did not know a partner's exact age, they were asked if the partner was older or younger than they were, and if older, whether the partner was 10 or more years older. The results are shown in Table 12.18.

Overall, 3 percent of young women age 15-24 who had higher-risk sexual intercourse in the past year said that they had had sexual intercourse with a man 10 or more years older, and the proportion was 6 percent among women age 15-19.

Table 12.18 Age-mixing in sexual relationships among women age 15-24

Percentage of women age 15-24 who had higher-risk sexual intercourse in the past 12 months with a man who was 10 or more years older than themselves, by background characteristics, Albania 2008-09

Background characteristic	Percentage of women who had higher-risk intercourse with a man 10+ years older ${ }^{1}$	Number of women who had higher-risk intercourse in the past 12 months ${ }^{1}$
Age		
15-19	5.5	94
15-17	(11.9)	33
18-19	2.0	60
20-24	0.6	136
20-22	0.0	93
23-24	(1.8)	42
Marital status		
Never married	2.4	173
Ever married	(3.1)	56
Knows condom source ${ }^{2}$		
Yes	1.5	212
No	*	18
Residence		
Urban	0.6	125
Rural	4.9	104
Region		
Coastal	3.7	66
Central	2.5	87
Mountain	(3.7)	15
Urban Tirana	1.3	61
Education		
No education/Primary 4-year	*	1
Primary 8-year	6.9	75
Secondary, professional, technical	0.0	62
University+	0.9	92
Wealth quintile		
Lowest	(6.1)	35
Second	(5.3)	34
Middle	(3.1)	38
Fourth	(1.7)	47
Highest	0.0	75
Total 15-24	2.6	229

Note: Figures in parentheses are based on 25-49 unweighted cases. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
${ }^{1}$ Sexual intercourse with a non-marital, non-cohabiting partner
${ }^{2}$ Friends, family members, and home are not considered sources for condoms.

12.18 Drunkenness during Sexual Intercourse among Youth

Engaging in sexual intercourse while under the influence of alcohol can impair judgment, compromise power relations, and contribute to risky sexual behaviour. Respondents who had sexual intercourse in the 12 months preceding the survey were asked (for each partner) if they or their partner drank alcohol the last time they had sexual intercourse with that partner, and whether they or their partner was drunk.

Table 12.19 shows the proportion of women and men age 15-24 who had sexual intercourse while being drunk or had sexual intercourse with a partner who was drunk in the 12 months preceding the survey. Less than 1 percent of young women and 2 percent of young men reported being drunk while having sexual intercourse in the 12 months preceding the survey. The figures are the same when it was the partner who was drunk while having sexual intercourse (1 percent of women and 2 percent of men). For both women and men, there was little variation by background characteristics.

Table 12.19 Drunkenness during sexual intercourse among youth
Among all young women and young men age 15-24, the percentage who had sexual intercourse in the past 12 months while being drunk and percentage who had sexual intercourse in the past 12 months when drunk or with a partner who was drunk, by background characteristics, Albania 2008-09

Background characteristic	Women age 15-24			Men age 15-24		
	Percentage who had sexual intercourse in the past 12 months when drunk	Percentage who had sexual intercourse in the past 12 months when drunk or with a partner who was drunk	Number of women	Percentage who had sexual intercourse in the past 12 months when drunk	Percentage who had sexual intercourse in the past 12 months when drunk or with a partner who was drunk	Number of men
Age						
15-19	0.4	0.8	1,478	1.3	1.3	670
15-17	0.4	0.6	1,006	0.0	0.0	439
18-19	0.5	1.2	472	3.9	3.9	231
20-24	0.2	1.4	976	3.1	3.9	393
20-22	0.2	1.5	634	3.6	4.4	270
23-24	0.3	1.1	342	1.9	2.7	123
Marital status						
Never married	0.2	0.3	1,973	2.1	2.1	1,023
Ever married	0.8	3.9	481	(0.0)	(8.1)	39
Knows condom source ${ }^{1}$						
Yes	0.4	1.0	1,947	2.3	2.6	936
No	0.0	1.1	507	0.0	0.0	126
Residence						
Urban	0.3	0.8	1,007	1.8	2.1	462
Rural	0.3	1.2	1,447	2.1	2.5	600
Region						
Coastal	0.5	1.5	688	2.4	2.8	280
Central	0.3	1.1	1,099	2.4	2.9	506
Mountain	0.1	0.4	290	0.2	0.2	109
Urban Tirana	0.1	0.4	378	1.0	1.0	168
Education						
No education/Primary 4-year	(0.0)	(2.0)	47	*	*	13
Primary 8-year	0.0	1.0	1,043	2.4	3.3	370
Secondary, professional, technical	0.5	0.9	974	1.0	1.0	558
University+	0.8	1.0	391	5.6	5.6	121
Wealth quintile						
Lowest	0.4	1.2	539	0.8	1.4	170
Second	0.0	1.0	493	3.1	4.1	224
Middle	0.2	0.8	505	1.3	1.3	241
Fourth	0.9	1.9	445	2.8	2.8	202
Highest	0.2	0.2	472	1.7	1.7	225
Total 15-24	0.3	1.0	2,454	2.0	2.3	1,062

[^30]
12.19 Recent HIV Testing among Youth

Some young people may perceive barriers to accessing health care services and facilities for themselves, particularly when the concern is a sensitive topic like family planning, sexual health in general, and sexually transmitted infections like HIV/AIDS in particular. Table 12.20 presents information on the proportion of sexually active young women and young men age 15-24 who were tested for HIV in the past 12 months and received the results. The findings from the 2008-09 ADHS indicate that only 1 percent of young people in Albania have been tested in the past year and received the results. Given that HIV testing is uncommon among youth, there is little variation across groups. However, young women and men in urban areas and those with higher education are more likely to have been tested in the past year and received the results.

Table 12.20 Recent HIV tests among youth				
Among young women and young men age 15-24 who had sexual intercourse in the past 12 months, the percentage who had an HIV test in the past 12 months and received the results of the test, by background characteristics, Albania 2008-09				
	Among women age 15-24 who have had sexual intercourse in the past 12 months:		Among men age 15-24 who have had sexual intercourse in the past 12 months:	
Background characteristic	Percentage who were tested for HIV in the past 12 months and received results	Number of women	Percentage who were tested for HIV in the past 12 months and received results	Number of men
Age				
15-19	1.6	173	1.0	112
15-17	(0.0)	50	(0.0)	40
18-19	2.3	123	1.6	71
20-24	0.4	459	1.2	239
20-22	0.0	268	1.1	149
23-24	1.0	191	1.5	90
Marital status				
Never married	0.4	173	0.9	312
Ever married	0.9	459	(2.9)	39
Knows condom source ${ }^{1}$				
Yes	0.9	518	1.2	337
No	0.0	114	*	14
Residence				
Urban	1.0	255	2.0	177
Rural	0.5	377	0.3	173
Region				
Coastal	0.6	191	2.0	90
Central	0.7	286	0.5	170
Mountain	0.0	59	(2.7)	17
Urban Tirana	1.5	95	1.3	75
Education				
No education/Primary 4-year	*	21	*	4
Primary 8-year	0.0	351	0.4	109
Secondary, professional, technical	2.2	129	0.7	144
University+	1.4	130	2.8	94
Wealth quintile				
Lowest	0.0	120	(0.0)	26
Second	0.0	130	(0.7)	63
Middle	1.3	155	0.0	87
Fourth	0.0	108	1.2	81
Highest	2.2	120	2.8	93
Total 15-24	0.7	632	1.2	351
Note: Figures in parentheses are based on 25-49 unweighted cases. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed. ${ }^{1}$ Friends, family members, and home are not considered sources for condoms.				

ADULT HEALTH

Albania, like other countries in epidemiological transition, is facing an increase in noncommunicable diseases, obesity, and other conditions associated with urbanization and modern, less active lifestyles, combined with new and re-emerging infectious diseases such as HIV/AIDS and sexually transmitted infections (STIs). This imposes a double burden on Albania of diseases characteristic of both developed and developing societies. In 2001, the average life expectancy in Albania was 79 years for women and 72 years for men (INSTAT, 2004). The major causes of death are similar to those in developed countries: diseases of the circulatory system (primarily ischemic heart disease and cerebrovascular disease), neoplasms, and accidents.

This chapter presents information on aspects of adult health in Albania, including current health status, chronic and acute illness, use of tobacco and alcohol, hypertension, access to and quality of health care, health insurance and payment for health care.

13.1 Current Health Status

In the 2008-09 ADHS women and men age 15-49 were asked to assess their current health status and rate it on a scale: very good, good, fair, poor, or very poor. Using a similar scale, they were asked to assess whether their current health was better or worse than their health status 12 months preceding the survey. Tables 13.1.1 and 13.1.2 show the distribution of women and men by selfreported current health status according to background characteristics.

Eighty-one percent of women compared with 89 percent of men reported their current health status as very good or good, while 17 percent of women and 9 percent of men reported their health status as fair. Two percent of women and 1 percent of men reported their health status as poor or very poor.

As expected, the results on self-reported current health status show that perceived health status is related to age, residence, level of education, and wealth status. Six in ten women (61 percent) and men (62 percent) age $15-19$ reported their health status as very good, compared with only 20 percent of women and 34 percent of men age $45-49$. In contrast, only 7 percent of women and 6 percent of men age 15-19 reported their health status as fair, poor, or very poor, compared with 31 percent of women and 17 percent of men age 45-49.

There were no major differences in women's current health status by marital status. However, never-married men reported better current health status than men currently in union (i.e., currently married or living together with a partner). Ninety-three percent of never-married men reported that they were in very good or good health, compared with 87 percent of men currently in union; however, never-married men are a younger age group overall and therefore in better health than men currently in union. Results for women and men who are currently divorced, separated, or widowed are not presented in this analysis because the numbers were too small for meaningful conclusions.

Women and men in urban areas, those with university or higher education and those in the highest wealth quintile are more likely to report their current health status as very good or good, while men and women in rural areas, those with no education or only primary 4-year education, and those in the lowest wealth quintile are more likely to report their current health status as fair, poor, or very poor.

Table 13.1.1 Current health status: Women
Percent distribution of women age $15-49$ by self-reported current health status, according to background characteristics, Albania 2008-09

Background characteristic	Current health status assessment					Total	Number of women
	Very good	Good	Fair	Poor	Very poor		
Age							
15-19	60.9	32.0	6.8	0.2	0.1	100.0	1,478
20-24	58.3	32.9	8.3	0.6	0.0	100.0	976
25-29	45.1	40.5	13.3	1.1	0.0	100.0	848
30-34	34.7	43.9	20.0	1.4	0.0	100.0	866
35-39	30.1	45.7	21.6	2.3	0.2	100.0	1,097
40-44	25.7	48.9	22.2	2.9	0.3	100.0	1,232
45-49	19.8	49.3	27.2	3.5	0.2	100.0	1,088
Marital status							
Never married	40.4	41.7	16.3	1.5	0.1	100.0	3,594
Married or living together	38.8	41.8	17.4	1.8	0.1	100.0	3,927
Divorced, separated, widowed	60.1	26.1	9.5	2.0	2.3	100.0	62
Residence							
Urban	47.7	37.8	13.4	1.1	0.0	100.0	3,380
Rural	33.3	44.7	19.6	2.2	0.2	100.0	4,204
Region							
Coastal	37.8	40.5	19.7	1.9	0.1	100.0	2,129
Central	34.6	45.8	17.5	1.9	0.2	100.0	3,477
Mountain	37.5	45.0	15.6	1.9	0.0	100.0	777
Urban Tirana	59.7	29.5	10.3	0.5	0.1	100.0	1,201
Education							
No education/Primary 4-year	14.6	54.2	23.4	6.9	0.9	100.0	127
Primary 8-year	31.9	44.9	20.6	2.4	0.2	100.0	3,712
Secondary, professional, technical	42.1	42.0	14.8	1.0	0.1	100.0	2,740
University+	65.7	26.9	7.3	0.1	0.0	100.0	1,005
Wealth quintile							
Lowest	27.7	46.6	21.8	3.6	0.3	100.0	1,513
Second	33.7	45.1	19.0	2.0	0.2	100.0	1,486
Middle	36.8	43.5	18.3	1.4	0.0	100.0	1,533
Fourth	43.9	39.3	15.5	1.2	0.1	100.0	1,480
Highest	56.0	33.9	9.8	0.4	0.0	100.0	1,573
Total	39.8	41.6	16.8	1.7	0.1	100.0	7,584

Percent distribution of men age 15-49 by self-reported current health status, according to background characteristics, Albania 2008-09							
	Current health status assessment						
Background characteristic	Very good	Good	Fair	Poor	Very poor	Total	Number of men
Age							
15-19	62.0	31.6	6.2	0.2	0.0	100.0	670
20-24	57.3	35.2	6.7	0.8	0.0	100.0	393
25-29	46.7	47.6	5.7	0.0	0.0	100.0	269
30-34	40.2	47.6	11.7	0.4	0.1	100.0	273
35-39	36.7	51.9	9.8	1.6	0.0	100.0	372
40-44	38.2	48.4	10.8	2.5	0.1	100.0	501
45-49	34.1	49.3	13.7	2.9	0.0	100.0	536
Marital status							
Never married	56.8	36.1	6.3	0.7	0.0	100.0	1,291
Married or living together	37.9	49.0	11.3	1.7	0.0	100.0	1,703
Divorced, separated, widowed	*	*	*	*	*	*	19
Residence							
Urban	51.4	40.4	7.3	0.8	0.1	100.0	1,391
Rural	41.4	45.9	10.9	1.8	0.0	100.0	1,622
Region							
Coastal	43.0	44.8	11.1	1.1	0.1	100.0	800
Central	45.8	42.6	10.0	1.6	0.0	100.0	1,443
Mountain	41.2	46.7	9.7	2.3	0.2	100.0	277
Urban Tirana	54.2	41.6	4.1	0.2	0.0	100.0	493
Education							
No education/Primary 4-year	25.6	57.4	8.2	7.0	1.8	100.0	55
Primary 8-year	36.1	48.1	13.7	2.1	0.0	100.0	1,183
Secondary, professional, technical	50.8	41.2	7.3	0.8	0.0	100.0	1,415
University+	62.8	34.5	2.5	0.2	0.0	100.0	361
Wealth quintile							
Lowest	33.9	45.6	16.2	4.3	0.0	100.0	475
Second	41.5	47.1	9.9	1.3	0.1	100.0	600
Middle	45.9	43.9	9.4	0.7	0.0	100.0	661
Fourth	44.7	46.0	8.3	1.0	0.0	100.0	625
Highest	60.3	35.4	4.3	0.0	0.0	100.0	652
Total	46.0	43.4	9.3	1.3	0.0	100.0	3,013

Table 13.2 shows the current health status of women and men compared with their perceived health status 12 months before the survey. Overall, 29 percent of women and 32 percent of men said that their health status is better now than it was 12 months before the survey, and almost two-thirds of women and men reported that their health status is about the same as it was 12 months before the survey (64 and 65 percent, respectively). On the other hand, 7 percent of women and 3 percent of men reported that their current health status is worse than it was 12 months before the survey. Less than 1 percent of women and men said that their health status is much worse than it was 12 months before the survey.

Table 13.2 Current health status compared with 12 months before the					
Percent distribution of women and men age $15-49$ by self-reported current health status compared with health status 12 months before the survey, Albania 2008-09					
Current health status compared with health status 12 months before survey	Current health status assessment				
	Very good	Good	Fair	Poor/ Very poor	Total
WOMEN					
Much better now	32.6	2.4	0.8	0.0	14.1
Somewhat better	6.2	22.2	19.9	9.9	15.2
About the same	60.9	70.1	57.8	37.5	63.7
Somewhat worse	0.4	5.4	21.3	49.4	6.9
Much worse now	0.0	0.0	0.2	3.1	0.1
Total	100.0	100.0	100.0	100.0	100.0
Number	3,015	3,156	1,274	138	7,584
MEN					
Much better now	22.0	3.1	0.8	(1.6)	11.6
Somewhat better	13.1	27.9	18.4	(15.5)	20.1
About the same	64.7	65.1	70.8	(45.3)	65.2
Somewhat worse	0.2	3.8	9.6	(29.4)	3.0
Much worse now	0.0	0.0	0.4	(8.2)	0.2
Total	100.0	100.0	100.0	I (100.0	100.0
Number	1,386	1,307	279	41	3,013

Note: Figures in parentheses are based on 25-49 unweighted cases.

13.2 Chronic and Acute Illnesses

Table 13.3 shows the percentage of women and men age $15-49$ who experienced a chronic illness or disability that lasted more than three months, by type of illness or disability, and the percentage who had an acute, sudden illness or injury during the past four week, by type of illness or injury. Eighty-six percent of women and 93 percent of men reported no chronic illness or disability that lasted more than three months. The most common chronic illnesses or disabilities reported by women are vision problems (5 percent), thyroid problems, chronic fatigue, blood diseases (2 percent, each), and heart disease, asthma, infectious diseases, scleroderma, urinary infections, and bone and ligaments problems (1 percent, each). All other chronic illnesses or disabilities were reported by less than 1 percent of women. The most common chronic illnesses or disabilities reported by men are vision problems, urinary infections, thyroid problems, high or low blood pressure, and heart disease (1 percent, each). Like women, less than 1 percent of men reported other chronic illnesses or disabilities.

Four in five women and men (80 percent) reported no acute illness or injury during the past four weeks. The most common acute illnesses among women and men are cold/flu (15 and 14 percent, respectively) followed by headache (2 and 1 percent, respectively), and ear, nose, and throat problems (1 percent, each); 1 percent of women and 2 percent of men reported acute stomach illness.

Table 13.3 Chronic and acute illnesses		
Percentage of women and men age 15-49 who experienced a chronic illness or disability that lasted more than three months, and percentage who had an acute, sudden illness or injury during the past four weeks, by type of illness, disability, or injury, Albania 2008-09		
Type of illness, disability, or injury	Women	Men
Chronic Illness or disability ${ }^{1}$		
Vision problem	4.7	0.8
Thyroid problem	2.3	0.6
Chronic fatigue	1.6	0.3
Blood disease (haemophilia, talasemia, leukemia, etc)	1.5	0.1
Heart disease	1.1	0.5
Urinary infection	0.8	0.8
Scleroderma	0.8	0.1
Bone and ligament	0.8	0.1
High blood pressure, low blood pressure	0.3	0.6
Asthma	0.5	0.3
Infectious disease	0.5	0.1
Other disabilities	2.7	2.7
No chronic illness or disability	85.9	93.3
Acute illness or injury		
Cold/flu	14.6	13.9
Headache	2.0	1.4
Stomach	0.7	1.7
Ear/nose/throat	1.0	0.7
Diarrhoea	0.7	0.7
Other illness	1.1	1.4
No acute illness or injury	79.8	80.4
Total	100.0	100.0
Number	7,584	3,013

1 Respondents could report multiple chronic illnesses or disabilities so the sum may exceed 100 percent.

13.3 Knowledge of Cancer Screening

Early detection is the key to successful treatment of cancer. Mammograms or breast screenings and Papanicolaou smear tests (Pap smears) are two important methods of detecting certain cancers in women-breast cancer and cervical cancer, respectively. In the 2008-09 ADHS women were asked if they had heard of a mammogram or breast screening or a Pap smear. Table 13.4 shows that women have greater knowledge of mammograms than Pap smears-more than threefourths of women (77 percent) have heard of a mammogram, compared with about half of women (49 percent) who have heard of a Pap smear (Table 13.4).

Table 13.4 Knowledge of mammogram and Pap smear			
Percentage of women age 15-49 who have ever heard of a mammogram or breast screening and percentage who have ever heard of a Pap smear, by background characteristics, Albania 2008-09			
Background characteristic	Percentage who ever heard of a mammogram	Percentage who ever heard of a Pap smear	Number of women
Age			
15-19	65.1	29.2	1,478
20-24	73.2	48.9	976
25-29	77.4	55.4	848
30-34	81.2	55.6	866
35-39	80.8	52.7	1,097
40-44	82.2	54.4	1,232
45-49	80.4	52.2	1,088
Residence			
Urban	87.5	67.2	3,380
Rural	67.9	33.4	4,204
Region			
Coastal	77.0	47.2	2,129
Central	72.8	39.9	3,477
Mountain	67.3	29.4	777
Urban Tirana	92.8	87.9	1,201
Education			
No education/Primary 4-year	49.7	15.1	127
Primary 8-year	67.0	33.3	3,712
Secondary, professional, technical	83.4	56.7	2,740
University+	96.8	86.3	1,005
Wealth quintile			
Lowest	58.0	23.0	1,513
Second	69.6	33.4	1,486
Middle	76.8	42.6	1,533
Fourth	84.2	60.4	1,480
Highest	93.7	81.7	1,573
Total	76.6	48.5	7,584

Knowledge of mammograms and Pap smears is lowest in the youngest age group 15-19 (65 and 29 percent, respectively) and increases with age until age 30-34 (81 and 56 percent, respectively), after which there is little change in the proportion of women who have heard of the two cancerdetection methods.

Knowledge of mammograms is higher among women in urban areas than those in rural areas, and it is highest among women in Urban Tirana and lowest among those in the Mountain region. Eighty-eight percent of women in urban areas and 93 percent of women in Urban Tirana have heard of a mammogram, compared with 68 percent of women in rural areas and 67 percent of women in the Mountain region. Knowledge of mammograms is positively associated with level of education and wealth status. The percentage of women who have heard of a mammogram is almost twice as high among women with university or higher education as among women with no education or primary 4year education (97 and 50 percent, respectively). By wealth status, knowledge of mammograms increases from 58 percent among women in the lowest wealth quintile to 94 percent among women in the highest wealth quintile.

Knowledge of Pap smears shows a pattern similar to that of knowledge of mammograms. Women in urban areas are twice as likely to have heard of a Pap smear (67 percent) as women in rural areas (33 percent). Knowledge of Pap smears is highest in Urban Tirana (88 percent) and lowest in the Mountain region (29 percent). The percentage of women who have heard of a Pap smear is almost six times higher among women with university or higher education as among women with no education or primary 4-year education (86 and 15 percent, respectively). By wealth status, knowledge of Pap smears increases from 23 percent among women in the lowest wealth quintile to 82 percent among women in the highest wealth quintile.

13.4 Use of Tobacco

Smoking has a powerful negative impact on the population's health. Smoking is a known risk factor for cardiovascular disease; it causes lung cancer and other forms of cancer, and contributes to the severity of pneumonia, emphysema, and chronic bronchitis. It may also have an impact on individuals who are exposed to second-hand smoke. For example, inhaling second-hand smoke may adversely affect children's growth and cause childhood illness, especially respiratory diseases. Because smoking is an acquired behaviour, all morbidity and mortality caused by smoking is preventable.

Tables 13.5.1 and 13.5.2 show current use of cigarettes and other forms of tobacco by women and men in Albania, according to background characteristics. Overall, smoking is relatively rare among women (4 percent), but quite common among men (43 percent). Almost no women use other kinds of tobacco products, while less than 1 percent of men use a pipe and 2 percent use other tobacco products.

Smoking is more common among younger women than older women; 7 percent of women age 20-24 and 10 percent of women age 25-29 smoke cigarettes, compared with 3 to 4 percent of women in older age groups. This pattern suggests that smoking among women is a relatively recent phenomena. For men, smoking increases rapidly with age, from 13 percent among young men age 1519 to a peak of 56 percent among men age $30-34$, after which it decreases gradually to 49 percent among men age $45-49$. This pattern suggests that cigarette smoking among men has not changed substantially over the past few years. Looking at the differentials, smoking among women is highest for those in Urban Tirana (14 percent), women with university or higher education (15 percent), and women in the highest wealth quintile (12 percent). In contrast, while the overall prevalence of smoking is higher for men, smoking is lower in these sub-groups than in the other groups. Smoking among men is highest for those in the Mountain region (46 percent) and men with no education or primary 4 -year education (59 percent). There are no significant variations in the prevalence of smoking among men by urban-rural residence or by wealth status. Almost no women use other forms of tobacco, while 2 percent of men use other forms of tobacco.

Among women who smoke cigarettes, more than six in ten (61 percent) reported smoking 10 or more cigarettes in the past 24 hours; this proportion is highest among women age 25-29 (70 percent), women in urban areas (67 percent) and in Urban Tirana (83 percent), women with university or higher education (74 percent), and women in the highest wealth quintile (73 percent). Among men who smoke cigarettes, more than nine in ten (93 percent) reported smoking more than 10 cigarettes in the past 24 hours. There are no substantial differentials by background characteristics among men who smoke 10 or more cigarettes per day, except for age group $15-19$, which is characterized by a lower proportion who smoke 10 or more cigarettes (72 percent), compared with other age groups (91 to 97 percent).

The proportion of women who are current cigarette smokers has increased slightly from 3 percent in the 2002 ARHS (CDC, IPH, and INSTAT, 2005) to 4 percent in the 2008-09 ADHS. In contrast, there has been a slight decrease in the proportion of men who are current cigarette smokers from 46 percent in the 2002 ARHS to 43 percent in the 2008-09 ADHS.

Compared with estimates from recent Demographic and Health Surveys conducted in other countries, the level of cigarette smoking among men in Albania (43 percent) is lower than that for men in Azerbaijan (50 percent) in 2006 (SSC, MOH, and Macro International, 2008), Moldova (51 percent) in 2005 (NCPM, ORC Macro, 2006), and Armenia (61 percent) in 2005 (NSS, MOH, and ORC Macro, 2006), but higher than the rate for men in Uzbekistan (21 percent) in 2007 (UCSR, SSC, MOH, and Macro International, 2008). Cigarette smoking among women in Albania (4 percent) is lower than that for women in Moldova (7 percent) but higher than that for Armenia (2 percent).

Table 13.5.1 Use of tobacco: Women

Percentage of women age 15-49 who smoke cigarettes or a pipe or use other tobacco products and the percent distribution of cigarette smokers by number of cigarettes smoked in the past 24 hours, according to background characteristics and maternity status, Albania 2008-09

Background characteristic	Other Cigarettes tobacco		Does not use tobacco	Number of women	Number of cigarettes in the past 24 hours						Total	Number of cigarette smokers	
			0		1-2	3-5	6-9	10+	Don't know				
Age													
15-19	1.1	0.1		98.9	1,478	*	*	*	*	*	*	*	16
20-24	7.2	0.1	92.8	976	5.7	10.8	10.1	9.4	64.0	0.0	100.0	70	
25-29	10.2	0.0	89.8	848	1.7	9.9	8.0	5.1	70.4	4.9	100.0	86	
30-34	4.1	0.0	95.9	866	(4.3)	(8.8)	(27.2)	(7.7)	(52.0)	(0.0)	(100.0)	35	
35-39	2.8	0.0	97.2	1,097	(0.7)	(4.6)	(38.1)	(8.2)	(48.4)	(0.0)	(100.0)	30	
40-44	3.8	0.0	96.2	1,232	0.0	7.8	17.7	7.3	67.2	0.0	100.0	46	
45-49	2.9	0.0	97.1	1,088	(8.7)	(13.8)	(8.9)	(17.2)	(51.4)	(0.0)	(100.0)	32	
Residence													
Urban	7.9	0.1	92.1	3,380	3.2	9.2	13.0	5.7	67.3	1.6	100.0	267	
Rural	1.2	0.0	98.8	4,204	(5.3)	(17.1)	(28.9)	(21.8)	(26.9)	(0.0)	(100.0)	50	
Region													
Coastal	2.5	0.0	97.5	2,129	5.6	15.8	13.6	13.6	51.3	0.0	100.0	53	
Central	2.5	0.0	97.5	3,477	6.8	21.0	28.6	15.2	28.3	0.0	100.0	87	
Mountain	1.4	0.0	98.6	777	(20.1)	(29.1)	(18.0)	(3.5)	(29.3)	(0.0)	(100.0)	11	
Urban Tirana	13.8	0.0	86.2	1,201	0.0	2.0	9.0	3.2	83.3	2.5	100.0	166	
Education													
No education/													
Primary 4-year	6.9	0.0	93.1	127	*	*	*	*	*	*	*	9	
Primary 8-year	1.9	0.0	98.1	3,712	8.9	10.9	20.4	16.5	42.1	1.2	100.0	71	
Secondary, professional, technical	3.0	0.0	97.0	2,740	1.7	16.1	15.1	11.1	55.9	0.0	100.0	83	
University+	15.3	0.1	84.7	1,005	2.1	7.8	11.3	2.4	74.1	2.2	100.0	154	
Maternity status													
Pregnant	3.2	0.0	96.8	150	*	*	*	*	*	*	*	5	
Breastfeeding (not pregnant)	1.8	0.0	98.2	367	*	*	*	*	*	*	*	7	
Neither	4.3	0.0	95.7	7,067	3.6	10.4	14.7	8.5	61.4	1.4	100.0	305	
Wealth quintile													
Lowest	0.8	0.0	99.2	1,513	*	*	*	*	*	*	*	12	
Second	1.1	0.0	98.9	1,486	*	*	*	*	*	*	*	17	
Middle	2.1	0.1	97.9	1,533	(11.9)	(17.0)	(17.9)	(11.4)	(41.9)	(0.0)	(100.0)	32	
Fourth	5.0	0.0	95.0	1,480	4.8	12.4	25.9	5.6	51.3	0.0	100.0	74	
Highest	11.5	0.1	88.5	1,573	1.2	6.4	9.6	7.3	73.1	2.3	100.0	181	
Total	4.2	0.0	95.8	7,584	3.5	10.5	15.5	8.2	61.0	1.3	100.0	317	

Note: Figures in parentheses are based on 25-49 unweighted cases. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.

Table 13.5.2 Use of tobacco: Men

Percentage of men age 15-49 who smoke cigarettes or a pipe or use other tobacco products and the percent distribution of cigarette smokers by number of cigarettes smoked in the past 24 hours, according to background characteristics, Albania 2008-09

Background characteristic	Cigarettes	Pipe	Other tobacco	Does not use tobacco	Number of men	Number of cigarettes in the past 24 hours						Total	Number of cigarette smokers
						0	1-2	3-5	6-9	10+	Don't know		
Age													
15-19	13.4	0.0	1.2	86.6	670	1.4	2.4	15.0	8.8	72.3	0.0	100.0	90
20-24	40.7	0.1	1.4	59.3	393	0.7	0.0	1.9	1.7	95.7	0.0	100.0	160
25-29	54.0	0.0	0.9	46.0	269	0.2	0.9	3.0	0.2	95.7	0.0	100.0	145
30-34	56.4	0.0	1.1	43.6	273	0.8	1.3	4.7	1.9	91.3	0.0	100.0	154
35-39	55.2	1.0	1.9	44.8	372	0.0	0.9	3.3	1.9	93.5	0.5	100.0	205
40-44	52.6	0.3	4.0	47.4	501	0.5	1.0	1.5	0.4	96.5	0.1	100.0	264
45-49	49.1	1.3	1.5	50.9	536	0.0	1.3	2.3	2.4	93.2	0.7	100.0	263
Residence													
Urban	42.3	0.1	0.8	57.7	1,391	0.0	1.2	2.3	2.2	94.2	0.2	100.0	589
Rural	42.7	0.7	2.7	57.3	1,622	0.8	1.0	4.6	1.8	91.6	0.3	100.0	692
Region													
Coastal	42.9	0.5	1.1	57.1	800	1.4	1.8	3.1	3.3	90.1	0.3	100.0	343
Central	42.7	0.5	2.9	57.3	1,443	0.0	0.9	4.4	1.5	92.9	0.3	100.0	616
Mountain	45.5	0.3	1.3	54.5	277	0.3	0.7	3.1	1.1	94.7	0.2	100.0	126
Urban Tirana	39.8	0.2	0.0	60.2	493	0.0	0.3	1.9	1.8	96.1	0.0	100.0	196

Education													
No education/ Primary 4-year	59.2	0.0	9.4	40.8	55	(0.0)	(1.9)	(0.0)	(0.0)	(98.1)	(0.0)	(100.0)	32
Primary 8-year	48.0	1.1	2.7	52.0	1,183	0.4	0.7	4.8	0.9	92.8	0.5	100.0	567
Secondary, professional, technical	38.2	0.0	1.2	61.8	1,415	0.5	1.4	2.9	2.4	92.8	0.0	100.0	541
University+	38.9	0.0	0.1	61.1	361	0.2	1.1	1.9	5.3	91.4	0.0	100.0	140
Wealth quintile													
Lowest	45.1	0.9	5.0	54.9	475	0.2	1.5	2.4	1.4	93.6	0.9	100.0	214
Second	43.4	0.6	2.9	56.6	600	1.4	0.8	4.5	1.3	91.9	0.0	100.0	261
Middle	41.0	0.4	0.7	59.0	661	0.4	0.6	6.6	2.0	90.4	0.0	100.0	271
Fourth	44.6	0.4	0.9	55.4	625	0.0	1.7	2.2	1.4	94.4	0.3	100.0	278
Highest	39.3	0.0	0.4	60.6	652	0.0	0.7	1.8	3.7	93.8	0.1	100.0	256
Total	42.5	0.4	1.8	57.5	3,013	0.4	1.1	3.5	2.0	92.8	0.2	100.0	1,281

Note: Figures in parentheses are based on 25-49 unweighted cases.

The age when smoking begins has a major effect on health because people who start smoking early have, on average, a longer period of exposure through inhalation to the hazardous products of nicotine breakdown. Table 13.6 shows the median age at which women and men started smoking and the percentage of women and men who tried to stop smoking in the past year, by background characteristics.

The median age at which women and men started smoking is 21.1 years and 19.2 years, respectively. Women who start smoking at a younger age (compared with other women) include women in urban areas (21.0 years), women in Urban Tirana (20.5 years), women with university or higher education (20.6 years) and women in the highest wealth quintile (20.6 years). The opposite pattern is seen for men; men in urban areas (19.5 years), men with university or higher education (20.1 years), and men in the highest wealth quintile (20.0 years) tend to start smoking later than other men. Overall, the age at which women and men start smoking is declining. For example, the median age at which men start smoking has dropped by more than two years, from 20.4 years among men age $45-49$ to 18.2 years among men age 20-24. The same pattern is seen for women, although the numbers are relatively small.

Median age at which women and men started smoking, and the percentage of women and men who tried to stop smoking in the past year, by background characteristics, Albania 2008-09						
		Women			Men	
Background characteristic	Median age at which started smoking	Percentage who tried to stop smoking in the past year	Number of women	Median age at which started smoking	Percentage who tried to stop smoking in the past year	Number of men
Age						
15-19	*	*	16	a	50.4	90
20-24	18.1	66.2	70	18.2	62.6	160
25-29	20.5	47.9	86	18.9	66.9	145
30-34	(23.9)	(71.9)	35	19.8	72.4	154
35-39	(25.7)	(44.1)	30	19.6	72.8	205
40-44	28.5	65.4	46	20.2	73.3	264
45-49	(27.9)	(71.8)	32	20.4	63.3	263
Residence						
Urban	21.0	57.4	267	19.5	70.8	589
Rural	(26.2)	(73.1)	50	18.8	64.5	692
Region						
Coastal	22.4	62.6	53	18.9	69.2	343
Central	23.3	64.1	87	18.8	60.6	616
Mountain	(24.4)	(60.1)	11	20.3	76.8	126
Urban Tirana	20.5	56.7	166	19.6	79.3	196
Education						
No education/Primary 4-year	*	*	9	(16.8)	(87.3)	32
Primary 8-year	23.1	72.5	71	18.8	69.1	567
Secondary, professional, technical	24.4	56.7	83	19.3	62.6	541
University+	20.6	54.4	154	20.1	74.3	140
Wealth quintile						
Lowest	*	*	12	18.8	64.0	214
Second	*	*	17	18.8	68.2	261
Middle	(23.2)	(64.7)	32	19.0	64.5	271
Fourth	24.9	64.8	74	18.9	69.7	278
Highest	20.6	54.2	181	20.0	69.9	257
Total	21.1	59.8	317	19.2	67.4	1,281
Note: Figures in parentheses are based on 25-49 unweighted cases. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed. $\mathrm{a}=$ Omitted because less than 50 percent of the men started smoking before reaching the beginning of the age group						

Table 13.6 shows that three in five women (60 percent) and two-thirds of men (67 percent) who smoke tried to stop smoking in the past year. For women, those living in urban areas and in Urban Tirana, women with university or higher education, and those in the highest wealth quintile were least likely to try to stop smoking. On the other hand, men living in urban areas, Urban Tirana, and the Mountain region, and men with university or higher education were more likely to try to stop smoking than other men.

Table 13.7 shows the percentage of women and men who think that specific health problems are caused by smoking. The health problems most commonly thought to be caused by smoking, according to women and men, are lung cancer (92 and 91 percent, respectively), heart disease (47 and 66 percent, respectively), throat or larynx cancer (29

Table 13.7 Perception of health problems caused by smoking

Percentage of women and men who think that specific health problems are caused by smoking, Albania 2008-09
Health problems thought to be caused

by smoking	Women	Men
Lung cancer	91.8	91.2
Throat or larynx cancer	29.3	30.4
Problems with vocal chords or larynx	15.3	20.2
Chronic bronchitis	18.5	29.1
Asthma	27.5	35.1
Heart disease	47.1	66.3
Stroke	8.4	16.6
Impotency in men	11.4	29.3
Complications in pregnancy	31.0	16.8
Pulmonary	0.4	0.4
Other cancers	0.3	0.0
Stomach problems	0.2	0.2
Problems with teeth	0.1	0.0
Other	0.8	0.4
None	0.1	0.1
Don't know	2.4	2.1
Number	7,584	3,013

and 30 percent, respectively), asthma (28 and 35 percent, respectively), and chronic bronchitis (19 and 29 percent, respectively). Thirty-one percent of women reported complications in pregnancy as a major health problem caused by smoking, compared with 17 percent of men. In contrast, 29 percent of men reported impotency in men as a major health problem caused by smoking, compared with 11 percent of women.

13.5 Alcohol Consumption

Alcohol abuse is a serious problem in many European countries. Europe has the highest level of alcohol consumption in the world, and alcohol consumption is considered to be the third highest risk factor for death and disability, after tobacco use and hypertension (WHO, 2009). Potential consequences of alcohol abuse include increased risk of cirrhosis, hypertension, psychological illnesses, and congenital malformations. Moreover, excessive alcohol consumption contributes to family problems such as domestic violence as well as social and employment problems such as alcohol addiction, accidents, criminal behaviour, violence, homicide, and suicide.

In the 2008-9 ADHS, respondents were asked if they had have ever consumed an alcoholic drink, whether they drank alcohol in the past 12 months, the frequency of drinking (5 or more days per week, 1-4 days per week, 1-3 days per month, and less than once a month), and, for respondents who drink alcohol, the average number of drinks per day. The results are presented for women and men in Tables 13.8.1 and 13.8.2, respectively.

Table 13.8.1 Use of alcohol: Women
Percentage of women who have ever consumed an alcoholic drink, percentage who drank alcohol in the past 12 months, the frequency of drinking at least one alcoholic drink in the past 12 months, and the mean number of alcoholic drinks usually consumed each day, by background characteristics, Albania 2008-09

Background characteristic	Percentage who ever drank alcohol	Percentage who drank alcohol in past 12 months	Percentage who drank alcohol in the past 12 months according to specific frequencies				Average number of drinks per day ${ }^{1}$	Number of women
			5 or more days per week	1-4 days per week	1-3 days per month	Less than once a month		
Age								
15-19	23.6	21.4	0.1	1.6	7.0	12.8	1.2	1,478
20-24	30.9	30.1	0.3	4.3	10.8	14.6	1.3	976
25-29	34.9	33.4	1.5	5.8	15.3	10.8	1.3	848
30-34	34.6	33.5	1.0	4.8	13.9	13.9	1.1	866
35-39	36.5	34.1	1.1	4.7	13.3	15.0	1.2	1,097
40-44	34.9	32.5	1.2	5.6	13.2	12.5	1.2	1,232
45-49	32.1	31.2	1.2	6.6	9.7	13.8	1.2	1,088
Residence								
Urban	37.2	35.8	0.8	6.0	14.0	14.9	1.2	3,380
Rural	27.8	25.9	0.8	3.4	9.5	12.1	1.2	4,204
Region								
Coastal	30.1	28.6	1.2	4.8	10.5	12.1	1.2	2,129
Central	34.7	32.8	0.9	4.8	12.6	14.5	1.1	3,477
Mountain	21.9	19.8	0.2	1.1	4.2	14.4	1.3	777
Urban Tirana	33.9	32.7	0.3	5.9	14.9	11.6	1.4	1,201
Education								
No education/Primary 4-year	18.9	17.5	0.0	2.2	4.3	11.0	1.4	127
Primary 8-year	27.1	25.6	0.8	3.2	9.7	11.9	1.2	3,712
Secondary, professional, technical	33.1	31.1	0.9	4.7	10.8	14.6	1.2	2,740
University+	48.7	47.2	0.9	9.8	21.1	15.4	1.2	1,005
Wealth quintile								
Lowest	25.7	23.4	0.4	2.1	7.2	13.8	1.2	1,513
Second	30.4	28.2	1.3	3.5	10.6	12.8	1.2	1,486
Middle	29.1	28.1	0.6	3.9	12.0	11.5	1.2	1,533
Fourth	34.6	32.9	1.0	6.0	11.1	14.8	1.2	1,480
Highest	39.9	38.6	0.9	7.4	16.5	13.7	1.3	1,573
Total	32.0	30.3	0.8	4.6	11.5	13.3	1.2	7,584

[^31]Table 13.8.2 Use of alcohol: Men
Percentage of men who have ever consumed an alcoholic drink, percentage who drank alcohol in the past 12 months, the frequency of drinking at least one alcoholic drink in the past 12 months, and the mean number of alcoholic drinks usually consumed each day, by background characteristics, Albania 2008-09

Background characteristic	Percentage who ever drank alcohol	Percentage who drank alcohol in past 12 months	Percentage who drank alcohol in the past 12 months according to specific frequencies				Average number of drinks per day ${ }^{1}$	Number of men
			5 or more days per week	1-4 days per week	1-3 days per month	Less than once a month		
Age								
15-19	38.6	37.2	3.1	9.5	15.6	9.0	1.4	670
20-24	62.7	59.7	8.1	21.2	21.4	9.1	1.5	393
25-29	74.2	72.7	15.5	33.4	21.0	2.7	1.7	269
30-34	69.2	68.0	16.5	27.0	18.9	5.7	1.7	273
35-39	69.7	69.2	22.0	27.2	14.4	5.5	2.0	372
40-44	75.5	73.0	24.8	28.3	14.9	4.9	1.9	501
45-49	77.8	75.5	27.2	28.3	16.7	3.3	1.8	536
Residence								
Urban	61.5	60.0	13.1	21.2	18.8	6.9	1.6	1,391
Rural	67.3	65.2	19.1	25.3	15.5	5.3	1.8	1,622
Region								
Coastal	73.4	71.8	16.8	28.4	19.9	6.7	1.8	800
Central	64.2	62.3	19.1	22.9	14.5	5.9	1.8	1,443
Mountain	65.4	64.3	12.8	25.3	17.9	8.3	2.0	277
Urban Tirana	51.3	48.9	9.4	15.8	19.5	4.2	1.3	493
Education								
No education/Primary 4-year	55.1	53.7	17.0	23.2	8.2	5.3	1.9	55
Primary 8-year	67.2	65.3	19.3	25.2	15.6	5.1	1.9	1,183
Secondary, professional, technical	63.1	61.5	15.0	23.1	17.0	6.5	1.7	1,415
University+	63.9	61.0	11.5	18.8	23.4	7.4	1.4	361
Wealth quintile								
Lowest	70.7	68.7	20.1	25.2	17.3	6.2	2.0	475
Second	70.1	67.7	17.3	26.1	18.9	5.3	1.8	600
Middle	63.7	61.3	18.4	25.4	12.9	4.7	1.7	661
Fourth	63.1	62.2	15.1	22.4	16.2	8.5	1.7	625
Highest	57.6	56.0	11.6	18.6	20.2	5.6	1.5	652
Total	64.6	62.8	16.3	23.4	17.1	6.0	1.7	3,013

${ }^{1}$ The average number of drinks is based on the number of drinks consumed on the days that the man drank alcohol, for men who had a drink in the past 12 months.

One-third of women (32 percent) and two-thirds of men (65 percent) reported having ever drunk alcohol and most, 30 percent of all women and 63 percent of all men, reported consuming at least one alcoholic drink in the 12 months preceding the survey. Alcohol consumption among women is highest in urban areas (36 percent) and in Urban Tirana and Central regions (33 percent each). The proportion of women who drink alcohol increases with level of education and wealth quintile; for example, 18 percent of women with no education or with primary 4-year education reported drinking alcohol in the past 12 months, compared with 47 percent of women with university or higher education. Likewise, 23 percent of women in the lowest wealth quintile reported consuming alcohol in the past 12 months, compared with 39 percent of women in the highest wealth quintile. In contrast, alcohol consumption among men is highest in rural areas (65 percent) and in the Coastal region (72 percent), as well as among men with primary 8 -year education (65 percent) and men in the lowest wealth quintile (69 percent).

The results of the 2008-09 ADHS indicate that less than 1 percent of Albanian women drink alcohol five or more days per week, 5 percent drink 1-4 days per week, 12 percent drink 1-3 days per month, and 13 percent drink alcohol less than once a month. On average, women consume 1.2 drinks per day when they drink alcohol. There are only small differences in the average number of drinks per day by background characteristics.

Among men who consumed at least one alcoholic drink in the 12 months preceding the survey, 16 percent reported drinking alcohol five or more days per week. Regular consumption of
alcohol (i.e., five or more days per week) increases with age from 3 percent among men age 15-19 to 27 percent among men age 45-49, and it is highest among men in rural areas (19 percent), those in the Central region (19 percent), men with primary 8-year education (19 percent), and men in the lowest wealth quintile (20 percent). Twenty-three percent of men drink alcohol 1-4 days per week, 17 percent drink 1-3 days per month, and only 6 percent drink alcohol less than once a month. The average number of drinks per day for men when they drink alcohol is 1.7 drinks per day. The average number of drinks per day is negatively associated with level of education and wealth status-that is, men with no education or with primary education consume an average of 1.9 drinks per day, compared with 1.4 drinks per day for men with university or higher education. Similarly, men in the lowest wealth quintile consume an average of 2.0 drinks per day, compared with 1.5 drinks per day for men in the highest wealth quintile.

13.6 HYPERTENSION

High blood pressure (hypertension) is known to be a contributing factor to heart disease, stroke, and kidney disease. One of the objectives of the 2008-09 ADHS was to provide information on cardiovascular risk factors (hypertension, smoking, and nutritional status), based on popu-lation-based data rather than clinic-based data.

To gauge the extent to which ADHS respondents are aware that they have hypertension, interviewers asked if they had ever been told by a medical practitioner that they have high blood pressure and, if so, the actions they were taking to lower their blood pressure. Table 13.9 shows that 6 percent of women and 3 percent of men age 15-49 were told by a medical practitioner that they had high blood pressure. Of these, four in five (82 percent of women and 78 percent of men) have taken some action to lower their blood pressure. Forty-two percent of women

Table 13.9 History of hypertension and actions taken to lower			
blood pressure			
Percent distribution of women and men age 15-49 by history			
of hypertension (high blood pressure)	and, among those		
informed that they had high blood pressure, percentage taking			
specific actions to lower blood pressure, Albania 2008-09			
History of hypertension and			
actions taken to treat hypertension			
Women	Men	Total	
Told had high blood pressure by			
medical practitioner	5.7	3.4	4.6
Once	1.4	1.3	1.3
On two or more occasions	4.3	2.0	3.3
Never told	93.9	96.3	95.0
Don't know	0.4	0.3	0.4
Total	100.0	100.0	100.0
Number	3,728	3,013	6,741
Actions taken to lower blood			
pressure			
Percentage taking some action to			
\quad lower blood pressure	82.4	77.8	80.9
Taking prescribed medication	42.4	30.8	38.6
Controlling weight/ losing weight	32.2	46.7	36.9
Cutting down on salt in diet	49.9	48.9	49.6
Exercising	21.1	20.6	20.9
Stopped smoking	54.0	28.7	45.8
Number with history of high blood			
pressure	211	101	312

13.6.1 Prevalence of Hypertension

Blood pressure measurements were taken during the administration of the Women's and Men's Questionnaires in the 2008-09 ADHS. These measurements were intended to provide a crosssectional assessment of the prevalence of high blood pressure in the surveyed population at the time of the ADHS interviews and were not intended to provide a medical diagnosis of the disease. While the results of the blood pressure measurements are regarded only as a statistical description of the survey population, they are useful in providing insight into the size and characteristics of the population at risk for hypertension.

Blood pressure readings were taken by ADHS interviewers using a fully automatic, digital oscillometric blood pressure measuring device with automatic upper-arm inflation and automatic pressure release (Omron M6 Comfort/Omron HEM-711ac and Life Source Model UA-789 for individuals with large arms). Interviewers were trained in the use of this device according to the
manufacturers recommended protocol. Three measurements of systolic and diastolic blood pressure (measured in millimetres of mercury, mmHg) were taken during the survey interview, at approximately 10 minute intervals between measurements. The average of the second and third measurements was used to classify individuals with respect to hypertension, following internationally recommended categories (WHO, 1999). Blood pressure measurements were successfully taken from 96 percent of women and 94 percent of men (data not shown).

Individuals were classified as hypertensive if their systolic blood pressure exceeded 140 mmHg or if their diastolic blood pressure exceeded 90 mmHg . Elevated blood pressure was classified as mild, moderate, or severe according to the cut-off points recommended by the National Institutes of Health (1997).

Blood pressure status	Systolic (mmHg)	Diastolic (mmHg)
Optimal	<120	<80
Normal	120-129	80-84
High normal	130-139	85-89
Level of hypertension		
Stage 1, mildly elevated	140-159	90-99
Stage 2, moderately elevated	160-179	100-109
Stage 3, severely elevated	180+	110+

When a respondent's systolic and diastolic pressures fell into different categories, the higher category was used. Respondents whose average systolic and diastolic measurements were greater than or equal to $140 / 90 \mathrm{mmHg}$ were considered to be hypertensive. Following internationally recommended guidelines, respondents were also considered to be hypertensive if they had a normal or optimal blood pressure reading but were taking medication to lower their blood pressure.

Tables 13.10.1 and 13.10.2 show the prevalence of hypertension among women and men age 15-49 by background characteristics and health-related characteristics, and the percent distribution of women and men who were successfully measured, by classification of blood pressure. One in five women (20 percent) are classified as hypertensive- 15 percent are classified as stage 1 (mildly elevated), 3 percent are stage 2 (moderately elevated), and 1 percent are stage 3 (severely elevated); an additional 1 percent of women have normal blood pressure but are taking anti-hypertensive medication and are classified as hypertensive. Among men, 28 percent are classified as hypertensive- 24 percent are classified as stage 1 (mildly elevated), 3 percent are stage 2 (moderately elevated), and 1 percent are stage 3 (severely elevated). Less than 1 percent of men have normal blood pressure but are taking anti-hypertensive medication.

A comparison of hypertension in women and men shows some gender-related differentials. Overall, men have a higher prevalence of hypertension than women (28 and 20 percent, respectively). They are more likely than women to have a mildly elevated level of hypertension (24 and 15 percent, respectively), and they are more likely than women to be in the high-normal category (39 and 27 percent, respectively). In contrast, women are more likely to be classified in the optimal and normal blood pressure categories. Twenty percent of women had optimal blood pressure levels, compared with 5 percent of men, and 33 percent of women were in the normal range, compared with 28 percent of men.

Epidemiological studies have shown that hypertension is positively associated with age, a finding confirmed by the 2008-09 ADHS. Forty percent of women and 45 percent of men age 45-49 have hypertension, indicating that it is a serious health problem among older Albanians. For women, hypertension rates increase with age from 6 percent among women age 15-19 to 40 percent among those age 45-49, while for men, the rates increase from 11 percent among men age 15-19 to 45 percent among those age 45-49.

Table 13.10.1 Levels of hypertension: Women

Prevalence of hypertension among women age 15-49 and percent distribution of women by blood pressure status, according to background and health-related characteristics, Albania 2008-09

Background characteristics	Prevalence of hypertension ${ }^{1}$	Classification of blood pressure							Total	$\begin{aligned} & \text { Numbe } \\ & \text { r of } \\ & \text { women } \end{aligned}$
		Optimal $<120 / 80$ mmHg	$\begin{gathered} \text { Normal } \\ 120-129 / \\ 80-84 \\ \mathrm{mmHg} \\ \hline \end{gathered}$	$\begin{gathered} \text { High } \\ \text { normal } \\ 130-139 / \\ 85-89 \\ \mathrm{mmHg} \\ \hline \end{gathered}$	Mildly elevated (stage 1) $140-159 /$ $90-99$ mmHg	$\begin{gathered} \hline \text { Moderatel } \\ \text { y elevated } \\ \text { (stage 2) } \\ 160-179 / \\ 100-109 \\ \mathrm{mmHg} \\ \hline \end{gathered}$	Severely elevated (stage 3) 180+/ 110+ mmHg	Normal BP and taking medication		
Age										
15-19	5.9	32.6	43.7	17.8	5.0	0.3	0.5	0.0	100.0	670
20-24	7.6	35.1	36.6	20.6	7.0	0.5	0.1	0.0	100.0	408
25-29	8.9	24.2	40.7	26.3	7.4	1.0	0.4	0.0	100.0	402
30-34	16.8	20.1	34.7	28.4	12.9	3.0	0.5	0.5	100.0	448
35-39	26.8	11.3	31.5	30.4	22.1	2.3	2.1	0.2	100.0	550
40-44	31.0	12.1	26.7	30.2	22.4	6.2	1.4	1.0	100.0	585
45-49	40.0	8.2	17.6	34.2	28.0	5.8	4.4	1.9	100.0	517
Marital status										
Never married	8.1	31.1	43.2	17.6	7.1	0.6	0.4	0.0	100.0	1,081
Married or living together	25.1	15.9	28.5	30.5	18.7	3.7	1.9	0.7	100.0	2,394
Divorced, separated, widowed	27.2	7.1	31.8	33.9	21.2	4.0	0.0	2.1	100.0	105
Smoking										
Yes	16.7	24.9	33.0	25.3	10.0	6.5	0.1	0.0	100.0	135
No	20.2	20.0	33.0	26.8	15.5	2.7	1.4	0.6	100.0	3,445
Nutritional status ${ }^{2}$										
Thin	8.0	31.9	42.0	18.2	7.1	0.8	0.0	0.0	100.0	93
Normal	13.3	25.3	37.0	24.4	11.0	1.5	0.5	0.3	100.0	2,025
Overweight	26.4	13.4	28.9	31.3	20.6	3.2	1.9	0.6	100.0	1,018
Obese	47.3	5.0	20.5	27.2	29.1	10.3	5.6	2.3	100.0	344
Not eligible (pregnant or recent birth)	9.2	25.6	29.9	35.3	7.6	1.6	0.0	0.0	100.0	83
Residence										
Urban	15.8	22.3	35.9	26.0	11.5	2.4	1.1	0.7	100.0	1,609
Rural	23.5	18.5	30.6	27.3	18.3	3.1	1.6	0.4	100.0	1,971
Region										
Coastal	21.5	17.3	29.8	31.4	17.1	2.5	1.1	0.8	100.0	1,011
Central	23.4	18.9	31.4	26.3	17.5	3.5	2.0	0.3	100.0	1,642
Mountain	24.4	15.4	33.8	26.5	18.4	4.4	1.1	0.4	100.0	364
Urban Tirana	4.9	32.5	42.8	19.7	3.5	0.2	0.5	0.8	100.0	564
Education										
No education/										
Primary 4-year	18.0	17.6	37.5	26.9	15.9	0.5	1.6	0.0	100.0	56
Primary 8-year	24.4	17.0	30.4	28.2	18.6	3.6	1.8	0.4	100.0	1,737
Secondary, professional, technical	18.8	20.8	33.5	26.9	14.3	2.7	1.1	0.8	100.0	1,331
University+	7.4	31.0	41.1	20.5	5.7	0.4	0.9	0.4	100.0	456
Wealth quintile										
Lowest	26.3	17.2	31.3	25.2	19.0	4.5	2.5	0.2	100.0	638
Second	19.7	21.1	31.5	27.8	15.9	2.6	0.9	0.2	100.0	727
Middle	23.0	16.7	31.0	29.3	19.0	1.8	1.0	1.1	100.0	747
Fourth	19.7	20.3	32.9	27.1	14.2	3.3	1.8	0.4	100.0	725
Highest	12.4	25.4	38.1	24.1	8.7	2.0	0.9	0.7	100.0	743
Total	20.0	20.2	33.0	26.7	15.3	2.8	1.4	0.6	100.0	3,580

Note: These measurements should not be considered a medical diagnosis of disease, but rather a statistical description of the survey population.
${ }^{1}$ Blood pressure $\geq 140 / 90 \mathrm{mmHg}$ or currently taking anti-hypertensive medication
${ }^{2}$ The Body Mass Index (BMI) is expressed as the ratio of weight in kilograms to the square of height in metres (kg/m ${ }^{2}$). Excludes 19 cases marked as flagged or missing information on anthropometric measurements.

Table 13.10.2 Levels of hypertension: Men
Prevalence of hypertension among men age 15-49 and percent distribution of men by blood pressure status, according to background and health-related characteristics, Albania 2008-09

Background characteristics	Prevalence of hypertension ${ }^{1}$	Classification of blood pressure								Number of men
		$\begin{gathered} \text { Optimal } \\ <120 / 80 \\ \mathrm{mmHg} \\ \hline \end{gathered}$	$\begin{gathered} \text { Normal } \\ 120-129 / \\ 80-84 \\ \mathrm{mmHg} \\ \hline \end{gathered}$	$\begin{gathered} \text { High } \\ \text { normal } \\ 130-139 / \\ 85-89 \\ \mathrm{mmHg} \\ \hline \end{gathered}$	Mildly elevated (stage 1) 140-159/ $90-99$ mmHg	$\begin{gathered} \hline \begin{array}{c} \text { Moderately } \\ \text { elevated } \\ \text { (stage 2) } \\ 160-179 / \\ 100-109 \\ \mathrm{mmHg} \\ \hline \end{array}{ }^{2}+{ }^{2} \end{gathered}$	Severely elevated (stage3) 180+/ 110+ mmHg	Normal BP and taking medication	Total	
Age										
15-19	11.3	13.0	47.3	28.4	11.1	0.2	0.0	0.0	100.0	625
20-24	20.7	3.0	36.5	39.9	19.1	1.5	0.0	0.0	100.0	373
25-29	25.4	3.2	22.8	48.6	21.6	3.6	0.2	0.0	100.0	254
30-34	30.5	2.1	24.5	43.0	28.3	2.2	0.0	0.0	100.0	256
35-39	28.8	0.8	20.8	49.6	26.6	1.9	0.3	0.0	100.0	353
40-44	34.7	2.6	22.0	40.7	28.3	4.1	1.7	0.6	100.0	474
45-49	45.3	3.7	13.0	38.1	37.1	4.4	2.6	1.2	100.0	503
Marital status										
Never married	16.7	7.9	40.1	35.3	15.3	1.3	0.1	0.0	100.0	1,212
Married or living together	35.7	2.7	18.8	42.8	30.5	3.4	1.3	0.5	100.0	1,606
Divorced, separated, widowed	*	*	*	*	*	*	*	*	*	19
Smoking										
Yes	34.2	2.3	20.2	43.4	30.1	2.7	1.0	0.4	100.0	1,204
No	22.8	6.9	33.8	36.5	19.6	2.3	0.6	0.2	100.0	1,633
Nutritional status ${ }^{2}$										
Thin	*	*	*	*	*	*	*	*	*	30
Normal	19.6	7.3	37.3	35.8	17.4	1.9	0.2	0.1	100.0	1,280
Overweight	33.1	2.0	20.5	44.3	29.6	2.2	1.0	0.3	100.0	1,260
Obese	45.1	3.7	15.4	35.9	33.8	7.2	3.0	1.0	100.0	244
Residence										
Urban	23.9	4.0	26.9	45.2	20.4	2.7	0.5	0.4	100.0	1,353
Rural	31.0	5.8	29.0	34.2	27.4	2.3	1.1	0.2	100.0	1,484
Region										
Coastal	36.9	2.9	23.5	36.7	31.7	3.6	1.4	0.2	100.0	752
Central	29.6	5.9	29.3	35.2	26.4	2.2	0.7	0.3	100.0	1,331
Mountain	26.9	6.9	30.5	35.7	21.5	4.0	0.6	0.8	100.0	267
Urban Tirana	8.3	4.1	30.2	57.4	7.3	0.7	0.2	0.1	100.0	486
Education										
No education/										
Primary 4-year	27.8	0.0	20.2	52.0	22.2	3.7	1.3	0.7	100.0	53
Primary 8-year	32.0	4.7	25.9	37.3	29.0	2.2	0.7	0.2	100.0	1,101
Secondary, professional, technical	26.2	6.0	30.2	37.6	22.3	2.7	0.9	0.4	100.0	1,328
University+	19.1	2.2	27.8	51.0	15.7	2.2	0.7	0.5	100.0	354
Wealth quintile										
Lowest	32.5	5.4	30.9	31.3	28.3	3.2	0.7	0.4	100.0	432
Second	29.2	7.0	28.4	35.4	26.2	2.7	0.3	0.1	100.0	556
Middle	30.4	4.6	29.1	35.9	26.7	1.5	1.8	0.4	100.0	607
Fourth	27.7	4.5	25.5	42.3	23.6	3.2	0.7	0.2	100.0	603
Highest	20.3	3.4	27.1	49.2	17.3	2.1	0.4	0.4	100.0	638
Total	27.6	4.9	28.0	39.4	24.1	2.5	0.8	0.3	100.0	2,837

Note: These measurements should not be considered a medical diagnosis of disease, but rather a statistical description of the survey population. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
${ }^{1}$ Blood pressure $\geq 140 / 90 \mathrm{mmHg}$ or currently taking anti-hypertensive medication
${ }^{2}$ The Body Mass Index (BMI) is expressed as the ratio of weight in kilograms to the square of height in metres ($\mathrm{kg} / \mathrm{m}^{2}$). Excludes 24 cases marked as flagged or missing information on anthropometric measurements.

Among both women and men, the prevalence of hypertension is substantially higher among those currently in union (25 percent of women and 36 percent of men) than among those who have never married (8 percent of women and 17 percent of men). In men, hypertension is positively associated with smoking; the prevalence of hypertension is higher in men who smoke than those who do not smoke (34 and 23 percent, respectively). In women, the prevalence of hypertension is slightly lower among smokers than among non-smokers (17 and 20 percent, respectively); however, it should be noted that the majority of women who smoke are younger women, who generally have a lower risk of hypertension. As expected, hypertension levels are higher among overweight/obese respondents, compared with those of normal weight. Almost half of obese women (47 percent) are hypertensive, compared with 8 percent of women who are thin and 13 percent who have normal weight. A similar pattern is seen for men: the rate of hypertension among obese men is 45 percent, compared with 20 percent among men of normal weight.

Women and men in rural areas are more likely to be hypertensive (24 and 31 percent, respectively) than those in urban areas (16 and 24 percent, respectively). Women and men in Urban Tirana have much lower prevalence of hypertension (5 and 8 percent, respectively), compared with women and men in other regions (more than 20 percent for women and men).

There is a negative association between level of education and prevalence of hypertension in women and men. Women and men with primary 8 -year education are more likely to be hypertensive (24 and 32 percent, respectively) than women and men with university or higher education (7 and 19 percent, respectively). There is a similar negative association between wealth status and prevalence of hypertension. Women and men in the lowest wealth quintile are more likely to have hypertension (26 and 33 percent, respectively) than women and men in the highest wealth quintile (12 and 20 percent, respectively).

13.6.2 Awareness of Hypertension and Treatment Status

A first step toward bringing hypertension under control is awareness by individuals of their condition and its implications in terms of premature disability and death. Educating the population about the adverse effects of hypertension and promoting blood pressure screening, particularly for older individuals and men, should be an important focus of health programmes. Figure 13.1 shows the level of awareness of hypertension and treatment status among hypertensive women and men age 15-49.

Figure 13.1 Awareness of Hypertension and Treatment Status among Hypertensive Women and Men Age 15-49

Seventy-nine percent of women and 90 percent of men who were identified as hypertensive in the 2008-09 ADHS were unaware of their condition. Only 3 percent of women and 1 percent of men were aware of their hypertension, are treating it, and their blood pressure is controlled. Nine percent of women and 3 percent of men were aware of their hypertension, are treating it, but their blood pressure is still elevated. Finally, 9 percent of women and 6 percent of men are aware of their hypertension but are not treating it and their blood pressure is elevated.

13.7 Problems in Accessing Health Care

The 2008-09 ADHS included a series of questions designed to obtain information about the problems women and men encounter when seeking health care for themselves when they are sick. This information is important for assessing problems in accessing health care. Women and men age 15-49 were asked whether they consider each problem on a list of specific problems to be a 'big problem' or 'not a big problem' for them in accessing health care for themselves. Tables 13.11.1 and 13.11.2 show the percentage of women and men, respectively, who consider each problem to be a 'big problem' in accessing health care for themselves.

Overall, almost nine in ten women (87 percent) and four in five men (80 percent) age 15-49 reported at least one problem in accessing health care for themselves when they are sick. The most common problems reported by women and men are 'getting money to go for treatment' (56 and 62 percent, respectively), 'concern that no supplies or equipment are available' (63 and 55 percent, respectively), 'concern that no drugs are available’ (54 and 52 percent, respectively), and 'concern that no provider is available' (50 and 45 percent, respectively). 'Distance to health facility' and 'having to take transport' are problems for about one-third of women and men. Less than one in five women reported that 'getting permission to go for treatment' (17 percent) and 'concern that no female provider is available' (19 percent) are problems in accessing health care.

Looking at the differentials in perceived access to health care, women and men with three or more children, unemployed women or women employed but not for cash, women and men living in rural areas and in the Central and Mountain regions reported having more problems in accessing health care than other women and men. For both women and men, each potential problem becomes less of a problem as level of education and wealth status increase. The percentage of women and men who have at least one big problem in accessing health care decreases with increasing level of education, for example, 93 percent of women and 86 percent of men with primary 8 -year education reported at least one problem in accessing health care, compared with 64 and 68 percent, respectively, of women and men with university or higher education. Similarly, 98 percent of women and 95 percent of men in the lowest wealth quintile reported at least one problem in accessing health care, compared with 66 and 71 percent, respectively, of women and men in the highest wealth quintile.

Table 13.11.1 Problems in accessing health care: Women
Percentage of women age 15-49 who reported that they have serious problems in accessing health care for themselves when they are sick, by type of problem, according to background characteristics, Albania 2008-09

Background characteristic	Problems in accessing health care									At least one problem accessing health care	Number of women
	Getting permission to go for treatment	Getting money for treatment	Distance to health facility	Having to take transport	Not wanting to go alone	Concern no female provider available	Concern no provider available	Concern no drugs available	Concern no supplies or equipment available		
Age											
15-19	22.1	51.6	32.4	34.1	56.9	24.4	48.1	52.3	61.8	86.9	1,478
20-34	17.6	50.8	28.4	29.8	39.8	20.4	47.1	51.4	61.1	84.9	2,690
35-49	13.6	62.6	30.1	33.4	30.7	16.4	52.0	56.7	64.0	87.5	3,416
Number of living children											
0	18.9	48.7	28.7	30.8	47.9	22.6	45.9	50.9	60.0	83.6	2,750
1-2	13.3	53.6	25.1	27.8	31.6	15.8	49.3	54.7	62.8	85.5	2,809
3-4	16.8	68.3	36.0	37.8	34.9	18.5	54.2	57.0	65.3	91.1	1,804
5+	30.0	85.5	58.3	61.5	57.2	31.5	57.9	58.5	69.6	97.1	222
Marital status											
Never married	19.2	49.6	29.0	31.3	48.4	22.1	45.4	50.8	60.6	83.8	2,357
Married or living together	16.0	58.9	30.5	32.7	35.3	18.1	51.3	55.2	63.6	87.6	5,001
Divorced/separated/widowed	4.8	67.5	27.3	31.5	25.6	18.0	51.3	59.1	60.1	88.7	226
Employed last 12 months											
Not employed	18.3	58.2	31.9	33.9	43.7	21.8	50.6	55.2	64.0	88.8	4,780
Employed for cash	7.2	43.9	14.4	17.2	19.6	11.2	42.0	48.9	57.0	76.0	1,749
Employed not for cash	25.2	67.7	47.0	49.6	50.6	21.9	57.1	56.8	64.9	93.3	1,054
Residence											
Urban	7.7	47.3	12.7	15.8	22.6	13.1	41.1	47.2	57.1	78.8	3,380
Rural	23.9	63.5	43.8	45.4	52.3	24.4	56.2	59.4	66.9	92.6	4,204
Region											
Coastal	15.5	51.9	24.6	31.8	38.8	13.6	49.5	56.0	65.3	86.6	2,129
Central	18.1	63.4	36.0	36.6	42.4	25.0	57.1	57.4	65.5	92.2	3,477
Mountain	30.5	69.6	49.8	49.0	61.5	25.2	51.5	53.0	66.0	92.9	777
Urban Tirana	5.6	34.7	9.1	9.5	15.4	9.8	26.3	40.8	46.9	65.4	1,201
Education											
No education/Primary 4-year	39.8	91.9	58.4	63.5	61.7	33.1	72.0	62.1	69.7	99.5	127
Primary 8-year	23.7	67.8	41.5	43.4	49.2	24.4	54.7	58.9	66.0	92.9	3,712
Secondary, professional, technical	11.2	51.0	20.7	24.3	33.3	15.5	47.8	52.3	62.2	85.3	2,740
University+	2.8	23.4	8.9	8.9	14.6	9.9	32.0	39.5	50.0	64.1	1,005
Wealth quintile											
Lowest	33.2	80.2	61.1	64.0	64.0	33.7	64.6	65.1	74.1	98.3	1,513
Second	21.2	62.8	43.6	43.2	52.0	22.3	56.0	58.3	63.9	93.7	1,486
Middle	16.8	57.7	27.8	31.4	37.1	18.2	51.0	55.8	63.6	89.3	1,533
Fourth	8.2	55.3	12.6	17.9	27.4	12.9	43.5	49.9	61.1	85.8	1,480
Highest	4.4	26.5	5.6	5.8	15.8	10.1	33.1	41.2	50.4	66.1	1,573
Total	16.7	56.3	30.0	32.3	39.1	19.4	49.5	54.0	62.5	86.5	7,584

Table 13.11.2 Problems in accessing health care: Men
Percentage of men age 15-49 who reported that they have serious problems in accessing health care for themselves when they are sick, by type of problem, according to background characteristics, Albania 2008-09

Background characteristic	Problems in accessing health care								Number of men
	Getting money for treatment	Distance to health facility	Having to take transport	Not wanting to go alone	Concern no provider available	Concern no drugs available	Concern no supplies or equipment available	At least one problem accessing health care	
Age									
15-19	60.6	31.8	32.2	24.8	46.3	49.0	51.4	80.8	670
20-34	59.8	28.0	28.3	13.3	45.0	51.9	56.2	79.7	934
35-49	64.6	30.7	31.7	11.6	45.0	54.0	55.7	80.7	1,409
Number of living children									
0	59.6	28.4	28.3	18.2	44.0	49.9	53.0	79.5	1,415
1-2	57.9	27.6	28.4	9.0	46.9	52.9	56.1	78.5	955
3-4	74.3	36.3	37.6	16.0	45.2	56.9	56.5	85.0	575
5+	75.7	48.5	55.9	26.5	50.6	52.2	65.1	88.4	69
Marital status									
Never married	59.4	28.7	29.2	19.2	44.2	50.1	53.0	79.8	1,291
Married or living together	64.2	31.1	31.9	12.0	46.1	53.7	56.3	80.8	1,703
Divorced/separated/widowed	*	*	*	*	*	*	*	*	19
Employed last 12 months									
Not employed	63.0	31.7	31.9	21.0	41.7	47.7	49.6	80.6	716
Employed for cash	60.5	26.2	26.7	11.3	44.9	53.3	56.2	79.4	1,752
Employed not for cash	66.6	40.6	42.6	19.4	51.4	54.5	57.9	83.6	544
Residence									
Urban	56.5	16.4	18.6	10.9	39.4	47.4	50.1	76.8	1,391
Rural	67.1	41.9	41.3	18.7	50.3	56.4	59.0	83.6	1,622
Region									
Coastal	56.5	31.8	29.6	12.8	39.4	46.9	47.2	69.6	800
Central	70.4	33.5	35.0	16.4	47.7	56.5	57.7	85.5	1,443
Mountain	68.8	48.7	47.9	22.5	48.6	42.7	51.8	84.9	277
Urban Tirana	43.9	6.9	10.7	10.7	45.9	53.8	60.9	80.7	493
Education									
No education/Primary 4-year	80.8	44.0	45.8	26.9	49.8	58.6	45.4	85.8	55
Primary 8-year	73.8	41.9	42.0	18.4	50.5	57.5	59.5	86.0	1,183
Secondary, professional, technical	59.2	24.9	26.2	13.9	42.8	49.6	52.0	78.7	1,415
University+	33.2	10.0	9.6	7.1	37.2	44.3	52.4	68.0	361
Wealth quintile									
Lowest	87.3	62.5	64.2	26.2	58.5	62.5	66.8	94.8	475
Second	66.3	40.8	40.4	20.7	49.9	54.6	55.9	83.1	600
Middle	60.0	29.1	28.4	13.0	45.6	54.5	53.6	77.2	661
Fourth	63.2	19.1	21.7	11.3	40.1	50.5	53.8	80.0	625
Highest	41.4	8.2	8.6	7.5	36.1	41.9	47.6	71.3	652
Total	62.2	30.1	30.8	15.1	45.3	52.2	54.9	80.4	3,013

Note: An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.

13.8 Utilization and Quality of Health Services

Information on the utilization of health facilities is important to planners at the national and local government levels because it enables assessment of coverage and utilization of health care services in health facilities at various levels of the Albanian health care system. Table 13.12 .1 shows for women and men age 15-49 who visited a health facility in the 12 months preceding the survey when they were sick or needed advice, the percent distribution 1) by type of facility they visited first the last time they went to a health facility, 2) by means of transportation to get to the health facility, 3) by the time needed to get to the health facility, and 4) by respondent's rating of the thoroughness of the examination and treatment received at the facility, according to residence.

Table 13.12 Utilization and quality of the health services						
Among women and men age 15-49 who visited a health facility in the 12 months preceding the survey when they were sick or needed advice, the percent distribution by type of facility visited first the most recent time; the percent distribution by means of transportation to get to the health facility; the percent distribution by the time to get to the health facility; and the percent distribution by the rating of the thoroughness and carefulness of the examination and treatment received at the facility, according to residence, Albania 2008-09						
	Women			Men		
	Urban	Rural	Total	Urban	Rural	Total
Type of health facility						
Public sector	90.9	94.3	92.7	92.0	96.6	94.4
Public hospital	37.8	50.0	44.3	54.8	53.6	54.2
Public health centre	27.6	32.0	29.9	22.4	35.6	29.3
Health post	18.8	9.1	13.6	na	na	na
Family doctor	na	na	na	4.2	4.0	4.1
Polyclinic	6.7	3.2	4.8	10.6	3.5	6.9
Private sector	8.7	5.5	7.0	8.0	3.4	5.6
Private hospital, clinic	7.1	4.2	5.6	5.6	1.9	3.6
Pharmacy	0.6	0.9	0.8	0.0	1.3	0.7
Private doctor	1.0	0.4	0.7	2.4	0.2	1.3
Other	0.3	0.0	0.1	0.0	0.0	0.0
Do not remember	0.1	0.2	0.2	0.0	0.0	0.0
Total	100.0	100.0	100.0	100.0	100.0	100.0
Means of transport						
On foot	59.4	27.9	42.6	50.3	31.2	40.3
Bus/minibus	13.5	43.6	29.5	17.3	38.0	28.1
Taxi	6.9	10.3	8.7	12.7	10.9	11.8
Personal car	19.7	16.5	18.0	17.9	18.2	18.1
Animal, cart	0.0	0.5	0.3	0.0	0.0	0.0
Other	0.5	1.2	0.9	1.8	1.7	1.8
Total	100.0	100.0	100.0	100.0	100.0	100.0
Time to get to the facility						
<15 minutes	43.8	20.6	31.4	38.7	26.4	32.2
15-29 minutes	28.3	21.4	24.6	37.6	20.7	28.8
30-59 minutes	19.4	26.6	23.2	17.0	20.6	18.9
1 hour or more	7.6	30.9	20.0	6.2	32.2	19.8
Total	100.0	100.0	100.0	100.0	100.0	100.0
Thoroughness and carefulness of examination and treatment received at the health facility						
Very good	35.4	32.1	33.7	22.7	19.3	20.9
Good	49.2	49.1	49.1	45.9	50.7	48.4
Fair	13.4	15.6	14.6	23.3	21.9	22.6
Poor	1.7	2.9	2.3	6.9	3.9	5.4
Very poor	0.3	0.3	0.3	1.1	4.2	2.7
Total	100.0	100.0	100.0	100.0	100.0	100.0
Number	1,005	1,145	2,150	180	197	377
na $=$ Not applicable						

Public sector facilities are used by more than nine in ten women and men, with just 7 percent of women and 6 percent of men using private health facilities. Among the public sector facilities, 44 percent of women and 54 percent of men visited public hospitals, and about three in ten (30 percent of women and 29 percent of men) visited public health centres. Use of public hospitals is higher among women in rural areas than those in urban areas, while for men there is no significant difference. For both women and men, use of public health centres is higher in rural areas than in urban areas. Use of private facilities is slightly more common in urban areas (9 percent of women and 8 percent of men) than in rural areas (6 percent of women and 3 percent of men).

Women and men in rural areas require more time to travel to a health facility and are more likely to use a vehicle to access the health facility than women and men in urban areas. More than half of women and men in urban areas (59 percent and 50 percent, respectively) go on foot to the health care facility, compared with only three in ten women and men in rural areas (28 and 31 percent, respectively). In contrast, about half of women and men in rural areas (54 and 49 percent, respectively) use public transport such as a bus/minibus or a taxi, compared with two in ten women and three in ten men in urban areas (20 and 30 percent, respectively). In rural areas, one in three women and men need one hour or more to get to the facility compared with just 8 percent of women and 6 percent of men in urban areas. About four in ten women and men in urban areas can access the health facility in less than 15 minutes compared with about one in four women and men (21 and 26 percent, respectively) from rural areas.

The results of the 2008-09 ADHS suggest that there is an association between gender and respondents' assessment of the thoroughness of the examination and the treatment received at the health facility. One in three women (34 percent) reported that the thoroughness of the examination and the treatment received at the health facility were 'very good,' compared with one in five men (21 percent). About half of women and men considered the thoroughness of the examination and the treatment received to be 'good.' Two percent of women and 8 percent of men reported that they consider the thoroughness of the examination and treatment received to be 'poor' or 'very poor.' No substantial differences were seen in the assessment of thoroughness by urban-rural residence.

13.9 Health Insurance

A system of compulsory health care insurance was implemented in Albania in March 1995 (Nuri, 2002). This system includes an annually approved set of medical services for which costs are covered in a single health insurance package. Within the health insurance system, the state finances health insurance costs through the Health Insurance Institute (HII). The HII covers health care costs for all children under 18, students enrolled in public and private colleges and universities, and retired and disabled persons, as well as those contributing to the health insurance scheme. Benefits under the health insurance scheme are legally limited to those who make insurance contributions or have them covered by the state; however, in practice the distinction is not upheld, and doctors treat all patients regardless of status. Primary care doctors are mainly based at local government health facilities but receive their salaries from the Health Insurance Fund, based on the number of patients.

The cost of providing this health insurance is met by means of employers paying a 3.4 percent tax from the total salary fund and 3.4 percent from the employee's salary, as well as by state contributions. In addition to the state health insurance scheme, there is also a state social insurance scheme which collects and distributes health insurance funds. Supplementary voluntary health insurance is also available and covers payments for medicines, optical and dental services, and other ambulatory services that are not covered by the compulsory insurance. Recently, private commercial insurance schemes have begun operating Albania.

Three in four women and men (79 and 71 percent, respectively) are not covered by any type of health insurance (Tables 13.13 .1 and 13.13.2). Fifteen percent of women and 21 percent of men are covered the state health insurance, while more than one in ten women (11 percent) and men (13 percent) are covered by the state social insurance. Three percent of women and 5 percent of men have supplemental voluntary health insurance, and just 2 percent of women and men have private commercial health insurance coverage.

Older women and men are more likely to be covered by health insurance than younger women and men. One-third of urban respondents and respondents in Urban Tirana are covered by health insurance, compared with 11 percent of women and 21 percent of men in rural areas and 17 percent of women and 26 percent of men in the Mountain region.

Table 13.13.1 Health insurance coverage: Women
Percentage of women age 15-49 with specific types of health insurance coverage, according to background characteristics, Albania 2008-09

Background characteristic	State health insurance	State social insurance	Voluntary health insurance	Privately purchased commercial insurance	None	Number of women
Age						
15-19	11.0	4.3	0.1	0.1	88.4	1,478
20-24	9.0	6.1	1.1	1.5	87.4	976
25-29	18.7	15.8	1.5	4.7	74.0	848
30-34	13.8	9.4	2.6	3.5	77.7	866
35-39	17.4	13.4	3.8	2.1	74.7	1,097
40-44	18.7	15.1	3.5	1.8	72.5	1,232
45-49	17.0	14.2	5.1	3.1	71.7	1,088
Residence						
Urban	24.4	18.4	2.8	4.5	66.0	3,380
Rural	7.4	4.8	2.2	0.3	88.5	4,204
Region						
Coastal	16.6	12.0	2.4	0.5	78.7	2,129
Central	11.6	9.6	1.8	0.9	82.4	3,477
Mountain	10.3	5.9	5.1	0.1	83.4	777
Urban Tirana	24.7	15.8	2.9	10.3	63.4	1,201
Education						
No education/Primary 4-year	2.6	1.8	1.7	0.0	95.7	127
Primary 8-year	5.4	4.0	1.9	0.7	90.7	3,712
Secondary, professional, technical	16.9	11.3	3.7	2.3	74.4	2,740
University+	46.5	36.4	1.5	7.5	42.2	1,005
Employment status ${ }^{1}$						
Not employed	5.9	3.6	1.7	0.3	90.8	5,308
Employed, for cash	47.1	36.7	4.4	9.0	35.5	1,618
Employed, not for cash	8.7	6.6	3.8	0.4	84.6	658
Wealth quintile						
Lowest	4.8	2.7	1.7	0.3	92.0	1,513
Second	7.4	5.4	1.8	0.2	88.4	1,486
Middle	11.3	7.0	2.4	0.6	84.0	1,533
Fourth	19.2	13.5	2.0	2.3	74.1	1,480
Highest	31.5	25.2	4.4	7.2	54.8	1,573
Total	15.0	10.9	2.5	2.2	78.5	7,584

Note: Respondents could report more than one type of health insurance coverage, so the percentages may sum to more than 100 percent.
${ }^{1}$ 'Employment statuss' is defined as having done work in the past seven days. Includes persons who did not work in the past seven days but who are regularly employed and were absent from work for leave, illness, vacation, or any other such reason.

Table 13.13.2 Health insurance coverage: Men						
Percentage of men age 15-49 with specific types of health insurance coverage, according to background characteristics, Albania 2008-09						
Background characteristic	State health insurance	State social insurance	Voluntary health insurance	Privately purchased commercial insurance	None	Number of men
Age						
15-19	16.0	8.2	0.7	0.0	82.9	670
20-24	9.2	5.8	1.5	0.8	87.0	393
25-29	18.7	9.4	6.0	3.3	71.0	269
30-34	21.5	11.5	9.5	4.8	64.5	273
35-39	26.2	18.4	3.5	1.8	66.6	372
40-44	24.7	15.5	6.3	2.8	62.7	501
45-49	31.4	18.5	7.3	1.1	59.0	536
Residence						
Urban	27.5	18.5	6.2	2.6	61.9	1,391
Rural	16.0	7.5	3.1	1.0	79.0	1,622
Region						
Coastal	23.1	12.3	3.5	1.4	70.3	800
Central	19.5	9.6	4.3	1.6	73.1	1,443
Mountain	15.8	8.3	7.2	1.2	74.2	277
Urban Tirana	26.7	24.4	5.3	2.9	64.5	493
Education						
No education/Primary 4-year	4.1	2.2	0.4	1.5	93.3	55
Primary 8-year	11.5	4.7	3.6	1.3	82.9	1,183
Secondary, professional, technical	23.4	12.8	4.8	1.7	68.2	1,415
University+	47.8	39.5	6.9	3.3	40.1	361
Employment status ${ }^{1}$						
Not employed	11.6	5.7	1.7	0.4	85.5	1,026
Employed, for cash	29.3	17.8	6.0	3.0	60.2	1,533
Employed, not for cash	16.2	10.5	5.7	0.3	75.1	454
Wealth quintile						
Lowest	11.5	5.5	1.7	0.3	85.5	475
Second	15.8	7.6	2.3	1.2	79.4	600
Middle	20.4	9.3	4.0	1.5	73.7	661
Fourth	22.0	11.8	5.7	3.2	67.5	625
Highest	33.7	26.6	8.0	1.9	53.7	652
Total	21.3	12.6	4.5	1.7	71.1	3,013
Note: Respondents could report more than one type of health insurance coverage, so the percentages may sum to more than 100 percent. ${ }^{1}$ 'Employment status' is defined as having done work in the past seven days. Includes persons who did not work in the past seven days but who are regularly employed and were absent from work for leave, illness, vacation, or any other such reason.						

Looking at the differentials in health insurance coverage, there is a positive association between health insurance coverage and level of education and wealth status. For example, only 3 percent of women and 4 percent of men with no education or primary 4 -year education are covered by state health insurance, compared with 47 percent of women and 48 percent of men with university or higher education.

Women employed for cash are more likely to have health insurance coverage-state health insurance (47 percent), state social insurance (37 percent), voluntary insurance (4 percent), and private health insurance (9 percent)-than women who are unemployed-state health insurance (6 percent), state social insurance (4 percent), voluntary insurance (less than 1 percent), and private health insurance (2 percent). Just over one-third (36 percent) of women who are employed for cash are without health insurance, compared with 85 to 91 percent of those who are unemployed or employed but not for cash.

The association between employment and insurance coverage is not as strong for men as it is for women, but it is still higher among men employed for cash than those who are not employed. Coverage for men employed for cash is: state health insurance (29 percent), state social insurance (18
percent), voluntary insurance (6 percent), and private health insurance (3 percent), compared with the following for men who are not employed: state health insurance (12 percent), state social insurance (6 percent), voluntary insurance (2 percent), and private health insurance (less than 1 percent). Six of ten men employed for cash (60 percent) do not have any health insurance, compared with 86 percent of men who are not employed and 75 percent of men who are employed but not for cash.

13.10 Payments for Health Care

Out-of-pocket payments for health care are said to be widespread in Albania (Nuri, 2002). Patient co-payments do exist but they are set at a low level. Informal payments to doctors and health professionals are thought to be common. In the 2008-09 ADHS, respondents who went to a public health facility in the 12 months preceding the survey were asked if making an informal payment had been suggested to them by a health worker and, if so, whether they received an invoice for the payment. Almost three in ten women and men (29 percent of women and 26 percent of men) who visited a public health facility reported that it had been suggested to them to make an informal payment for the health care received (Table 13.14); more than one in five women and men did not receive an invoice for the payment (22 and 23 percent, respectively). Four percent of women and men either did not remember if it was suggested that they make a payment or refused to answer the question.

Table 13.14 Suggestion of payment at public health facilities
Percentage of women and men age 15-49 who went to a public health facility in the 12 months preceding the survey when they were sick or needed advice or treatment who report that a health worker suggested that an informal payment be made, by type of facility and background characteristics, Albania 2008-09

Type of facility and background characteristics	Informal payment						Total	Number
	Suggested				Not suggested	$\begin{aligned} & \text { Don't } \\ & \text { remember/ } \\ & \text { refused } \\ & \hline \end{aligned}$		
	Total	Received invoice	Did not receive invoice	Refused to answer				
WOMEN								
Type of public health facility								
Public hospital	37.0	8.5	27.6	0.8	60.8	2.2	100.0	952
Public health centre	22.7	4.9	17.2	0.6	77.1	0.2	100.0	643
Health post	20.8	6.3	13.4	1.1	69.1	10.1	100.0	293
Polyclinic	25.5	4.9	20.5	0.0	69.3	5.2	100.0	103
Residence								
Urban	29.4	8.4	20.2	0.8	66.2	4.3	100.0	913
Rural	29.4	5.5	23.2	0.7	69.0	1.7	100.0	1,079
Region								
Coastal	28.3	7.2	20.5	0.7	71.0	0.6	100.0	612
Central	27.3	4.6	22.3	0.4	70.8	1.9	100.0	950
Mountain	30.1	6.5	23.6	0.0	67.5	2.4	100.0	146
Urban Tirana	38.3	13.9	22.0	2.4	50.5	11.2	100.0	285
Education								
No education/Primary 4-year	(35.2)	(3.5)	(31.7)	(0.0)	(62.0)	(2.9)	(100.0)	40
Primary 8-year	31.2	6.2	24.1	0.9	67.1	1.7	100.0	1,054
Secondary, professional, technical	29.4	7.3	21.4	0.7	68.2	2.3	100.0	700
University+	18.6	9.3	8.8	0.4	70.4	11.0	100.0	198
Wealth quintile								
Lowest	34.1	7.9	24.6	1.6	64.3	1.6	100.0	398
Second	30.8	4.9	25.8	0.0	67.6	1.6	100.0	380
Middle	26.7	4.8	21.2	0.7	71.5	1.8	100.0	412
Fourth	27.4	8.4	18.0	0.9	69.8	2.8	100.0	395
Highest	28.3	8.0	19.6	0.6	65.3	6.5	100.0	408
Total	29.4	6.8	21.8	0.8	67.7	2.9	100.0	1,992
								Continued

Table 13.14-Continued								
	Informal payment						Total	Number of men
	Suggested				Don't			
Type of facility and background characteristics	Total	Received invoice	Did not receive invoice	$\begin{gathered} \text { Refused } \\ \text { to } \\ \text { answer } \\ \hline \end{gathered}$				
MEN								
Type of health facility								
Public hospital	35.9	4.6	30.9	0.4	61.6	2.5	100.0	204
Public health centre	15.3	2.0	13.3	0.0	77.5	7.2	100.0	110
Family doctor	*	.	*	*	*	*	*	15
Polyclinic	(14.1)	(0.0)	(14.1)	(0.0)	(83.4)	(2.4)	(100.0)	26
Residence								
Urban	22.5	1.8	20.2	0.5	73.4	4.1	100.0	166
Rural	29.7	4.5	25.1	0.0	66.2	4.1	100.0	190
Region								
Coastal	31.5	2.5	29.0	0.0	64.8	3.7	100.0	90
Central	26.5	4.1	22.4	0.0	70.4	3.0	100.0	185
Mountain	38.1	1.5	36.6	0.0	56.9	5.0	100.0	29
Urban Tirana	10.4	2.5	6.3	1.7	81.5	8.1	100.0	52
Education								
No education/Primary 4-year	*	*	*	*	*	*	*	3
Primary 8-year	33.7	6.3	27.4	0.0	62.1	4.2	100.0	141
Secondary, professional, technical	23.6	1.1	22.0	0.5	72.8	3.6	100.0	168
University+	(7.7)	(2.0)	(5.8)	(0.0)	(86.4)	(5.8)	(100.0)	44
Wealth quintile								
Lowest	50.3	8.5	41.8	0.0	43.9	5.8	100.0	65
Second	26.1	2.7	23.4	0.0	68.6	5.3	100.0	67
Middle	16.2	2.7	13.6	0.0	83.2	0.6	100.0	79
Fourth	24.6	1.7	22.9	0.0	71.0	4.4	100.0	82
Highest	16.7	1.1	14.3	1.4	78.1	5.2	100.0	62
Total	26.3	3.2	22.8	0.2	69.6	4.1	100.0	356
Note: Figures in parentheses are based on 25-49 unweighted cases. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.								

Almost four in ten women and men who visited a public hospital in the past 12 months (37 and 36 percent, respectively) reported that it was suggested that they pay for the health care-more than in any other type of public health facility. The suggestion of informal payment for services is more common among men in rural areas (30 percent) than those in urban areas (23 percent); however, there is no urban-rural differential among women. Women in Urban Tirana are more likely to receive a suggestion that they make a payment for health services (38 percent) than women in other regions (27 to 30 percent) and more likely to receive an invoice for the payment (14 percent) than women in other regions (5 to 7 percent).

For men, the percentage who received a suggestion to make a payment for health care is substantially lower in Urban Tirana (10 percent) than in the other regions (27 to 38 percent). The percentage who received an invoice for the payment ranges from 2 to 4 percent in all regions.

In the 2008-09 ADHS respondents who visited a health facility (including private facilities) in the 12 months preceding the survey were asked if they had paid for medical care (excluding drugs and dental care) that they could have received free of charge through the public health system and, if so, how often. Table 13.15 shows that seven in ten women and men (72 and 68 percent, respectively) reported paying for medical care they could have received for free. Nineteen percent of women and 12 percent of men always pay for medical care they could have received for free; 25 percent of women and 23 percent of men reported often paying for medical care they could have received for free; and 26 percent of women and 30 percent of men never pay for medical care they could receive for free. The results show only small differences across background characteristics. However, 19 percent of women in Urban Tirana never pay for medical care they could receive for free, compared with 25 to 32 percent of women in other regions. Among men, the opposite is true; 50 percent of men in Urban Tirana never pay for medical care they could receive for free, compared with 25 to 35 percent of men in other regions.

Table 13.15 Payment for health services																
Among women and men age 15-49 who visited a health facility in the 12 months preceding the survey, the percent distribution by frequency of direct payment for medical care care) that could have been obtained free of charge or at lower cost from the public health system, and the percent distribution of those paying for medical care (excluding drug have been obtained free of charge or at lower cost from the public health system, by main reason for direct payment for medical care, according to background characteristics, A																
Background characteristic	Frequency of direct payment for medical care							Of those paying, the main reason for direct payment for medical care							Total	\qquad
	Never	Rarely	Often	Always		Total	Number of women	Had no other alternatives for services	To have the services as quickly as possible	To have better quality services	To choose the doctor or health facility	Did not know health service could provide for free	Other	Don't remember/ refused		
WOMEN																
Age																
15-19	21.4	28.2	28.8	20.3	1.3	100.0	483	20.6	11.3	60.0	2.3	0.8	4.0	1.0	100.0	373
20-34	26.8	27.8	25.1	18.0	2.3	100.0	807	26.6	9.9	58.5	1.6	0.2	1.9	1.4	100.0	572
35-49	27.7	25.7	23.7	20.2	2.8	100.0	860	26.0	15.1	53.1	1.6	0.7	3.1	0.4	100.0	598
Region																
Coastal	24.7	23.6	25.2	25.6	1.0	100.0	678	23.4	10.3	58.3	1.6	0.2	4.7	1.5	100.0	504
Central	28.0	26.9	24.1	19.1	2.0	100.0	1,007	26.4	12.0	55.1	2.3	0.9	2.4	0.8	100.0	705
Mountain	32.1	22.5	24.3	18.3	2.9	100.0	156	7.9	24.8	61.8	0.7	0.5	2.9	1.4	100.0	102
Urban Tirana	18.9	37.4	30.4	7.5	5.8	100.0	309	31.0	11.7	56.3	1.0	0.0	0.0	0.0	100.0	232
Residence																
Urban	26.9	28.1	27.5	15.3	2.2	100.0	1,005	25.5	10.8	58.9	1.8	0.4	2.3	0.3	100.0	712
Rural	25.1	26.1	23.5	23.0	2.3	100.0	1,145	24.4	13.5	55.0	1.7	0.6	3.3	1.5	100.0	831
Education																
No education/Primary																
4-year	(15.4)	(39.8)	(26.1)	(17.8)	(0.9)	(100.0)	44	(40.9)	(6.7)	(41.5)	(0.0)	(4.8)	(3.1)	(3.0)	(100.0)	37
Primary 8-year	24.4	25.6	26.0	22.3	1.6	100.0	1,106	25.9	14.1	52.9	1.9	0.5	3.4	1.3	100.0	818
Secondary, professional, technical	26.8	28.2	25.6	16.9	2.5	100.0	757	25.3	10.3	59.7	1.6	0.5	2.2	0.4	100.0	536
University+	32.2	27.4	21.5	14.3	4.7	100.0	242	14.3	10.5	70.8	2.0	0.0	2.3	0.1	100.0	153
Wealth quintile																
Lowest	27.5	28.3	21.9	20.3	2.0	100.0	414	32.4	14.5	49.1	1.0	0.0	2.7	0.3	100.0	292
Second	21.4	22.5	27.2	26.6	2.3	100.0	405	22.9	13.4	57.1	0.4	0.7	3.0	2.5	100.0	309
Middle	28.0	23.7	22.9	23.8	1.6	100.0	438	23.1	10.8	54.2	5.3	0.9	4.8	0.8	100.0	308
Fourth	25.4	32.0	25.3	15.1	2.2	100.0	434	26.1	12.9	56.3	0.9	0.7	2.7	0.3	100.0	314
Highest	27.0	28.4	29.3	12.2	3.2	100.0	459	20.5	9.9	66.3	1.2	0.2	1.1	0.6	100.0	321
Total	25.9	27.0	25.4	19.4	2.3	100.0	2,150	24.9	12.3	56.8	1.8	0.5	2.9	0.9	100.0	1,544
																ontinued

Table 13.15-Continued																
	Frequency of direct payment for medical care					Total	Number of men	Of those paying, the main reason for direct payment for medical care							Total	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { men } \\ \hline \end{gathered}$
Background characteristic	Never	Rarely	Often	Always				Had no other alternatives for services	To have the services as quickly as possible	To have better quality services	To choose the doctor or health facility	Did not know health service could provide for free	Other	Don't remember/ refused		
MEN																
Age																
15-19	23.0	34.3	29.7	11.4	1.6	100.0	71	(29.5)	(24.1)	(39.1)	(1.9)	(0.0)	(1.5)	(3.9)	100.0	54
20-34	34.1	28.8	24.0	10.5	2.7	100.0	141	21.5	18.3	54.6	2.5	1.0	2.1	0.0	100.0	89
35-49	29.1	37.0	18.7	13.7	1.5	100.0	164	19.1	21.2	57.3	0.0	0.8	1.4	0.2	100.0	114
Region																
Coastal	26.3	34.4	24.7	13.8	0.7	100.0	96	22.1	21.1	54.4	1.4	0.0	0.9	0.0	100.0	70
Central	24.5	34.6	26.4	13.1	1.4	100.0	190	24.4	23.1	49.5	1.6	0.0	0.0	1.5	100.0	141
Mountain	34.8	21.7	19.7	17.9	5.8	100.0	29	39.8	8.5	29.5	0.0	0.0	20.8	1.3	100.0	17
Urban Tirana	49.5	33.6	9.9	3.0	4.0	100.0	61	(0.0)	(16.4)	(77.2)	(0.0)	(6.4)	(0.0)	(0.0)	(100.0)	28
Residence																
Urban	27.9	39.9	22.1	7.7	2.4	100.0	180	14.3	19.8	62.0	0.8	1.4	1.4	0.2	100.0	125
Rural	31.6	27.5	23.4	16.0	1.6	100.0	197	29.6	21.8	43.5	1.7	0.0	1.9	1.6	100.0	131
Education																
No education/Primary 4-year	*	*	*	*	*	*	3	*	*	*	*	*	*	*	*	3
Primary 8-year	26.8	32.6	21.7	16.8	2.1	100.0	145	25.3	20.6	48.5	2.2	0.0	1.4	2.0	100.0	103
Secondary, professional, technical	31.1	33.2	23.8	9.6	2.3	100.0	179	24.0	22.7	48.7	0.8	1.5	2.2	0.2	100.0	119
University+	36.1	38.6	20.1	4.8	0.4	100.0	49	(0.8)	(16.6)	(81.9)	(0.0)	(0.0)	(0.6)	(0.0)	(100.0)	31
Wealth quintile																
Lowest	21.3	31.7	29.3	16.6	1.1	100.0	66	(35.9)	(15.2)	(42.0)	(0.0)	(0.0)	(2.9)	(4.1)	(100.0)	52
Second	37.4	21.3	11.2	26.7	3.4	100.0	70	(34.2)	(22.5)	(36.5)	(5.4)	(0.0)	(1.4)	(0.0)	(100.0)	41
Middle	34.9	27.9	30.6	6.2	0.5	100.0	82	(12.1)	(32.9)	(54.2)	(0.0)	(0.0)	(0.9)	(0.0)	(100.0)	53
Fourth	23.6	45.7	22.4	8.1	0.3	100.0	84	17.3	15.7	63.3	0.0	1.4	1.9	0.4	100.0	64
Highest	31.8	38.3	19.8	5.1	5.0	100.0	74	14.2	18.8	61.7	2.1	1.9	1.2	0.0	100.0	47
Total	29.8	33.4	22.8	12.0	2.0	100.0	377	22.1	20.8	52.5	1.3	0.7	1.7	0.9	100.0	257
Note: Figures in parentheses are based on 25-49 unweighted cases. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.																

Among those who paid for medical care, the main reason reported for direct payment was to have better quality services (57 percent of women and 53 percent of men), although men in rural areas (43 percent) are less likely to cite this reason than men in urban areas (62 percent). The second most common reason for direct payment for medical care was that the respondent had no alternative for obtaining the health services-reported by about one-fourth of respondents (25 percent of women and 22 percent of men). This response was twice as likely among men in rural areas as those in urban areas (30 and 14 percent, respectively); among women, the percentages are almost the same (24 percent in rural areas and 26 percent in urban areas). Twenty-one percent of men and 12 percent of women paid directly so they could have the services as quickly as possible.

All 2008-09 ADHS respondents were asked whether they had avoided obtaining medical care in the past 12 months because they could not pay for the services, and whether they thought that their health had declined in the past 12 months because of problems in paying for health care. Table 13.16 shows that, overall, 36 percent of women and 22 percent of men reported that they avoided medical care in the past 12 months because they could not pay. About two-thirds of these women and men said that they avoided medical care 'rarely' because they could not pay, while about one-third said that they avoided medical care 'often.' One in four women (25 percent) and about four in ten men (38 percent) reported that they did not need medical services in the past 12 months. Women and men in urban areas (32 and 18 percent, respectively), those in Urban Tirana (27 and 8 percent, respectively), women and men with university or higher education (20 and 4 percent, respectively), and those in the highest wealth quintile (23 and 9 percent, respectively) were the least likely to avoid medical services because they could not pay. On the other hand, women and men in rural areas (40 and 26 percent, respectively), those in the Central region (40 and 27 percent, respectively), those with no education or primary 4 -year education (70 and 42 percent, respectively), and women and men in the lowest wealth quintile (48 and 38 percent, respectively) were most likely to avoid medical care because they could not pay.

Thirteen percent of women and men reported that they think their health has declined 'very much' or 'some' in the past 12 months because of problems in paying for medical care; another 14 percent of women and 9 percent of men think that their health has declined 'a little.' Seventy-three percent of women and 78 percent of men think that their health has not declined because of problems paying for medical care. The largest declines in health attributed to problems in paying for medical care were reported by women and men with no education or primary 4 -year education (58 and 48 percent, respectively) and those in the lowest wealth quintile (40 and 38 percent, respectively).

Table 13.16 Non-payment for health services and perceived impact on health
Among women and men age 15-49, the percent distribution of those who avoided obtaining medical care because they could not pay for services, and percent distribution of those who think their health has declined over the past 12 months because of problems paying for medical care, according to background characteristics, Albania 2008-09

	Avoided obtaining medical care because could not pay						Thinks health has declined because of problem paying for health care					Total	Number
Background characteristic	Never	Rarely	Often	$\begin{gathered} \hline \text { Did not } \\ \text { need } \\ \text { medical } \\ \text { services } \\ \hline \end{gathered}$	Don't know/ refused	Total	Very much	Some	A little	Not at all	Don't know/ refused		
WOMEN													
Age													
15-19	36.2	23.0	16.7	23.7	0.4	100.0	2.8	13.1	15.3	68.4	0.5	100.0	1,567
20-34	35.3	22.6	15.4	25.5	1.1	100.0	2.0	11.1	14.4	72.2	0.2	100.0	2,524
35-49	40.8	20.2	13.5	25.1	0.5	100.0	1.7	8.8	13.5	75.5	0.6	100.0	3,491
Residence													
Urban	39.6	21.1	10.5	27.7	1.0	100.0	1.1	7.5	11.8	79.2	0.3	100.0	3,380
Rural	36.7	21.9	18.2	22.7	0.4	100.0	2.8	12.8	16.1	67.9	0.5	100.0	4,204
Region													
Coastal	44.1	22.3	16.3	17.1	0.2	100.0	2.0	10.9	14.6	72.1	0.4	100.0	2,129
Central	37.4	23.7	16.7	21.9	0.3	100.0	2.4	12.4	16.7	68.1	0.4	100.0	3,477
Mountain	27.2	14.8	11.9	45.3	0.8	100.0	2.9	9.6	11.3	75.4	0.8	100.0	777
Urban Tirana	36.0	18.6	8.4	34.4	2.6	100.0	0.6	4.7	7.9	86.5	0.3	100.0	1,201
Education													
	13.2	25.3	44.5	16.0	1.0	100.0	9.1	20.3	28.1	40.8	1.6	100.0	127
Primary 8-year	33.4	22.9	19.9	23.3	0.5	100.0	3.1	13.1	18.0	65.4	0.5	100.0	3,712
Secondary, professional, technical	42.4	21.0	11.1	24.7	0.8	100.0	1.0	9.0	12.1	77.6	0.4	100.0	2,740
University +	46.4	17.7	2.0	32.8	1.1	100.0	0.0	3.5	4.1	92.2	0.3	100.0	1,005
Wealth quintile													
Lowest	27.9	22.6	25.7	23.3	0.5	100.0	3.8	13.6	22.2	59.7	0.6	100.0	1,513
Second	39.2	20.2	18.3	21.8	0.5	100.0	3.1	12.6	14.3	69.3	0.8	100.0	1,486
Middle	39.6	23.0	14.8	22.4	0.2	100.0	2.1	12.4	14.3	71.0	0.2	100.0	1,533
Fourth	36.9	23.6	11.3	27.6	0.6	100.0	0.7	9.0	13.7	76.3	0.4	100.0	1,480
Highest	46.1	18.6	4.2	29.5	1.5	100.0	0.5	4.8	6.7	87.8	0.2	100.0	1,573
Total	38.0	21.6	14.8	24.9	0.7	100.0	2.0	10.5	14.2	72.9	0.4	100.0	7,584
MEN													
Age													
15-19	39.9	17.7	7.3	34.9	0.2	100.0	1.9	11.8	10.5	74.8	1.0	100.0	584
20-34	39.7	16.4	5.9	37.3	0.7	100.0	1.9	10.0	10.0	77.7	0.4	100.0	1,096
35-49	39.6	15.7	5.4	39.0	0.2	100.0	1.7	10.3	7.4	79.7	0.8	100.0	1,332
Residence													
Urban	39.9	13.6	4.8	41.3	0.4	100.0	1.2	6.6	8.0	84.0	0.3	100.0	1,391
Rural	39.6	18.7	6.9	34.4	0.4	100.0	2.4	13.9	9.7	72.9	1.1	100.0	1,622
Region													
Coastal	41.2	16.9	5.0	37.0	0.0	100.0	1.4	9.2	7.8	81.5	0.2	100.0	800
Central	37.4	19.9	7.2	35.0	0.4	100.0	2.1	13.6	10.3	72.9	1.2	100.0	1,443
Mountain	40.7	14.8	9.6	34.1	0.8	100.0	2.5	12.8	8.8	75.1	0.9	100.0	277
Urban Tirana	43.5	5.9	1.8	48.2	0.7	100.0	1.4	2.3	6.9	89.2	0.2	100.0	493
Education													
4-year	23.6	12.6	29.0	28.9	6.0	100.0	7.5	28.3	12.1	49.1	2.9	100.0	55
Primary 8-year	34.5	23.2	9.2	32.8	0.3	100.0	2.7	15.2	13.5	67.8	0.8	100.0	1,183
Secondary, professional, technical	42.2	14.1	3.7	39.7	0.3	100.0	1.3	8.3	6.5	83.2	0.8	100.0	1,415
University+	49.2	3.4	0.7	46.7	0.0	100.0	0.2	0.9	3.1	95.8	0.0	100.0	361
Wealth quintile													
Lowest	28.1	24.7	13.0	32.7	1.4	100.0	3.3	20.6	14.3	59.8	2.0	100.0	475
Second	38.5	19.3	5.6	36.5	0.1	100.0	2.7	14.1	10.2	71.8	1.2	100.0	600
Middle	39.5	16.8	7.5	36.0	0.2	100.0	2.5	11.1	7.6	78.6	0.2	100.0	661
Fourth	43.5	15.2	4.3	36.7	0.2	100.0	0.8	6.8	9.3	82.7	0.4	100.0	625
Highest	45.9	8.1	1.1	44.7	0.2	100.0	0.3	2.8	4.9	91.9	0.1	100.0	652
Total	39.7	16.3	6.0	37.6	0.4	100.0	1.8	10.5	8.9	78.0	0.7	100.0	3,013

Migration is defined as 'the movement of people from one place to another.' There are two main types of migration: internal migration, i.e. migration within the same country; and international migration or emigration, which occurs when people leave their country to establish a new, 'usual' place of residence across international borders. The people who move abroad are called emigrants (Hindi, 1998). In this chapter, the term 'migration' is used to describe both internal and international migration, and the term 'migrant' is used to describe persons affected by these two phenomena.

Migration in Albania has been an ongoing phenomenon since the early 1990s and, even though levels of migration have fluctuated over the past two decades, the overall pattern shows a growing trend over time. The political and democratic changes in the country in the early 1990s resulted in a number of economic and social changes. A substantial number of Albanians moved within the country from underdeveloped areas to more developed areas, or moved outside the country in search of better economic opportunities and a higher standard of living.

The 2001 Population and Housing Census conducted by INSTAT and other studies on migration have identified the characteristics of the migration phenomenon in Albania (INSTAT, 2004a, 2004b, and 2004c). The 2008-09 ADHS is a nationally representative cross-sectional survey that provides follow-up data on previous studies of migration as well as a substantial body of new information that contributes to the understanding of migration behaviour in the Albanian population. Collecting information on emigration in a cross-sectional survey presents challenges because the people of interest, by definition, no longer live in the target population. Nevertheless, a survey such as the 2008-09 ADHS presents a unique opportunity to assess the magnitude of migration in Albania and to describe the characteristics of the emigrant population. The 2008-09 ADHS collected information from households about former members who used to live in the household but now live elsewhere in Albania or abroad. These questions collect information about the relationship of the former household member to the current head of household, the district or country in which the former member currently resides, the reason that the former member migrated, and the year the former member migrated. In addition to these questions, information was gathered on the sociodemographic characteristics of the migrants.

The purpose of this chapter is to describe the flow of migration in Albania and to provide information on the demographic and socio-economic characteristics of the migrants.

14.1 Households With at Least One Former Member Who Has Migrated

Beginning in the early 1990s, with the opening up of Albania after the fall of the Berlin Wall and the end of the communist regime in Albania, there have been substantial population movements within and outside the country. Studies have shown that up to 2005, at least one in five adults had moved and resettled within the country, and at least one in three households had a member who had left the country (World Bank, 2007).

Table 14.1 and Figure 14.1 show the percentage of households in which at least one former member has migrated. The results of the 2008-09 ADHS indicate that more than half of Albanian households (52 percent) have at least one former member (member in 1990 or later) who has migrated within or outside Albania. One in five households (21 percent) have at least one former member who has moved within the country, while around two in five (42 percent) have at least one former member who has left the country or emigrated. Twelve percent of the Albanian households have former members who have migrated both within and outside the country. It should be noted that these estimates may be low because of under-reporting; they do not include entire households that have left the country and cannot be interviewed.

Percentage of households from which at least one former member ${ }^{1}$ has migrated within Albania, at least one former member has emigrated outside of Albania, former members have migrated both within and outside Albania, and former members have migrated either within or outside of Albania, by background characteristics, Albania 2008-09						
Background characteristic	Household migration status					Number of households
	Households from which at least one former member migrated within Albania	Households from which at least one former member emigrated outside Albania	Households from which members migrated both within and outside Albania	Households from which members migrated either within or outside Albania	Households from which no one migrated	
Residence						
Urban	19.7	38.1	9.6	48.2	51.8	3,887
Rural	22.2	46.3	13.9	54.6	45.4	4,112
Region						
Coastal	31.6	51.9	18.8	64.8	35.2	2,364
Central	18.0	40.8	10.3	48.5	51.5	3,575
Mountain	25.8	36.5	13.0	49.3	50.7	686
Urban Tirana	8.1	32.4	3.1	37.4	62.6	1,374
Number of usual members at time of interview						
0	24.6	56.2	11.3	69.5	30.5	17
1	29.1	60.6	19.4	70.3	29.7	491
2	36.2	71.2	26.3	81.1	18.9	1,646
3	25.2	55.4	12.4	68.1	31.9	1,406
4+	13.1	25.4	5.4	33.1	66.9	4,440
Wealth quintile						
Lowest	20.8	41.3	12.3	49.9	50.1	1,463
Second	24.0	52.2	15.2	61.1	38.9	1,492
Middle	22.5	43.4	13.7	52.2	47.8	1,590
Fourth	22.7	40.6	11.7	51.6	48.4	1,740
Highest	15.3	35.2	6.8	43.8	56.2	1,714
Total	21.0	42.3	11.8	51.5	48.5	7,999
${ }^{1}$ Household member in 1990 or later.						

Households in rural areas are more likely to have had at least one former member who has migrated within or outside Albania than households in urban areas: 22 percent compared with 20 percent for internal migration, and 46 percent compared with 38 percent for international migration. Across regions, the percentage of households with at least one former member who has migrated within Albania ranges from 8 percent in Urban Tirana to 32 percent in the Coastal region. Similarly, the percentage of households with at least one former member who has migrated outside Albania is lowest in Urban Tirana (32 percent) and highest in the Coastal region (52 percent). Internal migration is somewhat higher in households in the middle three wealth quintiles and lower in the lowest and highest wealth quintiles, and a similar pattern is seen for international migration. Overall, 50 to 61 percent of households in each of four wealth-the highest wealth quintile is 44 percent-have at least one former member who migrated either within Albania or outside Albania.

Figure 14.1 Percentage of Households With at Least One Former Member Who Has Migrated, by Residence and Region

14.2 Characteristics of Migrants' Former Households

Recent studies have shown that most migrants in Albania move alone as individuals and not as complete households. Between 1990 and 2004, only 5 percent of the migrating households moved together as a unit within or outside Albania (World Bank, 2007).

This section describes the characteristics of the households from which former members in 1990 or later have migrated. Table 14.2 shows that in six of ten (62 percent) households from which former members have migrated internally only one person migrated, while 23 percent have two migrants, and 15 percent have three or more migrants. The relatively large percentage of households with more than one internal migrant (38 percent) indicates that internal migration may be facilitated by household networking, whereby migration of one household member may help the movement of other members thereafter. Rural areas have a larger proportion of households with multiple internal migrants than urban areas (42 and 34 percent, respectively).

Urban Tirana has the highest percentage of households with one internal migrant (68 percent) and the lowest percentage of households with three or more internal migrants (6 percent). In contrast, the Mountain region has the lowest percentage of households with one internal migrant (54 percent) and the highest percentage with three or more internal migrants (21 percent). The difficult living conditions in the Mountain region and slower economic growth than the rest of the country (see Chapter 4) have forced many individuals and entire households to move to more developed districts within Albania in search of a better life. According to the 2002 Living Standards Measurement Study (INSTAT, UNDP, World Bank, 2009), almost half (45 percent) of the population in this region was below poverty level in 2002. The 2008 Living Standards Measurement Study (ibid.) results indicated that, despite a decline in poverty in the Mountain region, it still leads with 27 percent of the population living below the poverty line, more than twice the level of poverty in the country.

Table 14.2 Characteristics of households from which former members have migrated							
Percent distribution of households with former members who have migrated by number of migrants, sex of migrants, children of migrants living in the household, according to residence and region, Albania 2008-09							
	Residence		Region				Total
Characteristic	Urban	Rural	Coastal	Central	Mountain	Urban Tirana	
WITHIN ALBANIA							
Number of migrants							
1	65.8	58.4	61.5	63.2	53.8	68.1	61.8
2	24.1	22.5	24.6	20.5	25.5	26.2	23.2
$3+$	10.1	19.1	13.9	16.3	20.7	5.7	15.0
Total	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Sex of migrants							
Male	45.1	40.5	42.3	40.7	52.7	39.8	42.6
Female	70.6	78.7	74.4	77.4	72.0	70.2	75.0
Male and female	15.7	19.2	16.7	18.1	24.7	10.0	17.6
Children of migrant(s) living in the household							
At least one child	1.2	1.2	1.6	0.8	1.7	0.0	1.2
No children	98.8	98.8	98.4	99.2	98.3	100.0	98.8
Total	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Number of households	767	912	748	643	177	111	1,679
OUTSIDE ALBANIA							
Number of migrants							
1	52.5	48.5	41.4	53.1	60.2	59.9	50.3
2	29.9	26.3	30.5	26.1	24.7	28.4	27.9
$3+$	17.6	25.2	28.1	20.8	15.1	11.7	21.8
Total	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Sex of migrants							
Male	74.2	88.7	84.4	83.6	89.6	68.0	82.3
Female	52.4	37.0	48.6	40.9	24.7	50.2	43.7
Male and female	26.5	25.7	33.1	24.5	14.3	18.2	26.0
Children of migrant(s) living in the household							
At least one child	7.1	14.4	12.7	10.8	19.9	3.5	11.2
No children	92.9	85.6	87.3	89.2	80.1	96.5	88.8
Total	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Number of households	1,480	1,903	1,228	1,460	250	445	3,384
EITHER WITHIN OR OUTSIDE ALBANIA							
Number of migrants							
1	43.6	38.4	32.9	42.7	44.1	55.6	40.8
2	31.7	25.7	28.2	28.7	25.6	30.0	28.4
$3+$	24.6	35.9	38.9	28.6	30.2	14.4	30.8
Total	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Sex of migrants							
Male	71.4	83.8	79.4	79.5	83.8	65.9	78.1
Female	62.6	54.6	64.5	55.4	48.5	55.6	58.3
Male and female	34.0	38.4	43.9	34.9	32.3	21.5	36.4
Children of migrant(s) living in the household							
At least one child	6.1	12.7	10.9	9.4	15.6	3.0	9.7
No children	93.9	87.3	89.1	90.6	84.4	97.0	90.3
Total	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Number of households	1,874	2,245	1,531	1,735	338	513	4,119

The percentage of households with internal migrants who are female is substantially higher than those with male migrants (75 percent compared with 43 percent), and the pattern is seen for both urban and rural areas and in all regions. About one in five households (18 percent) have both female and male migrants. Almost all households with internal migrants (99 percent) reported no children of the migrants were left behind, indicating that either internal migrants had no children when they migrated or that they took the children with them (Figure 14.2).

There are strong similarities in the characteristics of the households with internal migrants and international migrants and their variation by residence and region. Half of the households have at least one former member who has emigrated, 28 percent have two emigrants, and 22 percent have three or more emigrants. Similar to internal migration, urban areas have a higher percentage of households with one emigrant and a lower percentage with three or more emigrants than the rural areas. The Coastal region has the lowest percentage of households with one emigrant (41 percent) and the highest percentage with two (31 percent) or three or more (28 percent) emigrants. On the other hand, the Mountain and Urban Tirana regions have the highest percentage of households with a single emigrant (60 percent, each) and the lowest percentage with three or more emigrants (15 and 12 percent, respectively).

> Figure 14.2 Percentage of Households With Former Members Who Have Migrated Within or Outside Albania With at Least One Child of the Migrant Currently Living With the Household, by Residence and Region

Unlike households with internal migrants where the percentage with female migrants was significantly higher than households with male migrants, in the households with emigrants, the percentage with male emigrants (82 percent) is almost twice that of households with female emigrants (44 percent). More than one in four households (26 percent) have both male and female emigrants. A higher percentage of households in rural areas have male emigrants compared with urban areas (89 percent versus 74 percent), while a higher percentage of households in urban areas have female emigrants compared with rural areas (52 percent versus 37 percent). The highest percentage of households with male emigrants is in the Mountain region (90 percent), while the lowest is in Urban Tirana (68 percent). On the other hand, the Mountain region has the lowest percentage of households with female emigrants (25 percent), while Urban Tirana has the highest percentage with female emigrants (50 percent).

When compared with internal migration, there is a higher percentage of households with international migrants that have at least one child of the emigrant left behind to live in the household (Figure 14.2). One in nine households (11 percent) with emigrants report that at least one child of the emigrant(s) lives in the household at the time of the interview. This percentage is twice as high in rural areas as in urban areas (14 percent versus 7 percent) and it ranges from 4 percent of households in Urban Tirana to 20 percent of households in the Mountain region.

14.3 Migrant Population

Table 14.3 shows the percentage of the de jure population who have migrated inside Albania (between 1990 and the time of the interview) by current age and sex, as well as the estimated total number of internal migrants for the whole country. The results of the 2008-09 ADHS show that 9 percent of the Albanian population has migrated within Albania, 11 percent of females and 7 percent of males. If the survey results are applied to the whole population of Albania, an estimated 289,000 Albanians have migrated internally. The findings indicate that the highest percentage of internal migrants is in the most productive population age groups (20-39 years), ranging from 23 percent among those age $35-39$ to 32 percent among those age 25-29. Among males, the age distribution is relatively even with similar proportions (15 to 20 percent) having migrated between age 20 and 44, while among females the distribution is more varied with the large majority being between age 20 and 34 (35 to 44 percent), with the peak in the $25-29$ age group (44 percent).

Table 14.3 Internal migrant population by age and sex			
Percentage of the de jure population who have migrated inside of Albania (between			
1990 and the time of the interview), by current age and sex, and estimated total			
number of internal migrants, Albania 2008-09			
Current age	Male	Female	Total
<15	0.2	0.3	0.2
$15-19$	5.8	10.9	8.4
$20-24$	17.0	36.4	27.0
$25-29$	14.5	43.9	31.9
$30-34$	18.3	34.5	28.0
$35-39$	20.4	24.7	22.9
$40-44$	15.8	12.2	13.8
$45-49$	8.1	6.1	7.1
$50+$	4.5	2.6	3.5
Don't know	13.8	3.7	8.0
Total	6.6	11.4	9.1
Total population as of			
January 2009 (INSTAT ${ }^{1}$)	$1,536,381$	$1,657,469$	$3,193,850$
Estimated number of internal	101,059	188,262	289,321
migrants			
Note: The population size is calculated from population projections $2001-2021$ and			
natural increase (from civil registration).			
www.instat.gov.al			

Table 14.4 shows the percentage of all Albanians (de jure population plus emigrants) who live outside of Albania by current age and sex, as well as the estimated total number of emigrants for the whole Albania. An estimated 657,000 Albanians have migrated outside of Albania and the estimated total number of Albanians, including emigrants, is 3.9 million. As mentioned earlier, it should be noted that these estimates may be somewhat under-reported because they do not include entire households that have left the country and cannot be interviewed or the live births to emigrant parents living outside Albania (second generation emigrants). The large majority of emigrants fall in the age groups 25-29 (49 percent) and 30-34 (45 percent). A relatively high proportion of those in age groups 20-24 (36 percent) and 35-39 (32 percent) have emigrated. Among both females and males, the highest proportions of emigrants are those age 25-29 (36 percent of females and 60 percent of males), followed by those age 30-34 (32 percent of females and 58 percent of males).

Table 14.4 Emigrant population by age and sex			
Percentage of all Albanians (de jure population plus emigrants) who live outside of Albania,			
by current age and sex, and estimated total number of emigrants, Albania 2008-09			
Current age	Male	Female	Total
<15	0.6	0.7	0.6
$15-19$	14.2	4.1	9.3
$20-24$	43.2	27.1	35.9
$25-29$	60.4	35.9	48.9
$30-34$	57.5	32.3	45.3
$35-39$	44.1	20.0	32.1
$40-44$	30.1	14.1	22.1
$45-49$	19.9	7.7	14.4
$50+$	8.1	3.6	5.8
Don't know	48.9	41.9	45.1
Total	22.3	11.5	17.1
Total population as of			
January 2009 (INSTAT ${ }^{1}$)	$1,536,381$	$1,657,469$	$3,193,850$
Estimated number of emigrants	441,912	215,272	657,184
Estimated total Albanians			
including emigrants	$1,978,293$	$1,872,740$	$3,851,034$

Note: The population size is calculated from population projections 2001-2021 and natural increase (from civil registration).
${ }^{1}$ www.instat.gov.al

Figure 14.3 based on data from Tables 14.3 and 14.4 shows that a significantly higher percentage of females than males (11 percent versus 6 percent) have migrated internally, while a significantly higher percentage of males than females (22 percent versus 12 percent) have migrated internationally.

Figure 14.3 Percentage of Females and Males Who Have Migrated Internally and Internationally

14.4 Background Characteristics of Migrants

Table 14.5 presents the percent distribution of migrants by various background characteristics, according to sex. In addition to information collected on characteristics of households and household assets, specific information on migrants' sex, age, relationship to the current household head, and education were reported by the respondent of the household questionnaire.

Data in Table 14.5 show that more than three-fourths of internal and international migrants (76 percent) were age $15-29$ at the time of migration. About three in ten migrants (31 percent) were age $15-19$ and a similar 30 percent were age 20-24 when they migrated, while about one in six (15 percent) were age 25-29. Looking at age patterns in internal migration by gender, a much higher percentage of females than males have migrated at age 15-24 (74 percent versus 41 percent) while the age pattern for males is less concentrated. For international migration, similar proportions of females and males were age 15-29 (76 percent) when they emigrated. The peak age for individuals to migrate abroad was 20-24 for females and 15-19 for males (34 percent each).

Table 14.5 Background characteristics of migrants at time of migration
Percent distribution of migrants by background characteristics, according to sex, Albania 2008-09

Background characteristic	Within Albania			Outside Albania			Either within or outside Albania		
	Females	Males	Total	Females	Males	Total	Females	Males	Total
Age at time of migration									
<15	4.4	5.4	4.7	5.2	6.3	6.0	4.8	6.2	5.6
15-19	38.9	22.0	33.0	24.4	33.8	30.7	31.2	31.6	31.4
20-24	34.9	18.8	29.3	34.4	27.3	29.6	34.6	25.7	29.5
25-29	11.0	23.0	15.2	16.8	14.8	15.5	14.1	16.3	15.4
30-34	3.8	13.3	7.1	8.1	8.3	8.2	6.1	9.2	7.9
35-39	2.3	9.1	4.7	4.7	4.8	4.7	3.6	5.6	4.7
40-44	0.5	2.8	1.3	2.8	2.4	2.5	1.7	2.4	2.1
45-49	0.5	1.5	0.8	1.2	1.2	1.2	0.9	1.2	1.1
50+	0.7	1.3	0.9	1.6	0.6	0.9	1.2	0.7	0.9
Don't know	3.1	2.8	3.0	0.8	0.6	0.7	1.9	1.0	1.4
Residence at time of migration									
Urban	39.4	44.2	41.1	48.9	36.7	40.7	44.5	38.1	40.8
Rural	60.6	55.8	58.9	51.1	63.3	59.3	55.5	61.9	59.2
Region at time of migration									
Coastal	44.8	44.1	44.6	43.3	39.7	40.9	44.0	40.5	42.0
Central	38.6	37.2	38.1	39.3	42.7	41.6	39.0	41.7	40.5
Mountain	11.0	13.3	11.8	4.2	7.7	6.6	7.4	8.7	8.2
Urban Tirana	5.6	5.5	5.5	13.1	9.9	11.0	9.6	9.1	9.3
Relationship to current head of household									
Spouse/partner	0.4	1.3	0.7	1.6	5.2	4.0	1.1	4.5	3.0
Father/mother	0.4	0.3	0.3	0.4	0.1	0.2	0.4	0.1	0.2
Son/daughter	93.9	94.9	94.2	85.9	89.4	88.2	89.6	90.4	90.1
Brother/sister	2.1	1.6	2.0	1.9	2.2	2.1	2.0	2.1	2.1
Son-in-law/daughter-in-law	0.7	0.0	0.5	6.4	0.2	2.2	3.7	0.2	1.7
Nephew/niece	0.1	0.2	0.2	0.1	0.2	0.2	0.1	0.2	0.2
Other relative	2.2	1.7	2.0	3.2	2.5	2.7	2.7	2.4	2.5
Other non-relative	0.1	0.0	0.1	0.5	0.2	0.3	0.3	0.1	0.2
Education									
No education/Primary 4-year	2.3	3.7	2.8	3.0	2.3	2.6	2.7	2.6	2.6
Primary 8-year	46.7	34.1	42.3	41.2	52.8	49.0	43.8	49.3	47.0
Secondary, professional, technical	37.5	43.2	39.5	41.3	40.4	40.7	39.5	40.9	40.3
University+	13.1	18.9	15.2	14.0	4.3	7.5	13.6	7.0	9.8
Wealth quintile									
Lowest	20.9	20.0	20.6	14.8	20.6	18.7	17.6	20.5	19.3
Second	23.0	19.8	21.9	21.4	25.4	24.0	22.1	24.3	23.4
Middle	21.9	23.4	22.5	20.0	21.8	21.2	20.9	22.1	21.6
Fourth	22.2	20.8	21.7	22.6	19.4	20.5	22.4	19.7	20.8
Highest	12.0	15.9	13.3	21.2	12.9	15.6	16.9	13.4	14.9
Total	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Number	1,799	966	2,765	2,057	4,223	6,280	3,856	5,189	9,045

Females migrating internally are younger than those migrating abroad. Thirty-nine percent of females migrating internally were 15-19 years old when they migrated while this age group makes up only 24 percent of those who migrated internationally. This can be explained by the fact that for young females in this age group, internal migration happens mostly either when the whole family migrates, or sometimes individually to find work or to study (more so than for young males in this age group). On the other hand, international migration for females of this age group, unless it is with the whole family, is often risky and without proper emigration documents. In contrast, a higher percentage of males migrating internationally are in the younger age groups 15-24 than of those migrating internally (61 percent compared with 41 percent), possibly due to higher risk-taking among young men.

As previously mentioned (Table 14.1) more than half of households in Albania have at least one internal or international migrant, 48 percent of households in urban areas and 55 percent of households in rural areas. The distribution of the individual migrants as shown in Table 14.5 follows a similar pattern; 41 percent of all migrants are from households in urban areas and 59 percent are from households in rural areas. The difference in the distribution of households with migrants versus the distribution of individual migrants, further suggests that the 'clustering' effect is greater in rural households, i.e. rural households are more likely to have more than one member that has migrated. Females who migrated internally are more likely than males to be from rural areas (61 percent and 56 percent, respectively). The opposite is true for international migration; females who migrated abroad are much less likely than males to be from rural areas (51 percent and 63 percent, respectively).

The highest percentage of migrants within or outside the country is from the Coastal and Central regions (42 percent and 41 percent, respectively). According to INSTAT, in 2008, the total population of these two regions represents the largest share of the population in Albania as a whole (33 percent and 42 percent, respectively) (INSTAT, 2008). Table 14.5 shows that only 9 percent of all migrants are from the Urban Tirana region and 8 percent are from the Mountain region. Looking at migration within Albania, 45 percent of internal migrants are from the Coastal region, 38 percent from Central region, 12 percent from the Mountain region and only 6 percent from Urban Tirana. The patterns are similar between females and males who have migrated internally. For international migration, 41 and 42 percent, respectively, are either from the Coastal or Central regions, 11 percent are from Urban Tirana, and 7 percent are from the Mountain region. The highest percentage of females who emigrated is from the Coastal region (43 percent), while the highest percentage of males who have emigrated is from the Central region (43 percent).

Migration has impacted the household structure. Overall, 3 percent of all migrants have left behind a wife or husband in their household of origin. This phenomenon is mainly noticed for emigrants, with 5 percent of males and 2 percent of females living abroad having left behind their wife or husband. Nine in ten of all migrants are the son or daughter of the head of the household, while 2 percent, each, are the brother or sister, or the son-in-law or daughter-in-law of the head of the household. The patterns are similar for internal and international migration.

Overall, slightly less than half of all migrants (47 percent) have primary 8-year education, while the other half have secondary (40 percent) or university or higher education (10 percent). Female migrants (14 percent) are twice as likely to have university or higher education as male migrants (7 percent). This is most noticeable for international migrants where only 4 percent of males have university or higher education compared with 14 percent of females, and 53 percent have just primary 8 -years education compared with 41 percent of females. In contrast, male internal migrants are much more likely to have university or higher education (19 percent) than females (13 percent). For females, the education pattern is similar for both internal and international migrants.

The distribution of all migrants by wealth quintile shows an inverted u-shaped pattern. The smallest proportion of all migrants originated from households in the highest quintile (15 percent) and lowest quintile (19 percent). Among internal migrants, the distribution between the wealth quintiles is uniform (21 to 23 percent) for the lower four quintiles, while it is substantially lower (13 percent) for
the highest quintile. This pattern is true for both males and females. Among international migrants, the percentage is lowest among emigrants from the highest quintile (16 percent) and lowest quintile (19 percent). Among females, the lowest percentage of emigrants is in the lowest quintile (15 percent), while among males the lowest percentage is in the highest wealth quintile (13 percent).

Table 14.6 shows the percent distribution of all internal and international migrants by current age and original household residence. Migrants of both sexes and from both urban and rural areas are predominantly in the most productive population age groups (20-39), with the largest proportion from each group being age 25-29 and accounting for one in five migrants. The distribution of migrants from the urban areas appears flatter than that of the migrants from the rural areas and migrants from the rural areas tend to be younger than those from the urban areas. Larger family sizes, lower per capita income, higher poverty levels and weaker health and education services in the rural areas are some of the conditions that may force younger individuals from rural areas to migrate within or outside of the country than their urban counterparts.

Table 14.6 Current age and sex of migrants
Percent distribution of internal and international migrants by current age, in five-year age groups, according to sex and residence of origin, Albania 2008-09

Current age	Residence						Total		
	Urban			Rural					
	Females	Males	Total	Females	Males	Total	Females	Males	Total
<15	0.8	0.5	0.7	0.9	0.6	0.7	0.8	0.5	0.7
15-19	4.9	4.1	4.5	6.8	7.5	7.2	6.0	6.2	6.1
20-24	16.4	12.9	14.6	20.7	19.1	19.7	18.8	16.7	17.6
25-29	21.7	19.2	20.3	23.8	20.0	21.5	22.8	19.7	21.0
30-34	19.8	17.4	18.5	17.9	17.6	17.7	18.7	17.5	18.0
35-39	13.9	16.2	15.1	14.7	14.5	14.6	14.4	15.2	14.8
40-44	11.2	14.1	12.7	7.7	9.8	9.0	9.3	11.4	10.5
45-49	5.0	8.4	6.8	3.4	6.7	5.3	4.1	7.3	5.9
50+	6.3	7.2	6.8	3.7	4.0	3.9	4.9	5.2	5.1
Don't know	0.0	0.0	0.0	0.4	0.3	0.3	0.2	0.2	0.2
Total	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Number	1,716	1,975	3,691	2,141	3,214	5,354	3,856	5,189	9,045

14.5 Reasons For Migration

The respondents to the household questionnaire were asked for the main reason the former members of the household migrated. Among internal migrants, the main reason for migrating (Table 14.7) is to accompany a spouse or the family (60 percent), followed by migrating to study (19 percent) and to work or look for work (13 percent). Among females that have moved within the country, the large majority (78 percent) have migrated to accompany a spouse or family member, while 16 percent have migrated to study and only 3 percent each for work or other reasons. Among males, 31 percent have moved within Albania for work, 28 percent to accompany a spouse or family member, and 25 percent to study. Work is overwhelmingly the main reason that people emigrate from Albania. Seventy-two percent of all emigrants moved abroad to work. An additional 20 percent emigrated to accompany their spouse or family abroad, while 4 percent emigrated to study. There are major differences between the reasons why females and males emigrated-females emigrated principally to accompany a spouse or family member (61 percent), followed by work (26 percent), and study (6 percent). On the other hand, more than nine in ten males (94 percent) emigrated for work, while only 3 percent emigrated to study and less than 1 percent to accompany a spouse or family member.

Table 14.7 Main reason for migrating						
Percent distribution of internal and international migrants by main reason for migrating (as reported by household interview respondents), according to sex, Albania 2008-09						
	Within Albania			Outside Albania		
Main reason for migrating	Females	Males	Total	Females	Males	Total
Work	3.3	30.5	12.8	25.9	94.1	71.8
Study	15.6	24.5	18.7	5.9	3.0	4.0
Accompany spouse/family	77.6	27.9	60.3	60.6	0.6	20.3
Marry foreigner	0.8	0.2	0.6	2.2	0.2	0.8
Other	2.7	16.6	7.5	5.4	1.9	3.1
Don't know	0.0	0.4	0.1	0.0	0.1	0.1
Total	100.0	100.0	100.0	100.0	100.0	100.0
Number	1,799	966	2,765	2,057	4,223	6,280

14.6 Trends in Migration

This section examines emigration trends over time and the age and sex profile of the Albanians who migrated internally or internationally. Figure 14.4 shows the percent distribution of all migrants by year of migration and by sex and by whether they migrated within or outside of Albania. Prior to the regime change in the early 1990s, the internal population movements were very restricted in Albania, and the national borders were closed and movement outside of the country was highly controlled. With the collapse of the old regime and the opening of the borders, there was a massive exodus of the Albanian people, mainly males, who asked for asylum in many foreign embassies and were later taken to the respective countries. Many emigrated via sea or land to neighbouring countries such as Italy and Greece. Albania made headline news in the Western media for the massive emigration. While international migration increased quickly in the early 1990s, particularly for males, internal migration remained relatively steady, but with more females than males migrating internally. The regime change was followed by a wait-and-see period in terms of establishment of migration strategies by the government.

Figure 14.4 Percent Distribution of Migrants by Year They First Migrated Within or Outside of Albania

In 1991, the first private 'investment' companies, also known as pyramid schemes, were established. These pyramid schemes, similar to a 'Ponzi scheme,' were fraudulent investment operations that paid returns to investors from their own money or money paid by subsequent investors rather than from any actual profit earned. These schemes grew and expanded significantly until 1996, benefiting from the absence of laws, rules, and policies in the field of private borrowing and lending. The collapse of the pyramid schemes in late 1996 and early 1997 caused loss of entire life savings, often homes, of many individuals and households. The period that followed was one of social and political unrest, anarchy, and deep desperation and insecurity among the population concerning the future. As a result, around mid-1997, another big migration tide happened towards Italy and Greece, largely illegal migration. International migration reached its peak in 1998 and this year also saw increases in internal migration.

The levels of migration also show a peak in 2000 with a decline in 1999. This may be the result of heaping of responses on a round number, or possibly another actual spike in migration. The Kosovo war took place in 1999, during which NATO attacked Yugoslavia and Albanian paramilitaries had continuous battles with Yugoslav forces, followed by a massive displacement of the population of Kosovo. A huge incoming tide of deported people from Kosovo moved to Albania. Lack of effective control of the national borders, not only from the Albanian side, but also from the neighbouring countries caused by the Kosovo humanitarian crisis are likely to have contributed to the higher emigration in this period, as many Albanians left the country with identification documents of Kosovo residents, which made emigration easier.

From 2001-2005 there was a steady increase in both international and internal migration in both sexes. Between 2005-2007, the pattern continues for males, with the percentage of international migrants continuing to be higher than for internal migrants. For the same period (2005-2007), both international and internal migration for females stabilized, with the percentages of females emigrating and migrating internally being roughly the same.

With these observations in mind, however, two data quality issues should be noted. First, an inherent bias is that the survey asks about internal and international migrants from current households. The longer ago the migration occurred, the more likely the household is to be reconstituted or dissolved and thus not able to report on all the migrants. Second, there is potential recall bias, particularly with respect to the year of migration.

14.7 Destination of Migrants

Table 14.8 shows the distribution of the destination districts of internal migrants. Overall, the majority of internal migrants, 30 percent, have moved to Tirana district (27 percent of females and 37 percent of males). Additionally, 10 percent of internal migrants have moved to Durres district (11 percent of females and 9 percent of males), 8 percent to Vlora (7 percent of females and 12 percent of males), and 6 percent to Lushnja and Fier districts (6 percent of females and 4 percent of males).

Table 14.8 above shows that 94 percent of all emigrants have moved to Europe, while 6 percent have moved outside of Europe. Within Europe, a large majority of emigrants have moved to nearby countries, such as Greece (50 percent), Italy (35 percent). Furthermore, 5 percent of emigrants have moved to the UK and 2 percent to Germany. Three percent of emigrants have moved to other European countries. Outside of Europe, 4 percent of emigrants have moved to the US and 1 percent have emigrated to Canada (Figure 14.5). A higher percentage of males than females have moved to Europe (96 percent versus 91 percent), while 9 percent of females have moved outside of Europe compared with 4 percent of males.

Table 14.8 Destination of migrants			
Percent distribution of internal migrants by destination district and percent distribution of international migrants by destination country, according to sex, Albania 2008-09			
Destination	Females	Males	Total
WITHIN ALBANIA			
Destination district			
Berat	3.9	1.8	3.2
Durres	11.0	8.6	10.2
Elbasan	4.0	2.0	3.3
Fier	6.0	4.4	5.5
Gjirokaster	3.9	2.1	3.2
Kavaja	2.1	2.5	2.2
Korca	4.7	2.8	4.0
Kruje	4.1	2.8	3.7
Kurbin	2.0	3.0	2.3
Librazhd	2.6	2.7	2.6
Lushnja	6.4	4.1	5.6
Saranda	1.8	3.5	2.4
Tirana	27.0	36.7	30.4
Vlora	6.8	11.6	8.4
Other district	13.8	11.6	13.0
Total	100.0	100.0	100.0
Number of internal migrants	1,799	966	2,765
OUTSIDE ALBANIA			
Destination country			
Europe	91.3	95.7	94.2
Greece	43.9	52.8	49.9
Italy	37.6	34.2	35.3
United Kingdom	3.7	4.9	4.5
Germany	1.8	1.6	1.7
Other Europe	4.3	2.3	2.9
Outside Europe	8.7	4.3	5.8
USA	6.6	3.0	4.2
Canada	1.4	0.8	1.0
Other	0.7	0.5	0.6
Total	100.0	100.0	100.0
Number of international migrants	2,057	4,223	6,280

Figure 14.5 Destination Countries of Emigrants

Tables 14.9.1 and 14.9.2 show the percent distribution of the prefectures and regions of origin and destination of internal migrants. These data show that majority of internal migrants have moved within the same prefecture and region. It is expected that these are mostly from rural or remote areas to urban and more developed areas. As expected, the percentage distributions by prefecture mirror the results found by district for the major districts.

Table 14.9 .1 shows that 33 percent of all internal migrants have moved to or within Tirana prefecture, 14 percent to or within Durres prefecture, 12 percent to or within Fier prefecture and 11 percent to or within Vlora prefecture. The percentage of migrants who have moved to other prefectures ranges from 1 percent moving to or within Kukes and Diber prefectures to 6 percent moving to or within Elbasan, Gjirokaster and Korca. Looking at the prefecture of origin, more than six in ten migrants from Kukes, Shkodra (68 percent, each) and Dibra (63 percent) prefectures have moved to Tirana or Durres prefectures. Internal migration within prefecture, i.e., prefecture of origin and prefecture of destination are the same, is highest for Durres (76 percent) and Tirana (87 percent) prefectures.

Table 14.9.1 Internal migration: origin and destination prefectures
Percent distribution of internal migrants by destination prefecture, according to origin prefecture, Albania 2008-09

Origin prefecture	Destination prefecture												Total	Number
	Berat	Diber	Durres	Elbasan	Fier	Gjirokaster	Korca	Kukes	Lezha	Shkoder	Tirana	Vlora		
Berat	44.5	0.0	3.4	5.5	7.1	2.4	0.3	0.0	0.0	0.0	27.4	9.3	100.0	257
Diber	0.0	26.1	13.4	0.7	0.5	1.2	0.0	0.7	1.9	3.3	49.3	2.8	100.0	111
Durres	0.6	1.3	76.0	2.0	1.5	0.0	0.4	0.2	1.2	0.5	15.6	0.8	100.0	366
Elbasan	1.7	0.0	4.5	47.6	6.4	0.1	7.2	0.4	0.5	0.0	29.2	2.4	100.0	229
Fier	3.7	0.0	1.5	3.8	50.9	0.2	0.8	1.1	0.0	0.0	27.8	10.2	100.0	480
Gjirokaster	0.0	0.0	2.7	0.0	4.9	57.3	0.3	0.0	0.6	0.0	28.2	6.1	100.0	263
Korca	0.6	0.0	2.4	7.2	1.0	0.7	60.4	0.0	0.0	0.0	27.4	0.4	100.0	248
Kukes	0.0	0.7	7.6	0.2	0.6	0.0	0.0	16.4	1.8	12.3	60.5	0.0	100.0	80
Lezha	0.0	0.8	15.0	0.6	1.5	0.0	0.0	0.7	50.8	9.8	19.3	1.5	100.0	144
Shkoder	(0.0)	(0.0)	(6.3)	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)	(32.0)	(61.7)	(0.0)	(100.0)	42
Tirana	0.3	0.7	6.7	1.5	1.7	0.0	1.0	0.3	0.0	0.3	86.5	1.0	100.0	252
Vlora	1.2	0.0	1.0	0.0	6.2	1.3	0.4	0.0	0.0	0.0	19.3	70.6	100.0	292
Total	5.2	1.4	13.8	6.2	11.7	6.0	6.4	0.8	3.0	1.6	32.6	11.3	100.0	2,765

Note: Figures in parentheses are based on 25-49 unweighted cases.

Table 14.9.2 shows that almost four in ten internal migrants (38 percent) have moved to or within the Coastal region, three in ten (30 percent) have moved to or within Tirana region, while more than one in four (27 percent) have moved to or within the Central region. Only 5 percent of migrants have moved to or within the Mountain region. It should be noted that while a large number of internal migrants move to the Coastal region, a significant number of residents of the region migrate abroad. This pattern of in- and out-migration in this region makes it important for the local government to pay special attention to the flow of the population in order to better address their social and other related services. Looking at region of origin, 40 percent of the internal migrants from the Mountain region, 30 percent from the Central region, and 21 percent from the Coastal region have moved to Tirana district. More than one in ten migrants from the Central, Mountain (13 percent, each) and Urban Tirana (10 percent) regions have migrated to the Coastal region.

Table 14.9.2 Internal migration: origin and destination regions						
Percent distribution of internal migrants by destination region, according to origin region, Albania 2008-09						
		Destin	on region			
Origin region	Coastal	Central	Mountain	Tirana district ${ }^{1}$	Total	Number
Coastal	70.4	7.9	0.8	20.9	100.0	1,232
Central	12.9	55.2	1.5	30.4	100.0	1,052
Mountain	13.0	16.3	30.8	40.0	100.0	327
Urban Tirana	9.8	2.8	1.1	86.4	100.0	153
Total	38.4	26.6	4.6	30.4	100.0	2,765
${ }^{1}$ Internal migration is reported by district and does not separate Urban Tirana from Rural Tirana (part of the Central region). Most migration to or within Tirana district is assumed to be to Urban Tirana.						

Table 14.8 above shows that 94 percent of all emigrants have moved to Europe, while 6 percent have moved outside of Europe. Within Europe, a large majority of emigrants have moved to nearby countries, such as Greece (50 percent), Italy (35 percent). Furthermore, 5 percent of emigrants have moved to the UK and 2 percent to Germany. Three percent of emigrants have moved to other European countries. Outside of Europe, 4 percent of emigrants have moved to the US and 1 percent have emigrated to Canada (Figure 14.6). A higher percentage of males than females have moved to Europe (96 percent versus 91 percent), while 9 percent of women have moved outside of Europe compared with 4 percent of men.

Table 14.10 further disaggregates emigrants by destination, according to sex and age. The data show that more than eight in ten emigrants (84 percent) were 15-34 years old, 60 percent were age 15-24 and 24 percent age 25-34. The age distribution of emigrants differs according to their destination. Sixty-two percent of emigrants to Europe were age 15-24, 23 percent were age 25-34, while 8 percent were age 35 or more. There are no major variations in these patterns by country within Europe. On the other hand, a much lower percentage (37 percent versus 62 percent) of emigrants to countries outside of Europe were age 15-24, while a much higher percentage (28 percent versus 8 percent) were age 35 or more. Specifically, more than one-third (34 percent) of emigrants to the US were age 35 or more, while 66 percent of emigrants to Canada were age 25 or above. Emigration to the US and Canada is based on an application process, with education being one of the main eligibility criteria. Individuals and families who emigrate outside of Europe, mainly to the US and Canada, tend to take a longer time to make the decision to emigrate, prepare better financially as the expenses to emigrate and settle are higher, and are usually well informed about the future opportunities in the hosting countries. This results in a relatively older age of emigration. On the other hand, expenses to travel and settle in neighbouring countries are not as high and the emigration laws not as strict. Emigrants to neighbouring countries and elsewhere in Europe sometimes emigrate without proper documentation, take greater risks, and take repeated opportunities to emigrate. These emigrants tend to be younger than those who emigrate outside of Europe to the US and Canada.

The observed patterns are similar between males and females, with the exception of Germany and countries outside of Europe where females tend to emigrate at younger ages ($15-24$ years old) when compared with males.
Table 14.10 Destination countries of emigrants by sex and age at time of emigration
Percent distribution of the emigrants by sex and age at the time of emigration, according to destination country, Albania 2008-09

Destination country	Females							Males							Total						
	$\begin{aligned} & \text { Age } \\ & <15 \end{aligned}$	$\begin{gathered} \hline \text { Age } \\ 15-24 \end{gathered}$	$\begin{gathered} \hline \text { Age } \\ 25-34 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Age } \\ 35+ \\ \hline \end{gathered}$	Age unknown	Total	Number	$\begin{gathered} \hline \text { Age } \\ <15 \end{gathered}$	$\begin{gathered} \hline \text { Age } \\ 15-24 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Age } \\ 25-34 \end{gathered}$	$\begin{aligned} & \text { Age } \\ & 35+ \\ & \hline \end{aligned}$	Age unknown	Total	Number	$\begin{gathered} \text { Age } \\ <15 \end{gathered}$	$\begin{gathered} \text { Age } \\ 15-24 \end{gathered}$	$\begin{gathered} \hline \text { Age } \\ 25-34 \end{gathered}$	$\begin{aligned} & \text { Age } \\ & 35+ \end{aligned}$	Age unknown	Total	Number
Europe	5.1	60.5	24.2	9.3	0.9	100.0	1,878	6.5	62.4	22.9	7.6	0.6	100.0	4,041	6.0	61.8	23.3	8.2	0.7	100.0	5,919
Greece	5.3	57.9	26.2	9.0	1.6	100.0	903	6.7	60.0	23.7	8.6	1.0	100.0	2,230	6.3	59.4	24.4	8.7	1.2	100.0	3,133
Italy	4.6	62.9	22.4	9.9	0.2	100.0	773	5.5	65.2	21.8	7.4	0.2	100.0	1,442	5.2	64.4	22.0	8.2	0.2	100.0	2,215
United																					
Kingdom	11.0	61.5	21.1	6.3	0.0	100.0	75	11.3	68.8	16.9	3.0	0.0	100.0	206	11.2	66.8	18.0	3.9	0.0	100.0	281
Germany	(2.3)	(78.6)	(16.4)	(2.0)	(0.6)	(100.0)	38	4.0	59.0	34.1	2.9	0.0	100.0	68	3.4	66.0	27.7	2.6	0.2	100.0	105
Other Europe	4.2	57.0	25.1	13.7	0.0	100.0	89	6.9	65.7	24.0	2.1	1.3	100.0	96	5.6	61.5	24.5	7.7	0.7	100.0	185
Outside Europe	5.6	40.7	32.8	20.9	0.0	100.0	179	3.6	32.4	28.2	35.4	0.5	100.0	182	4.6	36.5	30.5	28.2	0.2	100.0	361
USA	2.2	43.2	29.9	24.7	0.0	100.0	136	4.8	31.3	20.4	43.5	0.0	100.0	127	3.5	37.5	25.3	33.8	0.0	100.0	263
Canada	(12.2)	(29.8)	(51.4)	(6.6)	(0.0)	(100.0)	28	(0.0)	(27.8)	(51.3)	(20.9)	(0.0)	(100.0)	33	5.6	28.7	51.4	14.3	0.0	100.0	61
Other	*	*	*	*	*	*	15	*	*	*	*	*	*	21	(11.1)	(42.7)	(32.8)	(11.1)	(2.3)	(100.0)	37
Total	5.2	58.7	24.9	10.4	0.8	100.0	2,057	6.3	61.1	23.1	8.8	0.6	100.0	4,223	6.0	60.3	23.7	9.3	0.7	100.0	6,280

Table 14.11 shows percent distribution of emigrants by their district, prefecture and region of origin according to country of destination. In general, emigrants from districts of the Central and Mountain regions (61 percent, each) emigrate more to Greece, while emigrants from the Coastal region (47 percent) and Urban Tirana (33 percent) tend to emigrate more to Italy. For example, seven in ten or more emigrants from Gjirokaster, Saranda (94 percent, each), Librazhd (81 percent), Korca (80 percent), Pogradec (74 percent), and Berat (72 percent) have emigrated to Greece. On the other hand, 94 percent of emigrants from Kavaja district and 71 percent from Durres district have emigrated to Italy. A relatively high percentage of emigrants from Kruja (13 percent) and Kucova (15 percent) have emigrated to United Kingdom compared with emigrants from the other regions. The highest percentage of emigrants to the US are from Tirana and Korca districts (9 percent, each), followed by Pogradec (8 percent) and Shkoder (7 percent).

Table 14.11 Emigration: destination country according to origin district, prefecture and region										
Percent distribution of emigrants by destination country, according to origin district, prefecture, and region, Albania 2008-09										
	Destination country									
Origin district, prefecture and region	Greece	Italy	United Kingdom	Germany	Other Europe	USA	Canada	Other	Total	Number
Origin district										
Berat	71.9	15.8	5.3	0.6	1.9	4.0	0.3	0.2	100.0	259
Diber	52.8	35.6	4.7	0.7	5.9	0.4	0.0	0.0	100.0	115
Durres	18.7	70.9	4.0	0.8	2.3	2.3	0.2	0.6	100.0	427
Elbasan	63.8	30.7	0.8	0.3	1.8	0.3	0.8	1.5	100.0	451
Fier	59.4	27.9	2.8	1.4	2.2	5.4	0.4	0.5	100.0	499
Gjirokaster	93.8	0.0	1.2	0.0	2.5	1.2	1.2	0.0	100.0	111
Kavaja	3.6	93.5	0.5	0.4	1.3	0.3	0.4	0.0	100.0	250
Korca	79.9	3.3	1.1	0.0	4.6	8.5	1.4	1.2	100.0	295
Kruja	42.7	38.1	13.0	0.0	1.1	0.0	2.6	2.5	100.0	121
Kucova	64.3	16.4	15.0	0.0	1.0	1.9	1.4	0.0	100.0	161
Kurbin	40.8	45.9	2.1	2.7	3.0	5.5	0.0	0.0	100.0	104
Lezha	32.6	61.0	3.1	0.0	1.3	1.3	0.6	0.0	100.0	199
Librazhd	80.9	12.8	2.2	0.0	3.1	0.8	0.2	0.0	100.0	116
Lushnja	53.6	37.5	3.3	0.7	2.0	2.0	0.9	0.0	100.0	316
Peqin	44.6	55.4	0.0	0.0	0.0	0.0	0.0	0.0	100.0	118
Pogradec	74.4	10.3	1.1	1.8	1.4	8.4	0.9	1.8	100.0	128
Saranda	93.6	0.5	2.4	0.0	0.5	3.0	0.0	0.0	100.0	179
Shkoder	23.7	57.6	3.8	0.7	6.3	6.8	0.7	0.4	100.0	386
Tirana	30.4	33.2	8.7	8.7	5.5	9.1	3.0	1.5	100.0	840
Vlora	37.5	52.1	2.4	0.5	3.0	4.2	0.2	0.0	100.0	440
Other district	68.0	16.2	7.4	0.7	2.5	4.1	1.0	0.2	100.0	765
Origin prefecture										
Berat	67.3	16.5	10.0	0.4	1.7	3.3	0.7	0.1	100.0	443
Diber	60.1	30.7	4.8	0.5	3.5	0.5	0.0	0.0	100.0	259
Durres	24.0	63.7	6.0	0.7	2.0	1.8	0.7	1.1	100.0	548
Elbasan	64.8	30.6	0.8	0.2	1.6	0.4	0.5	1.0	100.0	736
Fier	59.4	30.0	2.9	1.0	2.2	3.7	0.5	0.3	100.0	900
Gjirokaster	93.1	2.8	0.5	0.0	1.5	1.5	0.5	0.0	100.0	268
Korca	77.2	5.6	2.0	0.4	3.0	9.2	1.4	1.1	100.0	506
Kukes	26.2	20.4	28.2	2.8	14.5	6.6	0.0	1.2	100.0	66
Lezha	35.4	55.8	2.8	0.9	1.8	2.8	0.4	0.0	100.0	303
Shkoder	22.9	54.4	6.6	1.1	5.6	7.2	1.9	0.3	100.0	473
Tirana	24.3	47.0	6.8	6.8	4.6	7.1	2.4	1.2	100.0	1,090
Vlora	57.7	33.6	2.2	0.3	2.2	3.8	0.1	0.0	100.0	687
Origin region										
Coastal	43.9	47.0	2.7	0.7	2.1	3.1	0.4	0.2	100.0	2,566
Central	60.6	26.3	4.7	0.4	2.4	3.9	1.0	0.8	100.0	2,613
Mountain	60.9	23.8	6.9	0.8	5.4	1.9	0.1	0.3	100.0	413
Urban Tirana	24.6	32.7	9.2	10.6	6.7	11.1	3.6	1.5	100.0	688
Total	49.9	35.3	4.5	1.7	2.9	4.2	1.0	0.6	100.0	6,280

14.8 Children of Migrants Left Behind

The 2008-09 ADHS collected data on whether children of migrants, internal or international, were left behind to be cared for by the former household. Table 14.12 shows the percent distribution of households with migrants age 15 and over by the number of children that migrants left behind. Data show that 12 percent of households with international migrants age 15 and over and 5 percent of households with internal migrants age 15 and over are caring for one or more children of migrants left behind. The higher percentage of households with international migrants who left children behind compared with internal migrants is in part due to the fact that emigration may have been illegal, especially during the 1991 and 1998 emigration peaks. The phenomenon of migrants leaving children behind is more common in rural areas than in urban areas, especially for international migrants. Fifteen percent of rural households care for children of emigrants compared with 7 percent of urban households.

Percent distribution of households from which internal or international migrants age 15 or older departed by number of children of migrants left behind, according to background characteristics, Albania 2008-09						
Background characteristic	Percentage of households caring for children of migrants, by number of children of migrants in household				Total	Number of households
	0 children	1 child	2 children	$3+$ children		
WITHIN ALBANIA						
Residence						
Urban	96.5	1.6	1.4	0.4	100.0	767
Rural	94.5	3.1	1.1	1.2	100.0	912
Region						
Coastal	93.9	3.4	1.6	1.1	100.0	748
Central	97.3	1.8	0.7	0.3	100.0	643
Mountain	93.0	2.3	2.3	2.3	100.0	177
Urban Tirana	99.2	0.0	0.8	0.0	100.0	111
Wealth quintile						
Lowest	94.7	2.8	0.8	1.8	100.0	305
Second	94.3	3.2	1.9	0.7	100.0	359
Middle	94.9	2.3	1.5	1.3	100.0	357
Fourth	95.5	2.9	1.1	0.6	100.0	395
Highest	98.6	0.7	0.7	0.0	100.0	263
Total	95.4	2.5	1.2	0.9	100.0	1,679
OUTSIDE ALBANIA						
Residence						
Urban	92.6	2.9	3.3	1.1	100.0	1,480
Rural	85.4	5.1	5.9	3.7	100.0	1,903
Region						
Coastal	86.9	5.3	4.8	3.0	100.0	1,228
Central	89.0	3.7	5.4	1.9	100.0	1,460
Mountain	79.9	5.0	7.4	7.8	100.0	250
Urban Tirana	96.5	2.0	1.1	0.4	100.0	445
Wealth quintile						
Lowest	84.9	4.7	5.5	4.8	100.0	604
Second	86.0	5.3	5.5	3.1	100.0	779
Middle	85.4	5.4	6.4	2.8	100.0	690
Fourth	90.8	3.5	4.1	1.6	100.0	706
Highest	96.3	1.5	1.9	0.3	100.0	604
Total	88.5	4.2	4.8	2.5	100.0	3,384

The highest percentage of households caring for children of migrants is in the Mountain region (7 percent of households care for children of internal migrants; 20 percent care for children of international migrants) and the Coastal region (6 percent care for children of internal migrants; 13 percent care for children of international migrants). Households in the highest wealth quintile are the least likely to report caring for children of internal migrants or international migrants (1 and 4 percent, respectively). Households in the lowest three wealth quintiles are somewhat more likely to care for
children of international migrants than households in the highest quintiles. The variation is not significant for households with internal migrants, but 15 percent of households of international migrants from the lowest quintile care for children of the migrants compared with 4 percent of households from the highest quintile. Rural households, households from the Mountain region and those from the lowest quintile are more likely to care for two or more children of migrants than other households.

Table 14.13 shows the percent distribution of migrants age 15 or older who left children behind either in the interviewed household or elsewhere in Albania by the number of children they left behind. One out of nine internal migrants (11 percent) or international migrants (12 percent) have left children behind. Eight percent of internal migrants and 7 percent of international migrants have left two or more children behind. There are no differences between urban and rural migrants in the percentage who reported leaving children behind.

Looking at regional differences, more than four in ten internal migrants from Urban Tirana region have left children behind, the majority one (18 percent) or two children (21 percent). This may be due to the better standard of living that the children may enjoy in Tirana compared to the region to which the migrant has moved. In other regions, the percentage of internal migrants who left children behind ranges from 3 percent in the Mountain region to 10 percent in the Coastal region. The percentage of international migrants who left children behind ranges from 10 percent in the Coastal region to 15 percent in Urban Tirana and the Mountain region.

Table 14.13 Characteristics of migrants who left children behind						
Percent distribution of migrants age 15 or older who left children behind in the interviewed households OR elsewhere in Albania, by number of children left behind, according to residence and region at the time of migration, Albania 2008-09						
Residence and region at time of migration	Percentage of migrants who left children behind, by number of children left behind				Total	Number
	0 children	1 child	2 children	$3+$ children		
WITHIN ALBANIA						
Residence at time of migration						
Urban	88.3	3.7	5.4	2.6	100.0	1,128
Rural	89.9	2.2	4.3	3.6	100.0	1,621
Region at time of migration						
Coastal	90.2	2.1	4.0	3.7	100.0	1,229
Central	90.7	1.8	4.4	3.1	100.0	1,043
Mountain	96.5	1.6	0.9	0.9	100.0	324
Urban Tirana	56.7	17.7	20.6	4.9	100.0	153
Total	89.2	2.8	4.8	3.2	100.0	2,749
OUTSIDE ALBANIA						
Residence at time of migration						
Urban	88.8	4.6	4.9	1.7	100.0	2,538
Rural	87.7	4.4	5.6	2.3	100.0	3,698
Region at time of migration						
Coastal	90.2	3.9	4.2	1.7	100.0	2,550
Central	87.5	4.3	6.2	2.0	100.0	2,591
Mountain	85.1	3.9	5.7	5.3	100.0	407
Urban Tirana	84.6	7.9	5.9	1.6	100.0	687
Total	88.1	4.5	5.3	2.0	100.0	6,236

Figures 14.6 and 14.7 show the age distribution of migrants' children living in the households interviewed. Figure 14.6 shows that, overall, there are roughly equal proportions of children of each age group left behind by internal migrants. However, the age distribution varies significantly by residence. The highest percentage of children left behind in urban areas are age 5-9 (36 percent), while the lowest percentage are age 15-17 (11 percent). In rural areas, on the other hand, the highest percentage of children left behind are age 15-17 (36 percent), while the lowest percentage are age 0-4 (18 percent).

Figure 14.6 Age Distribution of Migrants' Children Living in Households Interviewed: Internal Migrants

Figure 14.7 shows the age distribution of children left behind by international migrants. Children of international migrants from rural areas (29 percent) are almost twice as likely to be under the age of five as those from urban areas (17 percent), depriving children in their key development years of one or more of their parents.

Figure 14.7 Age Distribution of Migrants' Children Living in Households Interviewed: International Migrants

14.9 Money Or Goods Sent to Households by Migrants

As part of the Albanian family tradition, the majority of internal and international migrants preserve strong relationships with their families. The fact that 52 percent of Albanian households have at least a former member who has migrated within or outside Albania combined with the strong Albanian family ties suggests that there is strong possibility that migrants send money or goods (remittances) to support their former households. The World Bank reports that 65 percent of international migrants sent remittances to their former households in 2004. Remittances represented 14 percent of the total GDP in 2005 and have had an important impact on the poverty reduction in the country. It is estimated that for each additional year of temporary international migration, there is a 5 percent growth in the real per-capita consumption, and such growth is higher for permanent international migration (World Bank, 2007).

Table 14.14 shows the percentage of migrants age 15 and over who sent money or goods to their former household in the last 12 months by background characteristics. Seven percent of internal migrants age 15 and over sent remittances to their former household in the preceding year, 12 percent of males and 4 percent of females. The highest percentage of internal migrants who sent remittances is in the age groups, 35-39 (15 percent) and 40-44 (11 percent). The variation in the percentage of internal migrants who sent money or goods is much more pronounced among males than females. For example, 3 percent of male internal migrants age 15-19 sent remittances to their former households compared with 25 percent of those age 35-39.

Internal migrants who migrated to find work (24 percent) are more likely than others to send money or goods to their former households. There is no difference between internal migrants from urban and rural areas in their likelihood of sending remittances (8 percent and 7 percent, respectively), but there are some regional differences. The percentage of internal migrants who sent money or goods to their former households ranges from 3 percent in Urban Tirana to 9 percent in the Mountain region, the pattern being true and more significant among males (ranging from 10 percent in Urban Tirana to 18 percent in the Mountain region).

The highest percentage of internal migrants who sent remittances to their former households is among those with university or higher education (14 percent), while the lowest among those with no education or primary 4-year education (1 percent). The percentage of internal migrants that sent remittances increases steadily with education, probably because more highly educated migrants find better paying jobs and can contribute more financially to their former households. This pattern is true for both males and females. Interestingly, there is no clear relationship between proportion of internal migrants who sent money or goods to their former household and the wealth quintile of the former household, although among males the lowest percentage that sent remittances originated from households in the highest wealth quintile (9 percent) compared with those from other quintiles (12 to 16 percent).

Table 14.14 also shows the percentage of emigrants who sent money or goods to their former household in the last 12 months. Overall, 45 percent of international migrants sent remittances to their former household over the last 12 months, males (56 percent) being twice as likely as females (23 percent) to send remittances. Similar to internal migration, the highest percentage of emigrants who sent money or goods to their former households are in the 35-39 (52 percent) and 40-44 (51 percent) age groups. More than half (54 percent) of international migrants who emigrated for work reasons sent remittances to their former households, while the percentage of emigrants who sent remittances by other emigration reasons varies between 14 to 24 percent. A higher percentage of females from urban households (27 percent) sent remittances than females from rural households (20 percent), while no variation is seen for males.

Table 14.14 Money or goods sent by migrants to former households
Percentage of migrants age 15 or older who sent money or goods to their former household in the 12 months preceding the survey, by sex and background characteristics, Albania 2008-09

Background characteristic	Females		Males		Total	
	Percentage who sent money or goods to their former household	Number of migrants	Percentage who sent money or goods to their former household	Number of migrants	Percentage who sent money or goods to their former household	Number of migrants
WITHIN ALBANIA						
Current age ${ }^{1}$						
15-19	0.2	164	2.9	83	1.1	248
20-24	1.1	359	3.1	159	1.8	518
25-29	4.5	387	15.3	89	6.5	476
30-34	5.8	303	12.0	109	7.4	412
35-39	8.6	275	24.9	162	14.7	437
40-44	6.1	152	15.3	159	10.8	311
45-49	2.0	67	10.7	93	7.1	160
50+	1.6	80	9.2	104	5.9	185
Reason for migrating ${ }^{\mathbf{2}}$						
Work	20.7	59	24.4	294	23.8	353
Study	2.4	279	2.4	234	2.4	513
Accompany spouse/family	4.0	1,397	9.9	269	5.0	1,666
Marry foreigner	*	14	*	2	*	16
Other	0.5	41	9.6	157	7.7	198
Residence						
Urban	4.9	704	11.9	425	7.6	1,128
Rural	3.7	1,086	12.9	535	6.7	1,621
Region						
Coastal	5.2	805	13.2	423	7.9	1,229
Central	3.9	687	9.8	356	5.9	1,043
Mountain	3.1	197	18.4	128	9.1	324
Urban Tirana	0.0	101	9.6	53	3.3	153
Education						
No education/Primary						
4-year	1.3	36	1.2	32	1.3	67
Primary 8-year	2.0	836	10.4	328	4.4	1,164
Secondary, professional, technical	4.0	675	14.0	418	7.8	1,093
University+	13.1	236	14.5	183	13.7	419
Wealth quintile						
Lowest	1.3	374	13.3	192	5.4	566
Second	2.4	415	11.7	188	5.3	603
Middle	8.6	388	11.5	226	9.7	615
Fourth	3.7	398	15.8	199	7.7	597
Highest	5.7	215	9.4	154	7.2	368
Total	4.2	1,789	12.4	960	7.1	2,749
						Continued...

Background characteristic	Females		Males		Total	
	Percentage who sent money or goods to their former household	Number of migrants	Percentage who sent money or goods to their former household	Number of migrants	Percentage who sent money or goods to their former household	Number of migrants
OUTSIDE ALBANIA						
Current age ${ }^{1}$						
15-19	5.4	65	31.3	238	25.8	303
20-24	14.3	367	54.2	709	40.6	1,076
25-29	21.9	494	58.3	934	45.7	1,427
30-34	23.2	418	55.9	802	44.7	1,220
35-39	31.9	279	61.0	626	52.0	904
40-44	32.4	205	60.0	434	51.1	639
45-49	29.2	92	54.1	286	48.1	378
50+	29.4	107	55.2	166	45.0	273
Reason for migrating ${ }^{2}$						
Work	29.8	533	57.4	3,975	54.2	4,507
Study	8.7	122	19.7	126	14.3	248
Accompany spouse/family	23.2	1,246	(50.3)	27	23.8	1,273
Marry foreigner	(13.8)	45	*	7	(19.8)	52
Other	11.5	89	29.3	62	18.8	151
Residence						
Urban	27.2	998	54.1	1,539	43.5	2,538
Rural	19.6	1,037	56.7	2,661	46.3	3,698
Region						
Coastal	23.3	884	53.3	1,667	42.9	2,550
Central	23.0	798	56.0	1,793	45.8	2,591
Mountain	14.2	83	59.4	324	50.2	407
Urban Tirana	27.3	270	62.1	417	48.4	687
Education						
No education/Primary						
4-year	10.5	41	34.0	81	26.1	122
Primary 8-year	17.2	847	54.8	2,228	44.5	3,075
Secondary, professional, technical	27.6	849	58.3	1,706	48.1	2,555
University+	31.4	288	53.0	181	39.7	470
Wealth quintile						
Lowest	17.9	297	52.7	861	43.7	1,158
Second	17.2	438	56.7	1,070	45.2	1,507
Middle	23.5	406	58.8	915	47.9	1,321
Fourth	27.4	459	53.5	813	44.1	1,272
Highest	28.8	436	57.2	542	44.6	978
Total	23.4	2,035	55.8	4,201	45.2	6,236
Note: Figures in parentheses are based on 25-49 unweighted cases. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed. ${ }^{1}$ Total includes 16 cases (1 internal migrant, 15 international migrants) with age missing. ${ }^{2}$ Total includes 8 cases (4 internal migrants, 4 international migrants) with reason for migrating missing.						

Overall, the Mountain region and Urban Tirana have the highest percentage of emigrants that sent remittances to the household of origin over the last year (50 percent and 48 percent, respectively, compared with 43 and 46 percent in the Coastal and Central regions). It should be noted that, even though Urban Tirana and the Mountain region are quite different in terms of economic and social development, they are similar in the proportion of emigrants sending remittances. The decrease in the level of poverty in the Mountain region from 45 percent in 2002 to 27 percent in 2008 (INSTAT, UNDP, World Bank, 2009) can be attributed in part to the incoming remittances from emigrants.

More than half of male emigrants with primary 8 -year education or higher send money or goods to their former households, while only one in three male emigrants with no education or primary 4 -year education send remittances. In contrast, for females, the percentage that sent remittances over the last year increases steadily with education from 11 percent of females with no education or primary 4-year education to 31 percent of those with university or higher education. There are no major differences according to wealth quintile in the percentage of male international migrants who sent money or goods, but for females the percentage that sent remittances increases steadily from 18 percent among female emigrants from the lowest quintile to 29 percent among those in the highest quintile.

14.10 Short-term Emigration

The 2008-09 ADHS collected data on returned emigrants, defined as 'household members who lived outside of Albania for six months or more and returned.' Overall, 9 percent of household members lived outside of Albania for six months or more and returned to Albania. The percentage of household members who have migrated short-term and returned increases with age to a peak in the 30-34 age group (21 percent) and then declines, reflecting the increased opportunities to migrate in recent years. Short-term emigration is more than three times higher among males than females (14 percent compared with 4 percent). The majority of returned emigrants are either heads of household (16 percent) or brother or sister of the head of the household (14 percent).

Short-term emigration is only slightly higher in urban areas (10 percent) than in rural areas (8 percent), and it ranges from 6 percent in the Mountain region to 11 percent in the Coastal region. Short-term emigration is highest among household members with secondary, professional (13 percent) and university or higher education (11 percent), and lowest among members with no education or primary 4 -year education (3 percent). The percentage of household members who lived abroad for six or more months and returned is lowest for members of households in the lowest wealth quintile (6 percent) and highest for members of households in the highest wealth quintile

Percentage of de jure household members who lived outside of Albania for six months or more and returned (short-term emigrants), by background characteristics, Albania 2008-09		
Background characteristic	Percentage of de jure household members who lived outside Albania for 6 months or more and returned	Number of de jure household members
Current age		
<15	1.7	7,063
15-19	3.6	2,938
20-24	9.4	1,921
25-29	16.6	1,494
30-34	20.9	1,472
35-39	17.3	1,909
40-44	14.9	2,257
45-49	13.1	2,251
50+	8.1	9,198
Don't know	*	19
Sex		
Male	14.3	14,682
Female	3.6	15,839
Relationship to current head of household		
Head of household	16.4	7,971
Spouse/partner	4.6	6,416
Father/mother	1.7	816
Son/daughter	8.2	11,164
Brother/sister	13.8	148
Son-in-law/daughter-in-law	3.5	1,344
Nephew/niece	6.8	65
Other relative	2.6	2,562
Other non-relative	(6.3)	34
Current residence		
Urban	9.6	13,710
Rural	8.1	16,812
Current region		
Coastal	10.5	8,642
Central	8.4	14,062
Mountain	5.6	3,052
Urban Tirana	8.7	4,766
Education		
No education/Primary 4-year	2.9	6,134
Primary 8-year	9.8	11,750
Secondary, professional, technical	12.6	8,025
University+	11.1	2,615
Wealth quintile of current household		
Lowest	6.4	6,116
Second	8.8	6,107
Middle	8.7	6,106
Fourth	8.6	6,095
Highest	11.2	6,098
Total	8.7	30,522

Note: Figures in parentheses are based on 25-49 unweighted cases. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.

WOMEN'S EMPOWERMENT AND DEMOGRAPHIC AND HEALTH OUTCOMES

Abstract

Women's status and empowerment in society takes on a special significance in conjunction with demographic and health outcomes. As the primary caretakers for children, women are the target of a many population, health, and nutrition programmes. However, the constraints faced by women in accessing and utilizing these and other maternal and child health programmes are inherently tied to their status in society as well as in the home.

The 2008-09 ADHS Women's Questionnaire collected information on the general background characteristics of female respondents (e.g., age, education, household wealth status, employment status) but also information specific to women's empowerment, such as receipt of cash earnings, the magnitude of women's earnings relative to those of their husband or partner, ${ }^{1}$ and women's control over the use of their own earnings and those of their husband or partner. The 2008-09 ADHS Women's Questionnaire also collected information on women's participation in household decisionmaking, the circumstances under which women think a wife is justified in refusing to have sexual intercourse with her husband or partner, and women's attitudes towards wife beating.

In addition to background questions about their employment, men interviewed in the survey were asked about their attitudes towards wives participating in specific household decisions, wife beating, and whether a wife is justified in refusing to have sexual intercourse with her husband under certain circumstances. Additionally, married men who receive cash earnings were asked who decides how their cash earnings are used.

In the last part of the chapter, three indicators of women's empowerment are presented based on the results from the 2008-09 ADHS. The three indices of empowerment are: 1) the number of household decisions in which women participate, 2) women's opinion on the number of circumstances under which a woman is justified in refusing to have sexual intercourse with her husband or partner, and 3) women's opinion on the number of reasons that justify wife beating. The ranking of women on these three indices is then related to select demographic and health outcomes including contraceptive use, ideal family size, unmet need for contraception, and reproductive health care.

15.1 Employment and Cash Earnings

In the 2008-09 ADHS, respondents were asked a number of questions to determine their employment status at the time of the survey and continuity of employment in the 12 months prior to the survey. They were also asked about the form of payment for their work. Table 15.1 shows the percentage of currently married women age 15-49 and currently married men age 15-49 who were employed at any time during the 12 months preceding the survey and the percent distribution of those employed during that time by the type of earnings they received (cash, in-kind, or both).

Forty-three percent of currently married women were employed in the 12 months preceding the survey ${ }^{2}$. Younger women, especially those age 15-19 and 20-24, were less likely to be employed

[^32]than women in older age groups, possibly because they were in school or in training, rather than being in the job market. As women get older, the likelihood of being employed increases from 9 percent among women age 15-19 to about half (49 percent) of women age 35 and above. More than half (57 percent) of women who were employed in the 12 months preceding the survey received cash only for their work, while 32 percent did not receive any payment; 4 percent of women received cash and inkind earnings for their work, while 7 percent received in-kind payment only.

The proportion of currently married men age 15-49 employed in the 12 months preceding the survey is twice that of women (93 percent among men compared with 43 percent among women). Employment among men does not vary much by age. About three in four men (74 percent) who were employed in the past 12 months received only cash for their work, while 18 percent did not receive any payment at all; 4 percent received cash and in-kind earnings, and 4 percent received in-kind payment only for their work.

Table 15.1 Employment and cash earnings of currently married women and men
Percentage of currently married women and men age 15-49 who were employed at any time in the past 12 months and the percent distribution of currently married women and men employed in the past 12 months by type of earnings, according to age, Albania 2008-09

Age	Currently married respondents			Percent distribution of currently married respondents employed in the past 12 months, by type of earnings				
	Percentage employed in past 12 months		Cash only	Cash and in-kind	In-kind only	Not paid	Total	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { respondents } \\ \hline \end{gathered}$
WOMEN								
15-19	8.7	110	*	*	*	*	*	10
20-24	16.0	358	54.1	6.9	6.1	32.9	100.0	57
25-29	33.5	599	64.6	1.3	8.3	25.9	100.0	200
30-34	42.3	766	53.5	4.3	7.0	35.1	100.0	324
35-39	49.4	1,022	58.9	3.3	7.0	30.8	100.0	505
40-44	49.3	1,155	53.7	4.7	8.0	33.5	100.0	570
45-49	48.8	993	58.0	1.9	7.1	33.1	100.0	484
Total	43.0	5,001	56.8	3.5	7.3	32.4	100.0	2,150
MEN								
15-19	*	6	*	*	*	*	*	6
20-24	(83.1)	30	*	*	*	*	*	25
25-29	92.6	113	75.1	3.9	3.0	18.0	100.0	104
30-34	93.5	212	74.9	4.2	2.8	18.1	100.0	198
35-39	95.2	341	75.9	1.8	3.4	18.8	100.0	325
40-44	92.8	481	72.8	4.5	5.2	17.5	100.0	446
45-49	93.2	520	73.5	4.2	5.2	17.1	100.0	485
Total	93.4	1,703	73.9	4.0	4.3	17.7	100.0	1,590

Note: Figures in parentheses are based on 25-49 unweighted cases. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.

15.2 Use of Earnings

The 2008-09 ADHS included a number of questions that were intended to assess the magnitude of women's earnings relative to those of their husband, women's control over the use of their earnings, and women's participation in decisions on how their husband's earnings are used. This information has implications for the empowerment of women. Employment and earnings are more likely to empower women if their earnings are perceived as significant relative to those of their husband and if women themselves control their earnings. Women are also empowered if they have a voice in how their husbands' earnings are spent.

Table 15.2.1 shows how women's control over their own earnings and their perception of the magnitude of their earnings relative to those of their husband or partner varies by background characteristics. More than eight in ten (83 percent) married women who receive cash earnings decide jointly with their husband or partner how to use the money, 8 percent decide mainly themselves, and for 9 percent of women, it is the husband who mainly decides how the woman's earnings are used.

There is no clear pattern on the use of women's cash earnings by age. However, women with children, women in urban areas, better educated women, and women in the higher wealth quintiles are more likely to decide mainly themselves how their earnings are used, compared with other women.

Table 15.2.1 shows that more than half of married women (52 percent) reported that they earn less cash than their husband or partner, almost one-third (30 percent) earn the same amount, and 11 percent reported earning more cash than their husband or partner.

Table 15.2.1 Control over women's cash earnings and relative magnitude of women's earnings: Women

Percent distribution of currently married women age 15-49 who received cash earnings for employment in the 12 months preceding the survey by person who decides how wife's cash earnings are used and by whether she earned more or less than her husband, according to background characteristics, Albania 2008-09

Background characteristic	Person who decides how the wife's cash earnings are used					Women's cash earnings compared with husband's cash earnings					Total	Number of women
	Mainly wife	Wife and husband jointly	Mainly husband	Other	Total	More	Less	About the same	Husband/ partner has no earnings	Don't know		
Age												
15-19	*	*	*	*	*	*	*	*	*	*	*	5
20-24	(20.4)	(50.6)	(19.8)	(9.2)	(100.0)	(7.2)	(47.9)	(24.4)	(11.1)	(9.4)	(100.0)	35
25-29	10.8	79.3	7.5	2.5	100.0	8.8	55.7	31.7	3.3	0.5	100.0	132
30-34	7.6	84.6	7.0	0.7	100.0	9.1	61.8	19.7	8.0	1.4	100.0	187
35-39	7.9	80.4	9.8	1.9	100.0	11.8	51.3	29.1	7.5	0.2	100.0	314
40-44	6.2	88.1	5.3	0.5	100.0	9.6	49.3	33.2	6.5	1.4	100.0	333
45-49	6.0	82.7	11.3	0.0	100.0	14.8	46.7	31.9	6.6	0.0	100.0	290
Number of living children												
0	21.3	73.1	1.0	4.6	100.0	8.1	46.0	36.5	3.3	6.0	100.0	85
1-2	6.9	84.8	7.1	1.2	100.0	10.8	52.1	29.7	6.7	0.7	100.0	852
3-4	6.3	79.9	13.1	0.8	100.0	11.9	52.1	27.9	7.8	0.3	100.0	344
5+	*	*	*	*	*	*	*	*	*	*	*	15
Residence												
Urban	8.2	82.5	8.1	1.2	100.0	11.3	50.2	31.5	6.0	1.0	100.0	977
Rural	5.8	82.8	9.9	1.5	100.0	10.4	56.1	23.9	9.1	0.5	100.0	319
Region												
Coastal	6.9	80.0	12.3	0.9	100.0	10.1	53.1	31.7	4.1	1.1	100.0	392
Central	8.3	85.4	5.0	1.4	100.0	14.6	57.9	19.8	7.0	0.7	100.0	475
Mountain	5.6	83.4	8.8	2.2	100.0	15.3	46.9	27.4	8.9	1.4	100.0	60
Urban Tirana	7.8	81.5	9.1	1.6	100.0	6.9	42.8	40.4	9.0	0.9	100.0	368
Education												
No education/												
Primary 4-year	*	${ }^{*}{ }^{\text {a }}$	*	*	${ }^{*}$	${ }^{*}$	*	*	*	*	${ }^{*}$	4
Primary 8-year	4.0	77.5	15.9	2.6	100.0	12.8	53.8	23.6	9.5	0.3	100.0	323
Secondary, professional, technical	8.7	82.2	8.1	1.1	100.0	12.6	51.4	28.5	6.7	0.8	100.0	593
University+	9.1	87.8	2.7	0.4	100.0	7.2	50.4	36.4	4.2	1.7	100.0	375
Wealth quintile												
Lowest	3.1	65.1	25.3	6.5	100.0	12.9	46.6	18.0	21.7	0.8	100.0	55
Second	2.3	90.0	6.4	1.3	100.0	11.2	58.0	25.0	5.8	0.0	100.0	100
Middle	8.8	79.8	9.4	2.0	100.0	9.8	55.2	25.0	9.3	0.7	100.0	222
Fourth	8.5	81.7	8.5	1.2	100.0	14.5	51.2	26.4	6.2	1.7	100.0	372
Highest	7.9	84.6	6.9	0.5	100.0	9.1	49.9	35.7	4.8	0.6	100.0	546
Total	7.6	82.5	8.6	1.3	100.0	11.1	51.7	29.6	6.8	0.9	100.0	1,296

Note: Figures in parentheses are based on 25-49 unweighted cases. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.

Table 15.2.2 looks at control over men's cash earnings from the perspective of the man and the woman. Among married men receiving cash earnings, about half (50 percent) decide jointly with their wife or partner how their earnings are used, 45 percent decide mainly themselves, and 5 percent said that their wife or partner mainly decides how his cash earnings are used. The man's age and number of living children has little bearing on who decides how his earnings are used. However, men in urban areas, men in the Mountain region, and those with more than secondary education are more likely than other men to decide jointly with their wife how their earnings are used.

Among married women reporting that their husband or partner had cash earnings in the past year, 69 percent reported that they and their husband decide jointly how the husband's earnings are used, 23 percent said that mainly the husband decides how his cash earnings are used, while 3 percent reported that mainly the woman decides how the husband's cash earnings are used. There are some notable differences across subgroups in women's responses regarding who controls the husband's earnings. In general, older women, women in the urban areas and in Urban Tirana, women who have university or higher education, and women in the higher wealth quintiles are more likely than other women to say that they participate in the decision on how the husband's cash earnings are used and less likely to say that their husband mainly decides himself on the allocation of his earnings.

Table 15.2.2 Control over men's cash earnings
Percent distribution of currently married men age 15-49 who receive cash earnings and percent distribution of currently married women age 15-49 whose husbands receive cash earnings, by person who decides how men's cash earnings are used, according to background characteristics, Albania 2008-09

Background characteristic	Men						Women					
	Mainly wife	Husband and wife jointly	Mainly husband	Other	Total	Number of men	Mainly wife	Husband and wife jointly	Mainly husband	Other	Total	Number of women
Age												
15-19	*	*	*	*	*	3	1.4	50.1	26.5	22.0	100.0	105
20-24	*	*	*	*	*	23	3.8	44.0	32.6	19.6	100.0	349
25-29	6.9	42.4	46.3	4.4	100.0	82	3.8	65.5	20.8	9.9	100.0	585
30-34	5.7	43.0	50.1	1.3	100.0	157	2.0	69.7	23.5	4.8	100.0	736
35-39	3.2	52.3	44.6	0.0	100.0	252	2.5	72.6	23.8	1.1	100.0	973
40-44	3.4	53.7	42.9	0.0	100.0	345	3.2	74.4	21.1	1.3	100.0	1,122
45-49	6.4	50.2	43.3	0.0	100.0	377	3.1	73.8	22.8	0.4	100.0	947
Number of living children												
0	4.5	46.2	47.9	1.4	100.0	91	3.8	55.0	28.0	13.1	100.0	348
1-2	4.3	52.7	42.3	0.6	100.0	703	3.1	71.8	19.7	5.4	100.0	2,586
3-4	5.2	44.9	49.8	0.0	100.0	410	2.5	70.5	25.4	1.6	100.0	1,688
5+	(12.4)	(47.7)	(39.9)	(0.0)	(100.0)	35	2.8	52.9	43.6	0.7	100.0	195
Residence												
Urban	4.0	51.6	44.2	0.2	100.0	647	3.3	77.4	16.5	2.8	100.0	2,050
Rural	5.8	47.3	46.2	0.7	100.0	592	2.6	63.4	28.3	5.7	100.0	2,767
Region												
Coastal	6.5	49.9	43.3	0.3	100.0	359	3.4	67.8	24.5	4.3	100.0	1,417
Central	5.0	44.5	49.9	0.6	100.0	557	2.7	68.5	24.2	4.6	100.0	2,299
Mountain	5.0	66.3	27.5	1.2	100.0	91	3.1	66.9	23.3	6.7	100.0	455
Urban Tirana	2.0	54.5	43.5	0.0	100.0	232	2.8	77.7	17.1	2.5	100.0	647
Education												
No education/												
Primary 4-year	*	*	*	*	*	18	2.0	40.7	39.4	17.9	100.0	77
Primary 8-year Secondary, professional, technical	4.5	42.5	52.5	0.5	100.0	469	2.7	61.2	30.1	6.0	100.0	2,649
	5.4	50.4	43.8	0.5	100.0	583	3.2	78.7	16.0	2.0	100.0	1,619
University+	3.9	67.5	28.3	0.4	100.0	169	3.3	87.9	7.2	1.6	100.0	472
Wealth quintile												
Lowest	8.4	37.0	53.8	0.8	100.0	134	3.2	55.4	35.0	6.4	100.0	931
Second	7.7	52.7	39.2	0.4	100.0	206	2.2	62.3	28.2	7.3	100.0	996
Middle	4.5	46.3	48.4	0.8	100.0	287	2.5	71.0	22.7	3.7	100.0	1,031
Fourth	3.5	50.0	46.5	0.0	100.0	309	3.8	74.8	18.4	3.0	100.0	917
Highest	3.1	55.6	40.9	0.4	100.0	303	2.9	83.6	11.8	1.7	100.0	942
Total	4.9	49.5	45.1	0.5	100.0	1,239	2.9	69.4	23.3	4.4	100.0	4,817

Note: Figures in parentheses are based on 25-49 unweighted cases. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.

Table 15.3 shows, for currently married women who received cash earnings in the 12 months preceding the survey, the person who decides how their cash earnings are used, and for all currently married women whose husbands received cash earnings in the 12 months preceding the survey, the person who decides how their husband's cash earnings are used, according to the relative magnitude of the woman's cash earnings compared with those of her husband or partner. Overall, the majority of women (83 percent) reported that decisions about how their earnings or their husband's earnings are used are made jointly. As expected, however, women are more likely to decide mainly themselves how their cash earnings are used if they earn more than their husband or partner (12 percent, compared with 3 percent if her cash earnings are the same as those of her husband or partner).

Table 15.3 Women's control over her own earnings and over those of her husband
Percent distribution of currently married women age 15-49 with cash earnings in the past 12 months by person who decides how the woman's cash earnings are used and percent distribution of currently married women age 15-49 whose husbands have cash earnings by person who decides how the husband's cash earnings are used, according to woman's cash earnings relative to husband's cash earnings, Albania 2008-09

Women's earnings relative to husband's earnings	Person who decides how the wife's cash earnings are used						Person who decides how husband's cash earnings are used					
	Mainly wife	Wife and husband jointly	Mainly husband	Other	Total		Mainly wife	Wife and husband jointly	Mainly husband	Other	Total	
More than husband/partner	11.8	82.0	5.0	1.2	100.0	143	5.7	86.1	7.1	1.1	100.0	135
Less than husband/partner	9.1	78.6	11.0	1.3	100.0	669	3.1	80.4	14.7	1.8	100.0	667
Same as husband/partner	3.1	89.2	6.6	1.1	100.0	384	1.9	90.2	7.1	0.8	100.0	378
Husband/partner has no cash earnings/ did not work	3.6	91.0	5.2	0.2	100.0	87	na	na	na	na	na	na
Woman has no cash earnings	na	na	na	na	na	na	1.9	70.7	24.5	3.0	100.0	834
Woman did not work in past 12 months	na	na	na	na	na	na	3.1	62.8	27.9	6.1	100.0	2,791
Total ${ }^{1}$	7.6	82.5	8.6	1.3	100.0	1,296	2.9	69.4	23.3	4.4	100.0	4,817

Note: Figures in parentheses are based on 25-49 unweighted cases. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
na $=$ not applicable
${ }^{1}$ Excludes cases in which the woman or her husband/partner has no earnings, and includes 12 cases in which the woman does not know whether she earned more or less than her husband/partner

15.3 Household Decision-making

To assess women's decision-making autonomy, information was collected in the 2008-09 ADHS on women's participation in four types of decisions that directly affect their lives: respondent's own health care, making major household purchases, making household purchases for daily needs, and visits to family friends or relatives. The ability of women to make decisions that affect the circumstances of their own lives is an essential aspect of empowerment.

Table 15.4.1 shows the percent distribution of currently married women by the person in the household who usually makes decisions regarding the four specified decisions. In general, most decisions are made jointly by the couple themselves. Two in three women (66 percent) say they make decisions about their health care jointly with their husband or partner and 61 percent participate jointly in decisions about major household purchases. Fifty-seven percent of married women say they mainly make decisions about daily household purchases, while 63 percent decide jointly with their husband about visits to family or relatives.

Table 15.4.1 Women's participation in decision-making
Percent distribution of currently married women age 15-49 by person who usually makes decisions about four types of issues, Albania 2008-09

Decision	Mainly wife	Wife and husband jointly	Mainly husband	$\begin{gathered} \text { Someone } \\ \text { else } \end{gathered}$	Other	Total	Number of women
Own health care	19.0	65.6	13.3	1.5	0.6	100.0	5,001
Major household purchases	5.6	61.0	25.7	6.1	1.7	100.0	5,001
Purchases of daily household needs	56.5	25.2	9.2	7.9	1.1	100.0	5,001
Visits to her family or relatives	16.7	63.4	14.9	4.1	0.9	100.0	5,001

Women may have a say in some decisions but not in others. To assess a woman's overall decision-making autonomy, the decisions in which she participates-that is, in which she alone has the final say or does so jointly with her husband or partner-are added together. The total number of decisions in which a woman participates is one simple measure of her empowerment. The number of decisions in which a woman jointly with her husband or partner has the final say is positively related to women's empowerment and reflects the degree of decision-making control women are able to exercise in areas that affect their lives and environments. Figure 15.1 shows the distribution of currently married women according to the number of decisions in which they participate. More than half (56 percent) of women said they participate in all decision-making in their household; at the same time, 6 percent of women said they have no say in any household decision-making.

Figure 15.1 Number of Household Decisions in Which Currently Married Women Participate

15.4 Men's Attitudes about Household Decision-making

The 2008-09 ADHS asked currently married men who they think should have a greater say in making decisions about five specific issues: making major household purchases, making household purchases for daily needs, visits to the wife's family or relatives, what to do with the money the wife earns, and how many children to have. Table 15.4.2 shows that the results on men's attitudes generally confirm those of their wives regarding participation in decision-making in the home.

Married men feel strongly (86 percent) that the wife and husband should have equal say in the decision how many children to have. The majority of men also think that decisions about visits to the wife's family or relatives (67 percent) and allocation of the wife's cash earnings (68 percent) should be made jointly by the wife and husband. On the other hand, 44 percent of married men said that the wife should have greater say in making purchases of daily household needs, while 36 percent said that the decision should be made jointly. On major household purchases, 46 percent of married men said that the husband should have a greater say, although half (50 percent) of men think that the decision should be made jointly by husband and wife.

Percent distribution of currently married men age $15-49$ by person they think should have a greater say in making decisions about five types of issues, Albania 2008-09						
Decision	Wife	Wife and husband equally	Husband	Don't know/ depends	Total	Number of men
Major household purchases	3.2	50.0	45.9	1.0	100.0	1,703
Purchases of daily household needs	44.2	35.5	17.2	3.0	100.0	1,703
Visits to wife's family or relatives	12.3	66.7	17.5	3.4	100.0	1,703
What to do with the money wife earns	9.2	67.6	17.3	5.9	100.0	1,703
How many children to have	0.9	86.0	11.8	1.3	100.0	1,703

Table 15.5 .1 shows how women's participation in decision-making varies by background characteristics. There is a strong correlation between age and decision-making. For example, the percentage of women participating in all four decisions increases from 16 percent among women age 15-19 to 60 percent among women age 45-49. Women who are employed for cash are the most likely to participate in all four decisions. The likelihood that a married woman is involved in all decisions is highest among women with 1-2 and 3-4 living children. Women in urban areas are more likely than those in rural areas to have a say in all of the decisions. Looking at regional variation, the proportion of currently married women participating in all decisions is highest in Urban Tirana (75 percent), compared with 50 to 54 percent in other regions. The proportion of women who participate in decision-making increases with level of education. Twenty-five percent of women with no education or primary 4 -year education participate in all specified decisions, compared with 74 percent of women with university or higher education. The proportion of currently married women who participate in all four decisions increases with wealth quintile, from 38 percent among women in lowest quintile to 75 percent among women in highest quintile.

Table 15.5.2 shows how men's attitude toward women's participation in five decisions varies by background characteristics. Only 42 percent of men think that women should have the greater say alone or equal say with their husband in all five decisions. However, only 7 percent of men think that women should not participate in any of the decisions.

Older men, those who are employed for cash, men with fewer living children, and men in urban areas are more likely than other men to think that the wife should participate in decisionmaking regarding all five decisions. Men in the Central region are the least likely to think that wives should be involved in making all five decisions. There is a strong positive relationship between a man's education or wealth status and his views on wives' participation in decision-making.

Table 15.5.1 Women's participation in decision-making by background characteristics
Percentage of currently married women age 15-49 who usually make specific decisions either by themselves or jointly with their husband, by background characteristics, Albania 2008-09

Background characteristic	Decision				Percentage who participate in all four decisions	Percentage who participate in none of the four decisions	Number of women
	Own health care	Making major household purchases	Making purchases for daily household needs	Visits to her family or relatives			
Age							
15-19	71.2	27.5	40.6	53.1	15.6	19.8	110
20-24	75.3	38.5	47.9	59.6	27.0	15.4	358
25-29	85.1	62.8	73.3	78.2	50.4	8.4	599
30-34	83.4	67.6	82.7	79.1	57.9	6.5	766
35-39	84.9	71.4	86.8	82.0	61.2	5.0	1,022
40-44	86.5	73.1	89.8	84.8	62.4	3.7	1,155
45-49	87.5	70.0	88.2	84.9	59.9	4.1	993
Employment (past 12 months)							
Not employed	82.5	61.0	76.6	77.4	51.0	8.4	2,852
Employed for cash	94.3	80.4	90.4	92.4	73.2	1.8	1,296
Employed not for cash	76.6	64.2	85.7	70.5	46.4	5.6	854
Number of living children							
0	78.3	48.5	54.8	69.2	35.3	12.3	361
1-2	86.8	69.7	83.0	82.6	60.2	5.3	2,680
3-4	84.0	67.1	86.0	80.4	55.8	6.1	1,754
5+	71.8	53.2	75.5	64.2	39.0	8.9	207
Residence							
Urban	92.5	75.4	87.5	89.5	68.0	2.9	2,145
Rural	78.7	60.0	77.4	73.0	47.0	8.7	2,856
Region							
Coastal	86.5	63.5	78.7	79.9	53.0	5.8	1,450
Central	81.5	65.1	82.2	79.2	53.6	6.6	2,383
Mountain	79.0	63.6	75.5	71.7	50.4	11.3	482
Urban Tirana	95.3	80.4	90.7	89.5	74.5	2.4	686
Education							
No education/Primary 4-year	63.7	38.9	58.1	47.8	25.3	27.6	81
Primary 8-year	79.3	58.1	76.8	73.7	46.0	8.3	2,746
Secondary, professional, technical	91.0	77.3	89.3	87.7	68.5	3.2	1,681
University+	95.6	81.9	87.2	94.7	73.6	1.2	493
Wealth quintile							
Lowest	71.8	51.5	72.3	64.4	37.5	13.7	987
Second	79.4	59.0	76.3	71.6	45.2	8.1	1,011
Middle	86.2	67.8	82.6	83.5	56.9	3.9	1,066
Fourth	91.0	73.1	87.4	87.9	65.5	3.2	963
Highest	94.8	81.9	90.4	93.3	75.4	2.2	975
Total	84.6	66.6	81.7	80.1	56.0	6.2	5,001

Percentage of currently married men age 15-49 who think a wife should have the greater say alone or equal say with her husband in five types of decisions, by background characteristics, Albania 2008-09								
	Decision					All five decisions	None of the five decisions	Number of men
Background characteristic	Making major household purchases	Making purchases for daily household needs	Visits to her family or relatives	What to do with the money the wife earns	How many children to have			
Age								
15-19	*	*	*	*	*	*	*	6
20-24	(72.1)	(76.5)	(81.1)	(74.8)	(84.8)	(44.4)	(0.8)	30
25-29	51.3	77.1	79.4	72.7	83.8	37.2	10.3	113
30-34	44.0	78.2	77.4	78.2	83.9	37.9	8.1	212
35-39	53.7	78.4	73.8	72.7	83.8	40.0	9.2	341
40-44	53.8	81.1	79.4	76.1	89.3	42.4	5.1	481
45-49	55.7	81.2	82.4	80.6	88.7	46.5	6.4	520
Employment (past 12 months)								
Not employed	45.9	77.4	79.6	81.2	86.0	34.7	4.2	113
Employed for cash	54.9	81.7	80.8	78.4	88.2	45.1	6.6	1,239
Employed not for cash	49.4	73.4	72.6	69.6	82.6	34.3	9.2	351
Number of living children								
0	60.2	85.4	89.5	79.7	92.8	49.9	3.5	117
1-2	56.2	82.3	81.8	81.8	89.9	44.9	5.0	946
3-4	47.2	76.0	74.9	70.1	82.4	37.1	9.4	571
5+	48.7	65.0	58.5	58.0	72.7	35.2	18.7	69
Residence								
Urban	56.1	81.9	83.6	84.8	90.6	45.8	5.5	746
Rural	50.8	78.0	75.5	70.5	84.1	39.4	8.1	957
Region								
Coastal	51.6	79.9	76.8	78.3	82.1	45.6	10.7	462
Central	50.9	78.1	78.2	73.4	88.8	37.9	6.0	840
Mountain	58.0	75.7	71.1	70.5	76.2	46.8	11.2	151
Urban Tirana	60.6	87.1	90.9	89.2	96.2	47.8	0.6	249
Education								
No education/Primary 4-year	(21.5)	(47.0)	(42.2)	(48.4)	(73.8)	(19.2)	(20.0)	32
Primary 8-year	45.7	74.8	72.6	69.0	82.4	35.1	9.6	740
Secondary, professional, technical	55.8	83.8	84.7	82.8	90.1	45.5	5.1	745
University+	77.8	88.7	88.6	88.6	94.4	61.6	1.8	186
Wealth quintile								
Lowest	46.4	67.4	65.6	59.5	77.0	33.8	12.8	292
Second	47.6	80.6	77.3	70.1	83.9	34.8	7.1	345
Middle	51.8	80.9	80.4	81.8	89.0	43.6	6.3	380
Fourth	58.5	81.5	81.3	83.6	90.8	48.4	4.6	348
Highest	60.7	86.2	88.7	85.7	92.3	49.1	4.9	337
Total	53.2	79.7	79.1	76.8	86.9	42.2	6.9	1,703

Note: Figures in parentheses are based on 25-49 unweighted cases. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.

15.5 Attitudes toward Wife Beating

The 2008-09 ADHS gathered information on women's and men's attitudes towards wife beating. Women and men were asked whether a husband is justified in beating his wife under certain specific circumstances: wife burns the food, wife argues with him, wife goes out without telling him, wife neglects the children, and wife refuses to have sexual intercourse with husband. Women who think that a husband is justified in hitting or beating his wife for any of the specified reasons may believe themselves to be low in status both absolutely and relative to men. Such perceptions can be a barrier to women accessing health care for themselves and their children, affect their attitude towards contraceptive use, and impact their general well-being.

Table 15.6.1 shows women's attitudes towards wife beating in five specific circumstances. Acceptance of wife beating ranges from 4 percent (wife burns the food) to 22 percent (wife neglects the children), and 30 percent of women agree with at least one of the specified reasons justifying a husband beating his wife. Women who are the least likely to agree that wife beating is justified are the youngest women age 15-19 (24 percent), women who are employed for cash (17 percent), nevermarried women (22 percent), women with no children (23 percent), women in urban areas (18 percent), women in Urban Tirana (16 percent), women with university or higher education (7 percent), and women in the highest wealth quintile (10 percent).

Table 15.6.1 Attitudes towards wife beating: Women							
Percentage of all women age 15-49 who agree that a husband is justified in hitting or beating his wife for specific reasons, by background characteristics, Albania 2008-09							
	Husband is justified in hitting or beating his wife if she:					Percentage who agree with at least one specified reason	Number of women
Background characteristic	Burns the food	Argues with him	Goes out without telling him	Neglects the children	Refuses to have sexual intercourse with him		
Age							
15-19	3.8	11.1	14.4	17.5	6.5	23.8	1,478
20-24	4.0	10.7	16.5	19.3	7.1	26.8	976
25-29	5.6	11.1	17.7	22.0	9.9	29.5	848
30-34	3.1	12.4	19.6	23.2	9.6	31.9	866
35-39	5.6	13.8	21.5	25.8	10.1	33.2	1,097
40-44	4.5	12.8	20.6	22.3	10.0	32.5	1,232
45-49	4.0	13.1	20.6	23.2	10.3	32.4	1,088
Employment (past 12 months)							
Not employed	4.8	13.1	19.5	22.4	9.4	31.1	4,780
Employed for cash	1.3	5.2	8.8	11.7	4.3	17.1	1,749
Employed not for cash	7.2	19.1	30.5	34.9	14.4	44.6	1,054
Marital status							
Never married	3.4	9.1	12.8	16.3	6.4	21.8	2,357
Married or living together	4.7	13.6	21.5	24.4	10.0	33.7	5,001
Divorced/separated/widowed	5.3	11.4	14.1	17.7	10.8	25.2	226
Number of living children							
0	3.7	9.4	13.1	16.7	6.4	22.5	2,750
1-2	3.7	10.7	17.0	21.3	7.9	29.0	2,809
3-4	5.8	16.6	26.1	27.7	13.2	38.6	1,804
5+	9.2	28.5	44.7	40.0	18.5	57.0	222
Residence							
Urban	1.2	5.7	10.6	13.0	4.1	18.4	3,380
Rural	6.9	17.4	25.0	28.7	12.8	38.9	4,204
Region							
Coastal	3.9	13.7	17.0	22.3	10.6	30.2	2,129
Central	4.1	11.9	18.7	23.3	8.8	31.6	3,477
Mountain	11.6	21.9	33.4	29.3	15.4	41.9	777
Urban Tirana	1.1	3.8	11.5	11.2	2.2	15.9	1,201
Education							
No education/Primary 4-year	15.3	24.7	41.3	44.2	20.3	55.8	127
Primary 8-year	7.0	18.4	27.5	30.8	13.9	41.9	3,712
Secondary, professional, technical	1.7	7.0	10.8	14.7	4.8	20.4	2,740
University+	0.4	1.6	3.9	4.4	0.7	7.2	1,005
Wealth quintile							
Lowest	10.6	23.0	33.0	37.7	17.5	48.8	1,513
Second	6.1	17.3	24.0	28.3	12.3	38.4	1,486
Middle	3.2	11.3	18.5	21.9	7.4	30.4	1,533
Fourth	1.4	6.5	11.8	15.0	5.7	21.9	1,480
Highest	0.6	3.1	6.1	6.2	2.0	10.1	1,573
Total	4.4	12.1	18.6	21.7	8.9	29.8	7,584

Looking at the differentials, women age 15-19 are less likely than older women to agree that a husband is justified in beating his wife in at least one of the specified circumstances. Women who are employed for cash (17 percent) are much less likely to justify wife beating than women who are employed but not for cash (45 percent). Thirty-four percent of currently married women agree with at least one reason justifying wife beating, compared with 22 percent of never-married women and 25 percent of formerly married women. The proportion of women who justify wife beating increases with the number of living children, from 23 percent among women with no children to 57 percent among those with five or more children. Women in rural areas are twice as likely as women in urban areas to justify wife beating (39 percent compared with 18 percent). As expected, the proportion of women agreeing with at least one of the specified reasons for wife beating varies by region, ranging from 16 percent in Urban Tirana to 42 percent in the Mountain region. The likelihood that a woman perceives wife beating as justified in some circumstances decreases markedly with increasing level of education, from 56 percent among women with no education or primary 4 -year to 7 percent among women with university or higher education. The same pattern is seen by wealth status; women in the lowest wealth quintile (49 percent) are much more likely to think wife beating is justified under certain circumstances than women in the highest wealth quintile (10 percent).

As shown in Table 15.6.2, men are slightly more likely than women to agree with at least one of the reasons justifying a husband beating his wife- 36 percent of men compared with 30 percent of women. About one in four men agree that a husband has the right to beat his wife if she goes out without telling him or if she neglects the children (24 percent and 23 percent, respectively) and 18 percent think wife beating is justified if the wife argues with her husband. Thirteen percent of men agree that a man is justified in hitting or beating his wife if she refuses to have sexual intercourse with him; only 3 percent think wife beating is justified if she burns the food.

The likelihood that a man thinks that wife beating is justified in at least one of the specified situations is similar across age groups. Men who are employed but not for cash are more likely to agree with at least one reason for a husband to hit or beat his wife (44 percent) than men who are not employed or men who are employed for cash (35 percent each). Men with five or more living children (48 percent) are more likely to agree with at least one reason justifying wife beating, compared with men with 1-2 living children (30 percent). Marital status does not appear to influence men's attitudes towards wife beating. Men in rural areas (45 percent) are more likely than those in urban areas (27 percent) to agree with at least one reason justifying wife beating. The highest proportion of men who agree with at least one reason for a husband to beat his wife is in the Mountain region (59 percent) and the lowest is in Urban Tirana (12 percent). Education and wealth quintile are negatively associated with men's agreement with any reason for a husband to hit or beat his wife.

Table 15.6.2 Attitudes towards wife beating: Men
Percentage of all men age 15-49 who agree that a husband is justified in hitting or beating his wife for specific reasons, by background characteristics, Albania 2008-09

Background characteristic	Husband is justified in hitting or beating his wife if she:					Percentage who agree with at least one specified reason	Number of men
	Burns the food	Argues with him	Goes out without telling him	Neglects the children	Refuses to have sexual intercourse with him		
Age							
15-19	2.5	18.8	23.2	22.9	16.8	36.6	670
20-24	1.6	18.7	29.8	23.7	12.8	39.9	393
25-29	5.1	22.0	31.3	25.5	13.2	43.0	269
30-34	2.4	14.9	26.9	22.1	10.7	36.2	273
35-39	4.2	18.4	22.1	23.1	13.2	34.7	372
40-44	3.0	19.3	20.5	23.4	11.2	34.1	501
45-49	2.1	17.1	21.7	21.9	10.0	33.3	536
Employment (past 12 months)							
Not employed	1.5	17.9	25.8	19.4	12.5	35.2	716
Employed for cash	3.3	16.7	23.0	23.0	12.6	34.5	1,752
Employed not for cash	3.1	24.9	26.2	28.2	13.8	43.9	544
Number of living children							
0	2.6	18.2	24.8	22.4	14.2	37.0	1,415
1-2	1.9	14.6	20.7	19.8	8.9	29.6	955
3-4	4.4	24.1	27.8	29.1	15.7	44.5	575
$5+$	5.9	30.0	33.3	31.4	15.0	47.6	69
Marital status							
Never married	2.7	18.9	24.8	22.8	14.6	37.3	1,291
Married or living together	2.9	18.0	23.8	23.2	11.4	35.7	1,703
Divorced/separated/widowed	*	*	*	*	*	*	19
Residence							
Urban	2.4	12.6	19.2	16.7	8.2	26.9	1,391
Rural	3.2	23.4	28.6	28.6	16.8	44.5	1,622
Region							
Coastal	3.7	17.6	23.0	24.8	9.8	33.3	800
Central	2.4	21.5	27.3	25.4	15.5	42.1	1,443
Mountain	6.6	29.7	45.7	42.5	25.5	58.8	277
Urban Tirana	0.5	4.5	5.4	2.6	2.6	11.9	493
Education							
No education/Primary 4-year	8.1	32.5	44.4	26.1	17.5	56.2	55
Primary 8-year	4.5	27.9	32.5	32.9	18.9	47.7	1,183
Secondary, professional, technical	1.5	13.2	19.4	17.6	9.3	29.8	1,415
University+	1.6	5.9	13.1	11.6	5.7	21.7	361
Wealth quintile							
Lowest	4.4	29.6	33.6	34.2	18.5	51.7	475
Second	3.8	24.3	27.4	29.2	18.6	45.3	600
Middle	1.8	16.0	26.0	24.5	13.4	36.6	661
Fourth	2.9	15.7	21.6	18.2	10.6	32.2	625
Highest	1.7	10.0	15.3	12.5	4.8	20.6	652
Total	2.8	18.4	24.3	23.1	12.8	36.4	3,013

Note: An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.

15.6 Attitudes towards Refusing Sexual Relations

The extent of control women have over when they have sexual intercourse has important implications for demographic and health outcomes. It is also an indicator of women's empowerment because it measures women's degree of acceptance of norms in some societies that socialize women to believe that they do not have the right to refuse to have sexual intercourse with their husband for any reason.

The 2008-09 ADHS included questions on whether respondents think that a wife is justified in refusing to have sexual intercourse with her husband under three specific circumstances: she knows her husband has a sexually transmitted disease (STD); she knows her husband has sexual intercourse with other women; and she is tired or not in the mood. These three circumstances for which opinions are sought have been chosen because they are effective in combining issues of women's rights and consequences for women's health. Table 15.7.1 shows the percentage of women who say that a wife is justified in refusing to have sexual intercourse with her husband for these reasons.

Table 15.7.1 Attitudes towards refusing sexual intercourse with husband: Women									
Percentage of all women age 15-49 who believe that a wife is justified in refusing to have sexual intercourse with her husband in specific circumstances, by background characteristics, Albania 2008-09									
	Wife is justified in refusing intercourse with her husband if she:			Percentage who agree with all of the specified reasons	Percentage who agree with none of the specified reasons	Number of women			
Background characteristic	Knows husband has a sexually transmitted disease	Knows husband has intercourse with other women	Is tired or not in the mood						
Age									
15-19	74.9	80.8	75.0	63.8	11.6	1,478			
20-24	75.8	83.6	77.3	62.8	8.0	976			
25-29	78.8	84.4	78.4	65.0	6.7	848			
30-34	79.2	85.6	80.9	64.9	4.9	866			
35-39	77.2	82.5	79.8	61.4	6.1	1,097			
40-44	79.4	82.7	78.6	64.2	6.4	1,232			
45-49	76.7	81.9	79.2	61.5	6.8	1,088			
Employed for cash	85.8	89.5	87.4	75.0	2.9	1,749			
Employed not for cash	73.5	81.4	75.7	57.9	8.6	1,054			
Marital status									
Never married	76.4	83.2	76.9	65.9	10.2	2,357			
Married or living together	77.6	82.6	78.8	62.1	6.4	5,001			
Divorced/separated/widowed	80.0	84.1	80.4	63.8	4.5	226			
Number of living children									
0	76.3	83.1	77.5	65.5	9.6	2,750			
1-2	79.5	85.2	81.1	65.6	5.3	2,809			
3-4	76.8	80.2	76.0	58.7	7.3	1,804			
5+	64.4	70.8	69.2	45.2	10.7	222			
Residence									
Urban	84.3	87.9	85.5	73.7	4.7	3,380			
Rural	71.6	78.8	72.4	55.0	9.7	4,204			
Region									
Coastal	76.9	80.4	76.2	60.9	7.9	2,129			
Central	74.1	81.7	76.4	58.8	7.4	3,477			
Mountain	71.8	81.9	75.6	60.5	11.2	777			
Urban Tirana	90.5	91.1	88.8	82.7	4.7	1,201			
Education									
No education/Primary 4-year	59.7	52.8	51.8	36.8	26.7	127			
Primary 8-year	70.8	76.9	70.6	53.2	10.4	3,712			
Secondary, professional, technical	82.7	88.1	84.7	71.1	4.4	2,740			
University+	88.4	94.0	91.9	83.0	2.8	1,005			
Wealth quintile									
Lowest	66.8	73.4	66.4	47.8	12.9	1,513			
Second	72.3	80.2	74.4	56.2	8.1	1,486			
Middle	76.9	82.6	77.5	62.0	7.3	1,533			
Fourth	81.3	86.1	82.5	68.9	5.4	1,480			
Highest	88.5	91.5	89.9	81.1	3.9	1,573			
Total	77.3	82.8	78.2	63.3	7.5	7,584			

Overall, 63 percent of women agree that a woman is justified in refusing to have sexual intercourse with her husband for all three of the specified reasons. Seventy-seven percent of women say that a woman can refuse to have sexual intercourse with her husband if she knows he has an STD; 83 percent say she can refuse if she knows that her husband is having sexual intercourse with another woman; and 78 percent say she can refuse if she is not in the mood or is tired. Only 8 percent of women do not agree that a wife is justified in refusing sexual intercourse with her husband for any of the specified reasons.

Women's attitudes on refusing sexual intercourse with their husband do not vary substantially by age or marital status. Women employed for cash (75 percent) are most likely to agree with all of the specified reasons for refusing sexual intercourse, compared with women not employed for cash (58 percent) and unemployed women (60 percent). Women in urban areas tend to agree somewhat more often that a woman is justified in refusing sexual intercourse with her husband than women in rural areas (74 percent compared with 55 percent). Looking at regional variation, 83 percent of woman in Urban Tirana agree with all of the specified reasons for a wife to refuse sexual intercourse with her husband, compared with 59 to 61 percent of women in other regions. Better educated women and women in the higher wealth quintiles are more likely to agree with all of the specified reasons for a wife to refuse sexual intercourse with her husband than other women. For example, 83 percent of women with higher education agree with all of the specified reasons, compared to 37 percent of women with no education or primary 4-year education.

Table 15.7.2 shows the percentage of men who say that women are justified in refusing sexual intercourse with their husband in three specific circumstances (the same circumstances presented to women). Overall, men are less likely than women to agree with all three of the specified reasons for a wife to withhold sexual intercourse from her husband (49 percent compared with 63 percent). Seventy-three percent of men say that the wife can refuse sexual intercourse if she knows that her husband has an STD, 72 percent say she can refuse sexual intercourse if she knows that her husband has sexual relations with other women, and 71 percent agree that a woman can refuse to have sexual intercourse with her husband if she is not in the mood or is tired.

The likelihood of men agreeing with any of the specified reasons for a wife to refuse sexual intercourse with her husband does not vary substantially by age or marital status. As with women, the proportion of men who agree with all of the specified reasons for a wife to refuse sexual intercourse with her husband is directly related to their level of education and wealth status. For example, 21 percent of men with no education or primary 4-year education agree with all of the specified reasons, compared with 62 percent of men with university or higher education. Likewise, while 38 percent of men in the lowest wealth quintile agree with all of the specified reasons for a wife to refuse sexual intercourse with her husband, the proportion increases to 64 percent among men in the highest wealth quintile.

Table 15.7.2 Attitudes towards refusing sexual intercourse with husband: Men
Percentage of all men age 15-49 who believe that a wife is justified in refusing to have sexual intercourse with her husband in specific circumstances, by background characteristics, Albania 2008-09

Background characteristic	Wife is justified in refusing intercourse with her husband if she:			Percentage who agree with all of the specified reasons	Percentage who agree with none of the specified reasons	Number of men
	Knows husband has a sexually transmitted disease	Knows husband has intercourse with other women	Is tired or not in the mood			
Age						
15-19	71.7	71.6	69.2	48.2	10.3	670
20-24	70.8	67.1	69.0	42.4	8.9	393
25-29	77.1	69.0	75.5	49.4	7.9	269
30-34	73.1	80.4	74.0	54.5	6.4	273
35-39	70.4	71.1	73.9	48.6	10.3	372
40-44	72.7	72.2	70.9	49.4	8.5	501
45-49	75.0	76.1	71.4	51.7	7.8	536
Employment (past 12 months)						
Not employed	69.5	72.3	71.7	48.0	9.9	716
Employed for cash	74.8	73.9	73.6	52.0	8.5	1,752
Employed not for cash	70.7	67.7	63.9	40.6	8.6	544
Marital status						
Never married	72.9	69.9	70.1	47.2	9.8	1,291
Married or living together	72.9	74.4	72.6	50.5	8.0	1,703
Divorced/separated/widowed	*	*	*	*	*	19
Number of living children						
0	72.5	71.0	70.6	47.8	9.3	1,415
1-2	73.7	74.1	74.0	52.5	8.9	955
3-4	72.3	72.7	70.1	46.8	7.5	575
$5+$	69.6	75.3	62.6	42.7	7.7	69
Residence						
Urban	77.3	77.2	77.1	56.5	6.4	1,391
Rural	68.9	68.3	66.5	42.6	10.9	1,622
Region						
Coastal	70.0	72.5	69.3	48.3	10.1	800
Central	71.4	68.2	70.4	45.0	9.5	1,443
Mountain	70.4	72.8	60.8	45.2	12.9	277
Urban Tirana	82.7	84.4	83.7	63.8	2.5	493
Education						
No education/Primary 4-year	41.6	61.7	35.6	20.6	26.0	55
Primary 8-year	66.8	68.4	64.1	40.9	12.1	1,183
Secondary, professional, technical	75.9	74.4	75.4	53.6	7.0	1,415
University+	85.1	79.4	85.1	62.0	2.6	361
Wealth quintile						
Lowest	65.1	64.4	57.8	37.7	14.7	475
Second	68.7	66.5	62.6	40.0	12.2	600
Middle	70.9	74.5	73.9	48.9	7.1	661
Fourth	74.3	73.3	76.6	50.9	7.4	625
Highest	82.7	80.8	82.0	63.6	4.7	652
Total	72.8	72.4	71.4	49.0	8.8	3,013

[^33]Table 15.7 .3 shows the percentage of men who think that a husband has the right to take certain actions when his wife refuses to have sexual intercourse with him when he wants her to. The four specified actions are: get angry and reprimand her, refuse her financial support, use force to have sexual intercourse, or have sexual intercourse with another woman. Overall, only 1 percent of men agree that a man has the right to take all four of the specified actions if his wife refuses to have sexual intercourse with him, while 62 percent think that a man does not have the right to take any of the actions. Looking at specific actions, 32 percent of men think that a husband has a right to get angry and reprimand his wife, 10 percent think that he has a right to refuse her financial support, 9 percent believe that a man has a right to have sexual intercourse with another woman, and 6 percent think that a husband has a right to use force to have sexual intercourse with his wife.

Percentage of men age 15-49 who consider that a husband has the right to take certain actions when his wife refuses to have sexual intercourse with him when he wants her to, by background characteristics, Albania 2008-09							
	When a woman refuses to have sexual intercourse with her husband, he has the right to:				Percentage who agree with all of the specified actions	Percentage who agree with none of the specified actions	Number of men
Background characteristic	Get angry and reprimand her	Refuse her financial support	Use force to have sexual intercourse	Have sexual intercourse with another woman			
Age							
15-19	31.6	10.4	7.4	12.0	1.2	59.7	670
20-24	35.6	12.0	4.6	10.7	1.3	55.5	393
25-29	37.0	8.9	8.3	12.2	1.8	57.5	269
30-34	32.8	14.2	5.6	10.5	2.1	60.5	273
35-39	31.6	10.9	6.5	8.5	2.9	65.5	372
40-44	31.1	8.6	5.4	7.7	1.2	62.7	501
45-49	26.1	8.4	6.4	4.9	0.7	70.1	536
Employment (past 12 months)							
Not employed	29.8	9.1	6.3	10.4	0.6	61.9	716
Employed for cash	31.3	10.1	6.3	9.3	2.0	62.8	1,752
Employed not for cash	35.3	11.9	6.3	7.9	0.7	60.2	544
Marital status							
Never married	33.1	10.1	6.6	11.6	1.4	59.2	1,291
Married or living together	30.4	10.4	6.1	7.5	1.5	64.4	1,703
Divorced/separated/widowed	*	*	*	*	*	*	19
Number of living children							
0	32.7	10.3	6.4	11.6	1.4	59.2	1,415
1-2	26.2	7.9	4.6	5.5	1.3	69.9	955
3-4	36.7	13.5	8.6	9.7	2.1	57.6	575
5+	43.9	13.5	8.7	12.1	0.0	51.4	69
Residence							
Urban	24.8	6.9	4.6	8.2	1.4	69.7	1,391
Rural	37.5	13.1	7.8	10.3	1.5	55.5	1,622
Region							
Coastal	26.5	8.9	7.7	11.7	2.2	65.8	800
Central	39.4	11.7	6.4	10.2	1.6	55.3	1,443
Mountain	34.9	10.9	10.8	10.2	1.1	55.2	277
Urban Tirana	15.4	7.7	1.5	2.5	0.0	79.9	493
Education							
No education/Primary 4-year	49.3	12.6	14.6	22.1	2.5	42.2	55
Primary 8-year	36.8	14.3	9.3	11.7	2.5	55.3	1,183
Secondary, professional, technical	29.2	7.6	4.8	7.9	0.9	65.6	1,415
University+	21.6	6.8	1.4	5.2	0.0	73.5	361
Wealth quintile							
Lowest	41.3	12.5	8.8	10.8	1.4	50.7	475
Second	35.2	16.8	8.9	12.4	2.2	56.9	600
Middle	36.4	8.8	5.9	9.3	0.6	57.8	661
Fourth	28.3	7.4	6.2	7.6	2.6	67.9	625
Highest	19.7	6.7	2.6	7.1	0.5	74.0	652
Total	31.6	10.2	6.3	9.3	1.4	62.1	3,013

There are large variations by background characteristics in men's attitudes towards a husband's right to take specific actions when his wife refuses to have sexual intercourse with him. While 70 percent of men in urban areas agree with none of the specified actions, the corresponding proportion for men in rural areas is 56 percent. Likewise, while 80 percent of men in Urban Tirana think that a man does not have the right to take any of the specified actions, only 55 percent of men in the Mountain and Central regions do. Men with the highest level of education and men in the highest wealth quintile (74 percent each) are more likely to agree with none of the specified actions, compared with other men (42 percent of men with no education or primary 4 -year education, and 51 percent of men in the lowest wealth quintile).

15.7 INDICATORS OF WOMEN'S EMPOWERMENT

Indicators of women's empowerment are used in DHS surveys to show the relationship between women's status and various maternal and child health outcomes. The empowerment indicators used here are 1) women's participation in household decisions, 2) women's attitudes towards a wife refusing to have sexual intercourse with her husband or partner, and 3) women's attitudes towards wife beating. They can be summarized into three separate indices.

The first index of women's empowerment shows the number of decisions in which women participate alone or jointly with their husband/partner (see Table 15.5.1 for the list of decisions). The index ranges in value from 0 to 4 and is positively related to women's empowerment. It reflects the degree of decision-making control that women are able to exercise in areas that affect their own lives and environments. The second index of women's empowerment is the number of reasons the respondent thinks that a husband is justified in beating his wife (see Table 15.6.1 for the list of reasons). The index ranges in value from 0 to 5 and is negatively related to women's empowerment, i.e., a lower score on this indicator is interpreted as reflecting a greater sense of entitlement and selfesteem, and higher status for women. The third index of women's empowerment is the number of circumstances in which the respondent thinks that a woman is justified in refusing sexual intercourse with her husband or partner (see Table 15.7.1 for the list of the circumstances). The index ranges in value from 0 to 3 and is positively related to women's empowerment. This index reflects women's perceptions of their rights over their own body, and their sense of self.

Table 15.8 shows how these three indicators relate to each other among women respondents. In general, the expectation is that women who participate in more household decisions are more likely to have gender-egalitarian beliefs. The results show that there is a negative relationship between the number of decisions in which women participate and the proportion who agree with the specified reasons that justify a husband beating his wife. Sixty-five percent of currently married women who participate in all household decision-making do not think wife beating is justified for any reason; this proportion declines steadily to 23 percent among those who think that wife beating is justified for all five specified reasons.

At the same time, Table 15.8 shows that only 34 percent of women who do not participate in any of the household decisions disagree with all of the specified reasons that justify a husband beating his wife, compared with 74 percent of women who participate in three to four decisions. There is also a direct relationship between women's participation in decision-making and the number of reasons given for a wife to refuse sexual intercourse with her husband. For example, the proportion of women who agree with all of the reasons for a wife to refuse sexual intercourse with her husband increases from 39 percent among women who do not participate in any household decisions to 68 percent among women who participate in three to four decisions.

Table 15.8 Indicators of women's empowerment					
Percentage of women age 15-49 who participate in all decision-making, percentage who disagree with all reasons for justifying wife beating, and percentage who agree with all reasons for refusing sexual intercourse with husband, by value for each of three indicators of women's empowerment, Albania 2008-09					
	Currently married women		Percentage who disagree with all the reasons justifying wife beating	Percentage who agree with all the reasons for refusing sexual intercourse with husband	Number of women
Empowerment indicator	Percent who partic in all decis makin	Number of women			
Number of decisions in which women participate ${ }^{1}$					
0	na	na	34.1	38.8	311
1-2	na	na	44.8	45.4	880
3-4	na	na	73.9	67.8	3,811
Number of reasons for which wife beating is justified ${ }^{2}$					
0	65.2	3,315	na	72.2	5,327
1-2	44.7	1,125	na	49.3	1,509
3-4	24.7	436	na	31.0	583
5	22.6	125	na	20.3	164
Number of reasons given for refusing to have sexual intercourse with husband ${ }^{3}$					
0	30.9	319	44.7	na	568
1-2	43.0	1,577	55.5	na	2,213
3	65.1	3,105	80.1	na	4,802
na $=$ Not applicable					
${ }^{1}$ Restricted to currently married women. See Table 15.5.1 for the list of decisions.					
${ }^{2}$ See Table 15.6.1 for the list of reasons					
${ }^{3}$ See Table 15.7.1 for the list of reasons					

15.8 Current Use of Contraception by Women's Status

A woman's ability to control her fertility and the contraceptive method she chooses to use are likely to be affected by her status, self-image, and sense of empowerment. A woman who feels that she is unable to control other aspects of her life may be less likely to feel she can make decisions about her own fertility. Also, some women may feel that they need to choose methods that do not depend on their husband's cooperation.

Table 15.9 shows the relationship between contraceptive use among currently married women age 15-49 and each of the three indicators of women's empowerment. The results indicate that there is a positive relationship between women's status and use of contraception. Contraceptive use is higher among women who participate in one or more household decisions, women who believe that wife beating is not justified for all five specified reasons, and women who agree that a wife can refuse sexual intercourse with her husband for all three specified reasons. For example, 53 percent of women who do not participate in any of the household decisions are using a contraceptive method, compared with 72 percent of women who participate in three or four of the specified decisions.

The other two indicators of women empowerment show similar patterns; 72 percent of women who do not think that a husband is justified in beating his wife for any reason are using a contraceptive method, compared with 39 percent who think that all five reasons justify a husband beating his wife. Similarly, current use of contraceptive methods increases from 50 percent among women who do not agree with any of the reasons for a wife to refuse sexual intercourse with her husband to 74 percent among women who agree with all three reasons.

Table 15.9 Current use of contraception by women's status
Percent distribution of currently married women age 15-49 by current contraceptive method, according to three indicators of women's status, Albania 2008-09

Empowerment indicator	Any method	Any modern method	Modern methods			Any Not traditional currently method using		Total	Number of women
			Female sterilization	Temporary modern female methods ${ }^{1}$	Male condom				
Number of decisions in which women participate ${ }^{2}$									
0	53.4	7.7	1.1	4.0	2.6	45.7	46.6	100.0	311
1-2	62.9	10.6	1.8	4.8	3.9	52.3	37.1	100.0	880
3-4	72.1	10.9	3.5	3.3	4.1	61.2	27.9	100.0	3,811
Number of reasons for which wife beating is justified ${ }^{3}$									
0	71.9	11.5	3.2	3.4	4.8	60.4	28.1	100.0	3,315
1-2	68.6	8.8	2.2	4.0	2.7	59.8	31.4	100.0	1,125
3-4	60.4	9.5	4.3	3.9	1.4	50.8	39.6	100.0	436
5	39.1	7.3	1.2	4.7	1.4	31.8	60.9	100.0	125
Number of reasons given for refusing to have sexual intercourse with husband ${ }^{4}$									
0	49.6	9.0	1.8	4.3	3.0	40.6	50.4	100.0	319
1-2	65.0	8.1	2.7	2.7	2.7	56.9	35.0	100.0	1,577
3	73.6	12.1	3.3	4.0	4.7	61.5	26.4	100.0	3,105
Total	69.3	10.6	3.0	3.6	4.0	58.7	30.7	100.0	5,001

Note: If more than one method is used, only the most effective method is considered in this tabulation.
${ }^{1}$ Pill, IUD, injectables, implants, female condom, diaphragm, foam/jelly and lactational amenorrhoea method (LAM)
${ }^{2}$ See Table 15.5.1 for the list of decisions.
${ }^{3}$ See Table 15.6.1 for the list of reasons
${ }^{4}$ See Table 15.7.1 for the list of reasons

15.9 WOMEN's Status and Ideal Family Size and Unmet Need

Increasing women's status and empowerment is important for women's fertility for two reasons: desired family size decreases as women become more empowered, and women's ability to achieve their ideal family size increases as women are able to access effective contraceptive methods. Table 15.10 shows how women's ideal family size and unmet need for family planning vary according to the three indicators of women's empowerment.

The results indicate that there is no clear pattern in the relationship between women's empowerment indicators and mean ideal number of children. However, the number of decisions in which women participate has a negative relationship with unmet need for family planning; the fewer decisions in which a woman participates, the higher the level of unmet need for family planning.

Looking at the empowerment indicator on wife beating, unmet need for family planning is higher among women who say that wife beating is justified for all five reasons (28 percent), compared with women who say there are no reasons that justify a husband beating his wife (12 percent). Similarly, unmet need for family planning is higher among women who do not agree with any of the reasons for a wife refusing to have sexual intercourse with her husband (24 percent), compared with women who agree with all three reasons (11 percent).

Mean ideal number of children for women 15-49 and the percentage of currently married women age 15-49 with an unmet need for family planning, by three indicators of women's empowerment, Albania 2008-09						
	Mean ideal		Perce married need	tage of c men with family	ntly unmet $n^{n} n^{2}$	Number of currently
Empowerment indicator	number of children ${ }^{1}$	Number of women	For spacing	$\begin{gathered} \text { For } \\ \text { limiting } \end{gathered}$	Total	married women
Number of decisions in which women participate ${ }^{3}$						
0	2.7	307	8.1	13.1	21.3	311
1-2	2.6	867	5.7	9.4	15.1	880
3-4	2.7	3,781	2.5	9.1	11.6	3,811
Number of reasons for which wife beating is justified ${ }^{4}$						
0	2.5	5,278	3.0	9.1	12.0	3,315
1-2	2.6	1,494	3.4	8.1	11.5	1,125
3-4	2.7	581	5.4	12.2	17.6	436
5	2.7	162	8.9	19.4	28.3	125
Number of reasons given for refusing to have sexual intercourse with husband ${ }^{5}$						
0	2.4	557	6.8	16.7	23.6	319
1-2	2.7	2,192	4.1	9.9	14.0	1,577
3	2.5	4,766	2.7	8.3	11.1	3,105
Total	2.6	7,515	3.4	9.4	12.8	5,001
${ }^{1}$ Mean excludes respondents who gave non-numeric responses.						
${ }^{2}$ See table 7.3.1 for the definition of unmet need for family planning						
${ }^{3}$ Restricted to currently married women. See Table 15.5.1 for the list of decisions.						
${ }^{4}$ See Table 15.6.1 for the list of reasons						
${ }^{5}$ See Table 15.7.1 for the list of reasons						

15.10 Women's Status and Reproductive Health Care

Women's status and level of self-esteem can be major determinants of their ability to obtain adequate health care for themselves. In societies where health care is widespread, women's empowerment may have little effect on access to reproductive health services; however, increased empowerment of women is likely to increase their ability to seek out and use health services to better meet their own reproductive health needs, including the goal of safe motherhood. Table 15.11 examines whether women's use of antenatal care, delivery assistance, and postnatal care services from health workers varies according to their level of empowerment, as measured by the three indicators of women's empowerment.

Almost all women in Albania with a live birth in the five years preceding the 2008-09 ADHS received antenatal care (97 percent) and delivery assistance (99 percent) from a health professional, and 83 percent of these women received postnatal care within two days after delivery. Table 15.11 shows that women's empowerment is positively related to utilization of health care services. For example, 85 percent of women who participate in three or four household decisions received postnatal care from a health professional, compared with 73 percent of women who had no say in household decisions (Figure 5.2). The results also show that as the number of reasons justifying a husband beating his wife decreases, the level of postnatal care coverage from a health professional increases. For example, receipt of postnatal care from health personnel within two days after delivery is 60 percent among women who say that wife beating is justified in all five specified circumstances, compared with 87 percent among women who say that wife beating is not justified under any circumstances.

Finally, there is a strong positive relationship between utilization of health care services and the number of reasons women agree with that justify a wife refusing to have sexual intercourse with her husband. For example, 72 percent of women who think a wife is not justified in refusing to have sexual intercourse with her husband for any of the specified reasons received postnatal care from health personnel in the first two days after delivery, compared with 87 percent of women who agree with all three of the specified reasons.

Percentage of women age 15-49 with a live birth in the five years preceding the survey who received antenatal care, delivery assistance and postnatal care from health personnel for the most recent birth, by three indicators of women's empowerment, Albania 2008-09				
Empowerment indicator	Received antenatal care from health personnel	Received delivery assistance from health personnel	Received postnatal care from health personnel within the first two days after delivery ${ }^{1}$	Number of women with a child born in the past five years
Number of decisions in which women participate ${ }^{2}$				
0	94.7	97.2	72.7	122
1-2	97.3	98.8	81.4	306
3-4	97.7	99.8	85.1	867
Number of reasons for which wife beating is justified ${ }^{3}$				
0	98.0	99.7	86.5	846
1-2	96.6	98.7	79.9	293
3-4	95.5	99.3	77.8	129
5	95.2	96.0	56.9	42
Number of reasons given for refusing to have sexual intercourse with husband ${ }^{4}$				
0	95.9	98.8	71.8	90
1-2	96.5	99.1	79.2	443
3	98.0	99.6	86.8	776
Total	97.3	99.3	83.2	1,310

Note: 'Health personnel' includes obstetrician/gynaecologist, family doctor, and nurse, midwife.
${ }^{1}$ Includes deliveries in a health facility and not in a health facility
${ }^{2}$ Restricted to currently married women. See Table 15.5.1 for the list of decisions.
${ }^{3}$ See Table 15.6.1 for the list of reasons
${ }^{4}$ See Table 15.7.1 for the list of reasons

Figure 15.2 Percentage of Women Age 15-49 Who Received Postnatal Care from Health Personnel Within the First Two Days After Delivery, by Women's Empowerment Indicators

ADHS 2008-09

REFERENCES

Albanian Ministry of Health. 2002. 10 year development strategy of the Albanian health system. Tirana, Albania: Albanian Ministry of Health.

Albanian Ministry of Health. 2003. Albanian National Health Account. Tirana, Albania.

Albanian Ministry of Health. 2004. The long-term strategy for the development of the Albanian health system. Tirana, Albania.

Albanian Ministry of Health. 2009. An overview of the health care system in Albania. Some performance indicators. Tirana, Albania

Centres for Disease Control and Prevention (CDC), Institute of Public Health (IPH) and Institute of Statistics (INSTAT). 2005. Albania Reproductive Health Survey 2002. Atlanta, Georgia, USA: CDC.

Conde-Agudelo, A., A. Rosas-Bermudez, and A.C. Kafury-Goeta. 2006. Birth spacing and risk of adverse perinatal outcomes, a meta-analysis. Journal of the American Medical Association 295(15): 1809-1823.

Gjonça, A., and M. Bobak. 1997. Albanian paradox: Another case of the protective effect of Mediterranean lifestyle? The Lancet 350 (9094): 1815-1817.

Gwatkin, D.R., S. Rutstein, K. Johnson, R.P. Pande, and A. Wagstaff. 2000. Socio-economic differences in health, nutrition and poverty. HNP/Poverty Thematic Group of the World Bank. Washington D.C.: The World Bank.

Hinde, A. 1998. Demographic methods. New York: Oxford University Press Inc.
Institute of Public Health (IPH) [Albania]. 2009. HIV/AIDS epidemiological situation report 2008. Tirana, Albania: Institute of Public Health.

Institute of Statistics (INSTAT) [Albania]. 2002a. Albania Multiple Indicator Cluster Survey 2000, Final report. Tirana, Albania: Institute of Statistics.

Institute of Statistics (INSTAT) [Albania]. 2002b. The 2001 Population and Housing Census of Albania. Tirana, Albania: Institute of Statistics.

Institute of Statistics (INSTAT) [Albania]. 2004a. Population projections for Albania 2001-2021. Tirana, Albania: Institute of Statistics.

Institute of Statistics (INSTAT) [Albania]. 2004b. Final results, Population and Housing Census 2001. Tirana, Albania: Institute of Statistics.

Institute of Statistics (INSTAT) [Albania]. 2004c. Migration in Albania. Tirana, Albania: Institute of Statistics.

Institute of Statistics (INSTAT) [Albania]. 2007. Causes of deaths for the year 2006 (according to international classification ICD-9). Tirana, Albania: Institute of Statistics.

Institute of Statistics (INSTAT) [Albania]. 2008a. Albania in figures 2008. Tirana, Albania: Institute of Statistics.

Institute of Statistics (INSTAT) [Albania]. 2008b. Albania Multiple Indicator Cluster Survey 2005, Final report. Tirana, Albania: Institute of Statistics.

Institute of Statistics (INSTAT) [Albania]. 2008c. Births and abortions 1994-2007. Available at: http://www.instat.gov.al/graphics/doc/tabelat/Treguesit\ Sociale/Lindje\ e\ vdekje/LDV\ 2 008//dv7.xls.

Institute of Statistics (INSTAT) [Albania]. 2008d. Deaths by age group for the years 1990-2007. [Table on infant mortality] Tirana, Albania: Institute of Statistics. Available at: http://www.instat.gov.al/graphics/doc/tabelat/Treguesit\ Sociale/Lindje\ e\ vdekje/LDV\ 2008/ldv12.xls.

Institute of Statistics (INSTAT) [Albania]. 2008e. Population and density by districts, 1 January 2008. Tirana, Albania: Institute of Statistics. Available at:
http://www.instat.gov.al/graphics/doc/tabelat/Treguesit\ Sociale/Popullsia/POP\ 2008/pop1.xls.
Institute of Statistics (INSTAT) [Albania]. 2008f. Total employment by economic activity (NACE Rev.1) 1995-2007. [Table on economic activity] Tirana, Albania: Institute of Statistics. Available at: http://www.instat.gov.al/graphics/doc/tabelat/Treguesit\ Sociale/Punesimi/PUN\ 2008/ ta4.xls.

Institute of Statistics (INSTAT) [Albania]. 2008g. Women and men in Albania. Tirana, Albania: Institute of Statistics.

Institute of Statistics (INSTAT) [Albania]. 2009a. Albania trends in poverty, 2002-2005-2008. Tirana, Albania: Institute of Statistics.

Institute of Statistics (INSTAT) [Albania]. 2009b. Causes of deaths for the year 2007 (according to international classification ICD-9). Tirana, Albania: Institute of Statistics.

Institute of Statistics (INSTAT) [Albania], United Nations Development Programme (UNDP), and World Bank. 2009. Albania: Trends in poverty 2002-2005-2008. Tirana, Albania: Institute of Statistics. Available at:
http://www.instat.gov.al/graphics/doc/downloads/Living\ Standart\ Measurement\ Survey\%2 02008.pdf.

Instituti Shendetit Publik. 2004. Shendeti ne Shqiperi, Raporti i ISHP mbi Indikatoret Kryesore te Shendetit dhe Faktore te Tjere qe Ndikojne mbi ta. Tirana, Albania.

Kakarriqi, E. 2002. Epidemiological background of infection disease in Albania. Tirana, Albania.
Macgregor, M. 1963. Maternal anaemia as a factor in prematurity and perinatal mortality. Scottish Medical Journal 8: 134-140.

Ministry of Health and Institute of Statistics (INSTAT) [Albania]. 2008. Maternal mortality 19932007. [Table] Tirana, Albania: Ministry of Health and Institute of Statistics. Available at: http://www.instat.gov.al/graphics/doc/tabelat/Treguesit\ Sociale/Shendeti/SHN2007/SHN13.xls.

National Institutes of Health (NIH). 1997. The sixth report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Bethesda, Maryland, USA: National High Blood Pressure Education Programme, National Heart, Lung, and Blood Institute, National Institutes of Health. NIH Publication No. 98-4080.

National Scientific and Applied Centre for Preventive Medicine (NCPM) [Moldova] and ORC Macro. 2006. Moldova Demographic and Health Survey 2005. Calverton, Maryland: National Scientific and Applied Centre for Preventive Medicine of the Ministry of Health and Social Protection and ORC Macro.

National Statistical Service (NSS) [Armenia], Ministry of Health (MOH) [Armenia], and ORC Macro. 2006. Armenia Demographic and Health Survey 2005. Calverton, Maryland: National Statistical Service, Ministry of Health, and ORC Macro.

Nuri, B. 2002. Health care systems in transition: Albania, ed. E. Tragakes. Copenhagen, Denmark: European Observatory on Health Care System.

Pan-American Health Organization and the World Health Organization (PAHO/WHO). 2003. Guiding principles for complementary feeding of the breastfed child. Washington, D.C./Geneva: РАНO/WHO.

Rutstein, S. 1999. Wealth versus expenditure: Comparison between the DHS wealth index and household expenditures in four departments of Guatemala. Calverton, Maryland, USA: ORC Macro.

Rutstein, S.O. 2005. Effects of preceding birth intervals on neonatal, infant and under-five years mortality and nutritional status in developing countries: evidence from the demographic and health surveys. International Journal of Gynecology \& Obstetrics 89(Suppl. 1): S7-24.

Rutstein, S.O., and G. Rojas. 2003. Guide to DHS statistics. Calverton, Maryland, USA: ORC Macro.
Rutstein, S.O., K. Johnson, and D. Gwatkin. 2000. Poverty, health inequality, and its health and demographic effects. Paper presented at the 2000 Annual Meeting of the Population Association of America, Los Angeles, California, USA.

Samartin, S., and R.K. Chandra. 2001. Obesity, overnutrition and the immune system. Nutrition Research 21(1): 243-262.

State Statistical Committee (SSC) [Azerbaijan], Ministry of Health (MOH) [Azerbaijan], and Macro International Inc. 2008. Preliminary report of the Azerbaijan Demographic and Health Survey 2006. Calverton, Maryland: State Statistical Committee, Ministry of Health, and Macro International.

State Statistical Committee (SSC) [Azerbaijan], Ministry of Health (MOH) [Azerbaijan], and Macro International Inc. 2008. Azerbaijan Demographic and Health Survey 2006. Calverton, Maryland: State Statistical Committee, Ministry of Health, and Macro International.

State Statistical Office of Macedonia (SSO). 2007. Republic of Macedonia Multiple Indicator Cluster Survey: 2005-2006, Final report. Skopje, Macedonia: State Statistical Office of Macedonia.

Statistical Office of Montenegro (MONSTAT) and Strategic Marketing Research Agency (SMMRI). 2006. Montenegro Multiple Indicator Cluster Survey 2005, Final report. Podgorica, Montenegro: Statistical Office of Montenegro.

Statistical Office of the Republic of Serbia (SORS) and Strategic Marketing Research Agency (SMMRI). 2006. Republic of Serbia Multiple Indicator Cluster Survey 2005, Final report. Belgrade, Republic of Serbia: Statistical Office of the Republic of Serbia.

Sullivan, J.M., S.O. Rutstein, and G.T. Bicego. 1994. Infant and child mortality. DHS Comparative Studies No. 15. Calverton, Maryland, USA: Macro International Inc.

Ukrainian Centre for Social Reforms (UCSR), State Statistical Committee (SSC) [Ukraine], Ministry of Health (MOH) [Ukraine], and Macro International Inc. 2008. Ukraine Demographic and Health Survey 2007. Calverton, Maryland, USA: Ukrainian Centre for Social Reforms and Macro International.

United Nations. 1990. World declaration on the survival, protection and development of children. New York: United Nations. Available at: http://www.un-documents.net/wsc-dec.htm.

United Nations Children's Fund (UNICEF), Ministry of Health (MOH) [Albania], and Albanian Association for Protection of Breastfeeding (AAPB). 2006. Monitoring practices of breastfeeding in children. Tirana, Albania: UNICEF, MOH, and AAPB.

United Nations Children’s Fund, World Health Organization, and United Nations Population Fund (UNICEF/WHO/UNFPA). 1997. WHO guidelines for monitoring the availability and use of obstetric services. Geneva: UNICEF/WHO/UNFPA.

United Nations Development Programme (UNDP). 2007. Albania millennium development goals report 2005. Tirana, Albania: United Nations Development Programme. Available at:
http://www.un.org.al.
United Nations General Assembly. 1989. Convention on the Rights of the Child. Resolution A/RES/44/25. New York: United Nations General Assembly. Available at: http://www.un-documents.net/a44r25.htm.

United Nations General Assembly. 2000. Resolution adopted by the General Assembly: United Nations Millennium Declaration, A/RES/55/2, United Nations Headquarters, 18 September 2000. New York: United Nations General Assembly.

United Nations General Assembly. 2002. A world fit for children. Resolution S-27/2. New York: United Nations General Assembly. Available at:
http://www.unicef.org/specialsession/docs_new/documents/A-RES-S27-2E.pdf.
United Nations General Assembly. 2006. Report of the independent expert for the United Nations study on violence against children. United Nations General Assembly Report A/61/299. New York: United Nations General Assembly. Available at:
http://www.unicef.org/violencestudy/reports/SG_violencestudy_en.pdf.
United Nations Population Division (UNPD). 2008. World population prospects: The 2008 revision. New York: United Nations Population Division. Available at:
http://esa.un.org/unpp/index.asp?panel=2 - database.
United Nations Statistical Division (UNSD). 2009. Millennium development goals indicators: The official United Nations site for the MDG indicators. New York: United Nations Statistical Division. Available at: http://mdgs.un.org/unsd/mdg/Data.aspx.

World Bank. 2007. Albania: Urban growth, migration and poverty reduction: A poverty assessment. Tirana, Albania: World Bank.

World Health Organization (WHO). 1981. International code of marketing of breast-milk substitutes. Geneva: World Health Organization.

World Health Organization (WHO). 1992. International statistical classification of diseases and related health problem. 10th Revision (ICD-1), Vol. 1 (definition 3.1). Geneva: World Health Organization.

World Health Organization (WHO). 1993. International statistical classification of diseases and related health problems, tenth revision. Geneva: World Health Organization.

World Health Organization (WHO). 1999. 1999 World Health Organization-International Society of Hypertension guidelines for the management of hypertension: Guidelines subcommittee. Journal of Hypertension 17(2): 151-183.

World Health Organization (WHO). 2002a. Core information for the development of immunization policy, 2002 update. Department of Vaccines and Biologicals, Geneva: World Health Organization. 129-131.

World Health Organization (WHO). 2002b. The world health report. Geneva: World Health Organization.

World Health Organization (WHO). 2002c. WHO global action for skilled attendants for pregnant women. Geneva: World Health Organization. WHO/FCH/RHR/02.17.

World Health Organization (WHO). 2006a. Birth spacing: Report from a WHO technical consultation. Geneva: World Health Organization.

World Health Organization (WHO) Multicentre Growth Reference Study Group. 2006b. WHO child growth standards: Length/height-for-age, weight-for-age, weight-for-length, weight-for-height and body mass index-for-age. Methods and development. Geneva: World Health Organization.

World Health Organization (WHO). 2008. Worldwide prevalence of anaemia 1993-2005: WHO global database on anaemia. ed. B. de Benoist, E. McLean, I. Egli, and M. Cogswell, Geneva: World Health Organization.

World Health Organization (WHO). 2009. Global health risks: mortality and burden of disease attributable to selected major risks. Geneva: World Health Organization.

World Health Organization and United Nations Children's Fund (WHO/UNICEF). 2009. Review of national immunization coverage 1980-2008, Albania. Geneva: World Health Organization and United Nations Children's Fund.

A. 1 Introduction

The 2008-09 Albania Demographic and Health Survey (2008-09 ADHS) is the first national Demographic and Health Survey conducted in Albania. The 2008-09 ADHS calls for a nationally representative sample of about 8,000 interviews of women between the ages of 15 and 49 . The survey is designed to provide information on fertility and childhood mortality, family planning, maternal and child health, knowledge and behaviour regarding AIDS and other sexually transmitted infections (STI), and health issues among the adult population. Survey estimates will be reported for four study domains, comprising geographic areas of Albania. The composition of the four geographic areas by district is as follows:

Coastal:	Delvine, Durres, Fier, Kavaje, Lac, Lezhe, Lushnje, Mallakaster, Sarande, Vlore
Central:	Berat, Devoll, Elbasan, Gjirokaster, Kolonje, Korce, Kruje, Kucove, Malesi e Madhe, Mat, Mirdite, Peqin, Permet, Pogradec, Puke, Shkoder, Skrapar,
	Tepelene, Tirana (rural)
Mountain:	Bulqize, Dibre, Gramsh, Has, Kukes, Librazhd, Tropoje
Urban Tirana:	Tirana (urban)

In addition, a men's survey was conducted in a sub-sample of one out of two (50 percent) households selected for the women's survey. All men age 15-49 in the selected 50 percent sub-sample of households were eligible for the men's survey. The men's survey was designed to collect information on family planning, knowledge and behaviour regarding AIDS and other STIs, and adult health issues. All men age 15-49 and all women age 15-49 in the households selected for the men's survey were also eligible for blood pressure testing.

The 2008 Living Standards Measurement Study (LSMS, 2008) preceded the 2008-09 ADHS by a few months. To permit linkage of data from the two surveys, thereby allowing more opportunities for further analysis, it was decided that the 2008-09 ADHS would use the same enumeration areas as the LSMS 2008, but select different households within each enumeration area.

A. 2 Sampling Frame

The sampling frame used for the 2008-09 ADHS (and for the 2008 LSMS) was based on summary data for the enumeration areas (EAs) from the 2001 Albania Census of Population and Housing. The sampling frame consists of 8,471 enumeration areas throughout the nation. The frame includes information about the enumeration areas locality, number of regular households, and type of residence (urban-rural). Maps delineating enumeration area boundaries were created for the urban enumeration areas; for rural areas interviewing teams relied on local health staff as guides. Of the 8,471 enumeration areas, 3,849 are urban and 4,622 are rural. The size of the enumeration areas (e.g., the number of regular households in the EA or village) varies from 0 to 278 , with an average of 82 households.

The sampling frame was stratified into the four major geographic areas or regions (Coastal, Central, Mountain, and Urban Tirana). Within each of the first three regions the sampling frame was further stratified by individual major cities, other urban, and rural. For Urban Tirana the sampling frame was stratified by three socio-economic groups (low, medium and high).

Table A. 1 shows the distribution of the enumeration areas and households and the percent distribution of the households by region and stratum (city, other urban, and rural areas of residence) in the sampling frame, based on the 2001 census. The distribution shows a great diversity in domain size. In terms of households, the largest domain is the Central region, which represents 45 percent of the total households, while the smallest domain is the Mountain region, which represents only 10 percent of the total households. The urban-rural distribution of the enumeration areas and households is also shown in Table A.1. For Albania as a whole, 45 percent of households are in urban areas and 55 percent are in rural areas.

Domain/ Geographic area	Code	Stratum: City/ Other urban/ Rural	Number of enumeration areas in frame	Number of households in frame	Percent distribution of households
Central	1	Shkoder	278	20,331	2.9
	2	Elbasan	220	20,604	3.0
	3	Berat	123	9,841	1.4
	4	Korce	179	13,879	2.0
	5	Other urban	573	46,724	6.8
	6	Rural	2,485	203,013	29.3
		Sub-total	3,858	314,392	45.4
Coastal	7	Durres	306	24,323	3.5
	8	Fier	168	14,098	2.0
	9	Vlore	241	19,393	2.8
	10	Other urban	510	41,199	6.0
	11	Rural	1,479	122,747	17.7
		Sub-total	2,704	221,760	32.1
Mountain	12	Other urban	172	15,044	2.2
	13	Rural	658	53,061	7.7
		Sub-total	830	68,105	9.8
Urban Tirana	14	Low	268	22,105	3.2
	15	Medium	452	36,769	5.3
	16	High	359	28,633	4.1
		Sub-total	1,079	87,507	12.6
Albania		Urban	3,849	312,943	45.2
		Rural	4,622	378,821	54.8
		Total	8,471	691,764	100.0

A. 3 Sample Allocation

Sample allocation plays an important part in sample design because it relates to the survey precision at the national level. In the absence of accurate information on the main survey indicators at the domain level, the best allocation is proportional allocation. The allocation is proportional to the domain's population size. Survey precision at the national level was not the only goal for the design of the 2008 LSMS and the 2008-09 ADHS, survey precision at the domain level was another important objective.

To ensure comparability across the study domains, the sample size for each domain should be similar. Because of the diversity of domain size, however, proportional allocation could not be used. For example, if proportional allocation had been used, the smallest domain, the Mountain region, would have had about 800 completed women's interviews, compared with more than 4,000 completed women's interviews in the Central region. This would lead to very different levels of precision between the estimates for these regions. Therefore, an equal size allocation was adopted for the first three domains. In the Urban Tirana domain, because there was no rural stratum, a smaller number of enumeration areas were selected. Equal size allocation results in the 8,000 completed women's
interviews being more evenly distributed among the four study domains. Using this approach, the larger domains will be under-sampled and the smaller domains will be over-sampled to achieve accurate representation of each domain.

A. 4 Sampling Procedure and Updating of the Sampling Frame

The 2008-09 ADHS sample is a stratified sample selected in two stages, with the first stage being identical to the first stage of the 2008 LSMS. Stratification is achieved by separating each study domain into major cities, other urban areas, and rural areas. Areas are defined as urban or rural based on the classification in the Albania sampling frame provided by INSTAT. In Urban Tirana, the sample was stratified into three socio-economic groups (low, medium, high). Therefore, the four domains are stratified into a total of 16 sampling strata (see Table A.1).

In the design of the LSMS 2008, used for the 2008-09 ADHS, a total of 125 enumeration areas were selected in each domain except Tirana, which had 75 enumeration areas. This sample allocation provided a total of 450 enumeration areas to be selected in the sample design. Cities, other urban areas and rural areas of Albania are separate strata within each domain in the sample design. Each city was allocated 10 enumeration areas. The allocation of the enumeration areas in each domain is given in Table A. 2.

| Table A. 2 | Allocation of enumeration areas to each domain and strata |
| :--- | :--- | :--- | :--- | :--- |

Samples are selected independently in every stratum, by a two-stage selection. This means that 16 independent samples were selected, one from each sampling stratum. Implicit stratifications were achieved at each of the lower geographical or administrative levels by sorting the sampling frame according to the geographical/administrative order and by using probability proportional to the size in the first stage of sampling. The explicit and implicit stratifications together guarantee a better scattering of the sampled points.

In the LSMS design the primary sampling units (PSUs) are the enumeration areas (EAs) from the 2001 Census, and the secondary sampling units (SSUs) are the households. The frame is updated at the second stage through an updated listing of households in the sample PSUs. To improve the sampling frame, a few large EAs were subdivided into smaller segments, and any small EA was combined with a neighbouring EA to form a PSU.

In the first stage of selection for the LSMS the 450 enumeration areas were selected with a probability proportional to the size of the enumeration area. The enumeration area size is the number of households in the village. After this selection and before the data collection, an updating operation was conducted in April 2008 prior to the LSMS over all of the 450 selected enumeration areas. The updating operation consisted of visits to every selected enumeration area. During the visits, records were made of every structure found on the ground; structures were identified by type (residential or not); number of households in each residential structure were identified; in urban areas a location map and a sketch map were drawn showing the boundaries of the enumeration area and the location of each structure.

The ADHS 2008-09 used exactly the same selection of enumeration areas as selected for the LSMS 2008.

A household list was set up for each selected enumeration area (or PSU). The resulting lists of households served as the sampling frame for the selection of households in the second stage. In the second stage of selection, a fixed number of 20 households were selected in every PSU, with the exception of two PSUs. The 20 households were selected by equal probability systematic sampling. Households selected for the LSMS survey (12 per PSU) were ignored in the selection of households for the ADHS. However, in six PSUs there were less than 20 households after removing the LSMS households, and so some of the households in the LSMS were interviewed in the ADHS as well. In two other PSUs, the total number of households in each PSU was less than 20 so all households in the PSU were interviewed. In these two PSUs there were 17 and 13 households.

The decision on the number of households selected per PSU is a trade-off between fieldwork efficiency and precision. All women age 15-49 in the selected households and all men age 15-49 in one half of the selected households were eligible to be interviewed. The advantages of this two-stage selection procedure are:

1. The selection procedure is simple to implement and reduces possible non-sampling errors in the selection process.
2. It is easy to locate the selected households, reducing non-sampling errors and nonresponse.
3. The interviewers interview only the households in the pre-selected dwellings. No replacement of dwellings was permitted, preventing survey bias.

A. 5 Men's Sub-SAMPLE

In the households selected for the women's survey in each PSU, a sub-sample of one out of two households (50 percent) was selected for the men's survey. All men age 15-49 in the selected households were eligible for the men's survey. The decision to conduct a men's survey on a subsample was to reduce the budget while still achieving acceptable precision for men's indicators. The minimum sample size is larger for women than men because complex indicators such as total fertility and infant and child mortality rates require larger sample sizes to achieve sampling errors of acceptable size, and these data come from interviews with women. The men's sub-sample was selected systematically from the list of selected households in each PSU, starting with the first household in odd numbered PSUs and the second household in even numbered PSUs, and selecting every other household in the PSU. The men's sample is representative for the study domains and for the country as a whole.

A. 6 Sampling Probabilities

Sampling probabilities are important survey parameters that are the basis of the sampling weight calculations. The sampling probabilities will be calculated separately for each sampling stage and for each PSU. We use the following notations:
$P_{1 h i}$: first-stage sampling probability of the $i^{\text {th }}$ PSU in stratum h
$P_{2 h i}$: second-stage sampling probability of selecting a household within the $i^{\text {th }}$ PSU
Let a_{h} be the number of PSUs selected in stratum $h, M_{h i}$ the number of households according to the sampling frame in the $i^{\text {th }}$ PSU, and $\sum M_{h i}$ the total number of households in the stratum. The probability of selecting the $i^{\text {th }}$ PSU in the 2008-09 ADHS sample is calculated as follows:

$$
P_{1 h i}=\frac{a_{h} M_{h i}}{\sum M_{h i}}
$$

Let $M_{h i}^{\prime}$ be the number of households listed in the household listing operation in cluster i in stratum h, let $m_{h i}$ be the number of households selected in the PSU. The second stage selection probability for each household in the PSU is calculated as follows:

$$
P_{2 h i}=\frac{m_{h i}}{M_{h i}^{\prime}}
$$

The overall selection probability of each household in PSU i of stratum h is therefore the product of the two stages selection probabilities:

$$
P_{h i}=P_{1 h i} \times P_{2 h i}
$$

or

$$
P_{h i}=\frac{a_{h} M_{h i}}{\sum M_{h i}} \times \frac{m_{h i}}{M_{h i}^{\prime}}
$$

A. 7 Weighting And Representativeness

Proper weighting of the survey data is important to guarantee the representativeness of the survey data and to prevent bias caused by non-response. All analysis based on survey data must properly apply the sampling weights to guarantee the validity of the survey findings, especially for a complex survey. In a complex survey, every individual has a specific chance (known as inclusion probability) of being selected in the sample. His/her answers must be properly weighted (basically, by the reciprocal of his or her inclusion probability) to be representative. For example, if a particular individual was selected in the sample with a probability of 0.001 , then he/she represents 1,000 similar individuals in the base population. Therefore, his/her answers to all of the questions must be multiplied by 1,000 to be representative. If another particular individual is selected with a probability of 0.002 , then he/she represents 500 similar individuals in the base population, and therefore will receive a weight of 500 . Representativeness means being able to expand the sample to the base population. Since the samples are selected independently in each study domain, they are representative for their corresponding domains, if properly weighted. If each individual sample is representative for its domain, then the overall sample for the country as a whole is representative for the country. Therefore, the 2008-09 ADHS sample is representative for the four study domains (geographic regions), for urban and rural areas, and for the country as a whole.

The 2008-09 ADHS is a complex survey including multi-stage, clustering, stratification, and unequal probability sampling. Because of the non-proportional allocation of the samples to the four different reporting domains and their urban and rural areas, and the differences in the number of households in the base file and the number of households listed in the household listing operation for
each cluster, conditions for a self-weighting sample were not met. Therefore, weights are required to ensure the actual representativeness of the sample at both domain level and national level.

Several sets of weights were calculated for the 2008-09 ADHS to satisfy different users of the dataset. First, a set of household weights was calculated for the selected households. The basic sampling weight for each household in cluster i of stratum h is the inverse of its selection probability (calculated in section A.6):

$$
W_{h i}=1 / P_{h i}
$$

This weight was further adjusted for non-response at the household level. Non-response adjustment was essential to prevent bias caused by non-response. For the convenience of statement, the following notations are used:
m_{h} : total number of households allocated to the given stratum
m_{h}^{\prime} : total number of households found in the given stratum, $0 \leq m_{h}^{\prime} \leq m_{h}$
$m_{h}^{\prime \prime}$: total number of households that completed the survey in the given stratum, $0 \leq m_{h}^{\prime \prime} \leq m_{h}^{\prime}$

The adjustment of the weight is performed to adjust for non-response of households that are found. Out of scope households (see below) are not included in the calculation. To calculate appropriate weight adjustment factors the final results of the household interview are used. The following is a list of the results categories:

1. Completed
2. No household member at home or no competent respondent at home at time of visit
3. Entire household absent for extended period of time
4. Postponed
5. Refused
6. Dwelling vacant or address not a dwelling
7. Dwelling destroyed
8. Dwelling not found
9. Other - specify

Categories 3, 6 and 7 are considered 'out of scope' and are not included in the non-response calculation. For category 9, the responses were reviewed and all responses implying an out of scope result were recoded into one of the three categories above. Thus categories $1,2,4,5,8$ and 9 are included in the households found, and just category 1 for the households completed. Tables A. 3 and A. 4 present the results of the household and women's interviews for the full sample and the household and men's interviews for the men's sub-sample, respectively, by residence and region, together with the overall response rates.

The adjusted weight for each household in cluster i of stratum h is given by:

$$
W_{h i}^{\prime}=W_{h i} / \frac{m_{h}^{\prime}}{m_{h}^{\prime \prime}}
$$

This adjustment was based on the assumption of homogeneity of the response behaviour within sampling stratum. This means it was unlikely that one particular household responded to the survey significantly differently from others in the same stratum.

The above adjusted weight was further normalized (called standard weight) at the national level to make the number of weighted cases equal to the number of unweighted cases for all household indicators based on the whole national sample. This treatment had no effect on the indictors themselves. But it did affect the number of weighted cases to reflect the relative scale of the base population it represents. The normalization was done by multiplying the whole set of weights by a unique constant, which was the number of unweighted total number of households interviewed over the weighted total number of households interviewed:

$$
W_{h i}^{\prime \prime}=W_{h i}^{\prime} \times \frac{\sum \sum m_{h i}}{\sum \sum\left(W_{h i}^{\prime} \times m_{h i}\right)}
$$

All household indicators were tabulated by applying this set of weights.
Second, a set of women individual standard weights was calculated based on the household standard weight calculated above, correcting for women's non-response and normalizing the resulting weights. Because all women age 15-49 were interviewed in every selected household, women should share the same weight as that of the household to which they belong. And, because there are nonresponses at the individual level-that is, not all of the eligible women in the selected household answered the survey - the household standard weight must be corrected for women's non-response. The following notations are used:
> $n_{W h}$: total number of eligible women found in all of the interviewed households in a given stratum

$$
n_{W h}^{\prime}: \text { total number of women interviews completed in the survey in the given stratum }
$$

Then the women's individual weight was calculated by:

$$
W_{W h i}=W_{h i}^{\prime \prime} / \frac{n_{W h}^{\prime}}{n_{W h}}
$$

Women's standard weight was calculated by:

$$
W_{W h i}^{\prime}=W_{W h i} \times \frac{\sum \sum n_{W h i}^{\prime}}{\sum \sum\left(W_{W h i} \times n_{W h i}^{\prime}\right)}
$$

The reason for normalization of the individual weight is the same as for normalization of the household weight. The household standard weight for the men's sub-sample and the men's individual standard weight for the men's sub-sample were calculated in the same way. The household, women's, and men's weights were PSU weights. All of the households in the same cluster shared the same household weights; all women and men in the same PSU shared the same weight for women and men, respectively.

A spreadsheet for the calculation of the standard weights was prepared to facilitate the calculation.

A. 8 Special Concerns

As with all DHS surveys, the target population for the women's survey is all women age 1549 living in ordinary households who slept in the household the night before the survey (this group is known as the de facto population). The target population for the men's survey consists of all men age 15-49 living in ordinary households who slept in the household the night before the survey. This special definition of target population aims to adapt to the special features of the DHS survey. The data collection procedure lasts for approximately six months without a fixed survey date. The de facto
population is the most accessible population. The actual sampling unit is the structure in which the household is located, which was identified as an ordinary residence structure during the household listing operation, not the specific household with the specific household members living in the structure at the moment of household listing. With the structure as sampling unit, it does not matter whether the actual residents in a selected structure at the time of the survey are the same as those who lived there at the time of household listing. This helps to prevent some sample loss caused by migration. It has other important advantages: the sampled households are located in a fixed place; it is possible to draw a geographical map showing the exact locations of the selected households; and these features assist teams in locating the selected households during data collection. As a result, it is easier to control the fieldwork and to check the accuracy of survey implementation. All these features can greatly reduce non-sampling errors and possible bias, thus contributing to survey precision.

The methodology used in the 2008-09 ADHS makes it possible to capture the migrant population within the country. In cases where the migrant population is staying in ordinary households (structures used as residential households), internal migrants will be properly represented in the 2008-09 ADHS because the sample is drawn from a list of residential structures (the sampling unit), which contain the de facto population (the target population). De facto refers to persons who slept in the selected household the night before the day of the interview. Because there is no reason to think that people who came to the selected household temporarily-non-usual members who slept in the household the night before the interview and are therefore de facto-are different from people who left the selected household temporarily to go somewhere else-usual members who did not sleep in the household the night before the interview and are therefore not de facto-it is reasonable to assume that the de facto population does not differ substantially from the actual population. Thus, the 2008-09 ADHS survey results are representative of the actual population, including the migrant population.

Table A. 3 Sample implementation: Women

Percent distribution of households and eligible women by results of the household and individual interviews, and household, eligible women and overall response rates, according to urban-rural residence and region, Albania 2008-09

Result	Residence		Region				Total
	Urban	Rural	Coastal	Central	Mountain	Urban Tirana	
Selected households							
Completed (C)	89.9	87.8	88.3	91.3	85.9	91.0	88.9
Household present but no competent respondent at home (HP)	0.5	0.2	0.2	0.4	0.2	0.7	0.4
Postponed (P)	0.0	0.1	0.1	0.0	0.0	0.0	0.0
Refused (R)	1.1	0.5	0.9	0.6	0.4	1.5	0.8
Dwelling not found (DNF)	0.6	0.3	0.4	0.4	0.6	0.3	0.4
Household absent (HA)	1.6	2.0	1.4	1.6	1.9	2.3	1.7
Dwelling vacant/address not a dwelling (DV)	5.9	8.4	7.9	5.3	10.0	3.7	7.0
Dwelling destroy (DD)	0.3	0.5	0.5	0.2	0.5	0.4	0.4
Other (O)	0.2	0.3	0.2	0.2	0.4	0.1	0.3
Total	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Number of sampled households	4,894	4,100	2,501	2,499	2,493	1,501	8,994
Household response rate (HRR) ${ }^{1}$	97.5	98.5	97.9	98.3	98.0	97.2	97.9
Eligible women							
Completed (EWC)	98.7	97.5	98.0	97.7	97.9	99.2	98.1
Not at home (EWNH)	0.1	0.8	0.2	0.4	0.7	0.1	0.4
Refused (EWR)	0.2	0.3	0.0	0.6	0.1	0.0	0.2
Incapacitated (EWI)	1.1	1.3	1.6	1.2	1.0	0.7	1.2
Other (EWO)	0.1	0.2	0.0	0.0	0.3	0.0	0.1
Total	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Number of women	3,898	3,835	2,001	2,165	2,416	1,151	7,733
Eligible women response rate (EWRR) ${ }^{2}$	98.7	97.5	98.0	97.7	97.9	99.2	98.1
Overall response rate (OWRR) ${ }^{3}$	96.2	96.0	96.0	96.0	96.0	96.5	96.0

${ }^{1}$ Using the number of households falling into specific response categories, the household response rate (HRR) is calculated as:

$$
\frac{100 * \mathrm{C}}{\mathrm{C}+\mathrm{HP}+\mathrm{P}+\mathrm{R}+\mathrm{DNF}+\mathrm{O}}
$$

${ }^{2}$ The eligible women response rate (EWRR) is equivalent to the percentage of interviews completed (EWC).
${ }^{3}$ The overall women response rate (OWRR) is calculated as:

$$
\text { OWRR }=\mathrm{HRR} * E W R R / 100
$$

Table A. 4 Sample implementation: Men

Percent distribution of households and eligible men by results of the household and individual interviews, and household, eligible men and overall response rates, according to urban-rural residence and region, Albania 2008-09

Result	Residence		Region				Total
	Urban	Rural	Coastal	Central	Mountain	Urban Tirana	
Selected households							
Completed (C)	89.6	87.2	88.1	91.4	85.6	89.5	88.5
Household present but no competent respondent at home (HP)	0.6	0.2	0.2	0.6	0.2	0.8	0.4
Postponed (P)	0.0	0.0	0.1	0.0	0.0	0.0	0.0
Refused (R)	1.5	0.7	1.3	1.0	0.6	2.0	1.1
Dwelling not found (DNF)	0.6	0.4	0.6	0.2	0.8	0.4	0.5
Household absent (HA)	1.8	2.0	1.3	1.4	2.3	2.9	1.9
Dwelling vacant/address not a dwelling (DV)	5.6	8.5	7.8	5.1	9.5	4.1	6.9
Dwelling destroy (DD)	0.1	0.4	0.2	0.3	0.3	0.1	0.3
Other (O)	0.3	0.4	0.3	0.1	0.7	0.1	0.3
Total	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Number of sampled households	2,447	2,050	1,251	1,249	1,247	750	4,497
Household response rate (HMRR) ${ }^{1}$	96.8	98.0	97.2	98.1	97.4	96.4	97.4
Eligible men							
Completed (EMC)	97.6	93.7	96.0	94.7	95.3	98.5	95.8
Not at home (EMNH)	0.3	1.7	0.3	1.1	1.8	0.2	0.9
Postponed (EMP)	0.1	0.1	0.1	0.1	0.0	0.2	0.1
Refused (EMR)	0.5	1.3	0.6	1.5	0.9	0.0	0.9
Incapacitated (EMI)	1.5	3.0	2.9	2.5	1.8	1.1	2.2
Other (EMO)	0.0	0.3	0.0	0.1	0.3	0.0	0.1
Total	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Number of men	1,695	1,449	784	923	909	528	3,144
Eligible men response rate (EMRR) ${ }^{2}$	97.6	93.7	96.0	94.7	95.3	98.5	95.8
Overall response rate (OMRR) ${ }^{3}$	94.5	91.9	93.3	92.9	92.7	94.9	93.3

${ }^{1}$ Using the number of households falling into specific response categories, the household response rate (HMRR) for the men's sub-sample is calculated as:

$$
\frac{100^{*} \mathrm{C}}{\mathrm{C}+\mathrm{HP}+\mathrm{P}+\mathrm{R}+\mathrm{DNF}+\mathrm{O}}
$$

${ }^{2}$ The eligible men response rate (EMRR) is equivalent to the percentage of interviews completed (EMC).
${ }^{3}$ The overall men response rate (OMRR) is calculated as:
$O M R R=H M R R * E M R R / 100$

The estimates from a sample survey are affected by two types of errors: 1) non-sampling errors, and 2) sampling errors. Non-sampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2008-09 ADHS to minimize this type of error, non-sampling errors are impossible to avoid and difficult to evaluate statistically.

Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the ADHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.

A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.

If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the ADHS sample is the result of a multi-stage stratified design, and, consequently, it was necessary to use more complex formulae. The computer software used to calculate sampling errors for the ADHS is the ISSA Sampling Error Module (ISSAS). This module used the Taylor linearization method of variance estimation for survey estimates that are means or proportions. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.

The Taylor linearization method treats any percentage or average as a ratio estimate, $r=y / x$, where y represents the total sample value for variable y, and x represents the total number of cases in the group or subgroup under consideration. The variance of r is computed using the formula given below, with the standard error being the square root of the variance:

$$
S E^{2}(r)=\operatorname{var}(r)=\frac{1-f}{x^{2}} \sum_{h=1}^{H}\left[\frac{m_{h}}{m_{h-1}}\left(\sum_{i=1}^{m_{h}} z_{h i}^{2}-\frac{z_{h}^{2}}{m_{h}}\right)\right]
$$

in which

$$
z_{h i}=y_{h i}-r x_{h i}, \text { and } z_{h}=y_{h}-r x_{h}
$$

where $\quad h \quad$ represents the stratum which varies from 1 to H ,
$m_{h} \quad$ is the total number of enumeration areas selected in the $h^{\text {th }}$ stratum,
$y_{h i} \quad$ is the sum of the values of variable y in EA i in the $h^{\text {th }}$ stratum,
$x_{h i} \quad$ is the sum of the number of cases in EA i in the $h^{\text {th }}$ stratum, and
$f \quad$ is the overall sampling fraction, which is so small that it is ignored.

The Jackknife repeated replication method derives estimates of complex rates from each of several replications of the parent sample, and calculates standard errors for these estimates using simple formulae. Each replication considers all but one PSUs in the calculation of the estimates. Pseudoindependent replications are thus created. In the ADHS, there were 450 non-empty PSUs. Hence, 450 replications were created. The variance of a rate r is calculated as follows:

$$
S E^{2}(r)=\operatorname{var}(r)=\frac{1}{k(k-1)} \sum_{i=1}^{k}\left(r_{i}-r\right)^{2}
$$

in which

$$
r_{i}=k r-(k-1) r_{(i)}
$$

where r is the estimate computed from the full sample of 450 PSUs,
$r_{(i)} \quad$ is the estimate computed from the reduced sample of 449 PSUs ($i^{\text {th }}$ cluster excluded), and
$k \quad$ is the total number of clusters.

In addition to the standard error, ISSAS computes the design effect (DEFT) for each estimate, which is defined as the ratio between the standard error using the given sample design and the standard error that would result if a simple random sample had been used. A DEFT value of 1.0 indicates that the sample design is as efficient as a simple random sample, while a value greater than 1.0 indicates the increase in the sampling error due to the use of a more complex and less statistically efficient design. ISSAS also computes the relative error and confidence limits for the estimates.

Sampling errors for the ADHS are calculated for selected variables considered to be of primary interest. The results are presented in this appendix for the country as a whole, for urban and rural areas, for the four regions (Coastal, Central, and Mountain, and Urban Tirana). For each variable, the type of statistic (mean, proportion, or rate) and the base population are given in Table B.1. Tables B. 2 to B. 8 present the value of the statistic (R), its standard error (SE), the number of unweighted (N) and weighted (WN) cases, the design effect (DEFT), the relative standard error (SE/R), and the 95 percent confidence limits ($\mathrm{R} \pm 2 \mathrm{SE}$), for each variable. The DEFT is considered undefined when the standard error considering a simple random sample is zero (when the estimate is close to 0 or 1).

In general, the relative standard error for most estimates for the country as a whole is small, except for estimates of very small proportions. There are some differentials in the relative standard error for the estimates of sub-populations. For example, for the variable contraceptive use for currently married women age 15-49, the relative standard errors as a percent of the estimated mean for the whole country, for urban areas, and for rural areas are 1.6 percent, 1.7 percent, and 2.7 percent, respectively.

The confidence interval (e.g., as calculated for contraceptive use for currently married women age 15-49) can be interpreted as follows: the overall national sample proportion is 0.693 and its standard error is 0.011 . Therefore, to obtain the 95 percent confidence limits, one adds and subtracts twice the standard error to the sample estimate, i.e., $0.693 \pm 2(0.011)$. There is a high probability (95 percent) that the true average proportion of contraceptive use for currently married women age 15 to 49 is between 0.671 and 0.716 .

Table B. 1 List of selected variables for sampling errors, Albania 2008-09

Variable	Estimate	Base population
WOMEN		
Urban residence	Proportion	All women
Literate	Proportion	All women
No education or only primary 4-year	Proportion	All women
Secondary education or higher	Proportion	All women
University education or higher	Proportion	All women
Net attendance ratio for primary school	Ratio	Children 6-14 years at the start of the school year
Never married	Proportion	All women
Currently married/in union	Proportion	All women
Married before age 20	Proportion	All women 25-49
First sexual intercourse before age 18	Proportion	All women 25-49
Currently pregnant	Proportion	All women
Children ever born	Mean	All women
Children surviving	Mean	All women
Children ever born to women age 40-49	Mean	All women 40-49
Knows any contraceptive method	Proportion	Currently married women
Ever used contraceptive method	Proportion	Currently married women
Currently using any contraceptive method	Proportion	Currently married women
Currently using a modern method	Proportion	Currently married women
Currently using pill	Proportion	Currently married women
Currently using IUD	Proportion	Currently married women
Currently using condom	Proportion	Currently married women
Currently using withdrawal	Proportion	Currently married women
Obtained method from public sector source	Proportion	Current users of modern methods
Wants no more children	Proportion	Currently married women
Wants to delay birth at least 2 years	Proportion	Currently married women
Unmet need for family planning	Proportion	Currently married women
Ideal family size	Mean	All women
Mother received antenatal care from skilled provider	Proportion	Last births in past 5 years
Mother received tetanus injection for last birth	Proportion	Last births in past 5 years
Mother received medical assistance at delivery	Proportion	Births in past 5 years
Had diarrhoea in two weeks before survey	Proportion	Births in past 5 years
Vaccination register at health centre seen	Proportion	Children 18-29 months
Received BCG	Proportion	Children 18-29 months
Received DPT (3 doses)	Proportion	Children 18-29 months
Received measles	Proportion	Children 18-29 months
Fully immunized	Proportion	Children 18-29 months
Height-for-age (below -2SD)	Proportion	Children 0-59 months measured
Weight-for-height (below -2SD)	Proportion	Children 0-59 months measured
Weight-for-age (below -2SD)	Proportion	Children 0-59 months measured
$\mathrm{BMI}<18.5$	Proportion	All women
Any anaemia (children)	Proportion	Children 6-59 months
Any anaemia (women)	Proportion	All women
Has heard of HIV/AIDS	Proportion	All women
Knows about condoms	Proportion	All women
Knows about limiting partners	Proportion	All women
Has comprehensive knowledge of HIV/AIDS	Proportion	All women
Knows about mother-to-child transmission of HIV through breastfeeding	Proportion	All women who have heard of HIV/AIDS
Has accepting attitudes towards people with HIV	Proportion	All women who have heard of HIV/AIDS
Has hypertension	Proportion	All women
Total fertility rate (past 3 years)	Rate	All women
Neonatal mortality	Rate	Children born in past 5(10) ${ }^{1}$ years
Post-neonatal mortality	Rate	Children born in past 5(10) ${ }^{1}$ years
Infant mortality	Rate	Children born in past 5(10) ${ }^{1}$ years
Child mortality	Rate	Children born in past 5(10) ${ }^{1}$ years
Under-5 mortality	Rate	Children born in past 5(10) ${ }^{1}$ years
MEN		
Urban residence	Proportion	All men
Literate	Proportion	All men
No education	Proportion	All men
Secondary education or higher	Proportion	All men
University education or higher	Proportion	All men
Never married	Proportion	All men
Currently married/in union	Proportion	All men
Married before age 20	Proportion	All men 25-49
First sexual intercourse before age 18	Proportion	All men 25-49
Children ever born	Mean	All men
Ever used contraceptive method	Proportion	Currently married men
Wants no more children	Proportion	Currently married men
Wants to delay birth at least 2 years	Proportion	Currently married men
Ideal family size	Mean	All men
Has heard of HIV/AIDS	Proportion	All men
Knows about condoms	Proportion	All men
Knows about limiting partners	Proportion	All men
Has comprehensive knowledge of HIV/AIDS	Proportion	All men
Has accepting attitudes towards people with HIV	Proportion	All men who have heard of HIV/AIDS
Has hypertension	Proportion	All men

[^34]Table B. 2 Sampling errors for National sample, Albania 2008-09

Variable	Value (R)	Standard error (SE)	Number of cases		Design effect (DEFT)	Relative error (SE/R)	Confidence limits	
				Weight-				
			(N)	(WN)			R-2SE	$\mathrm{R}+2 \mathrm{SE}$
WOMEN								
Urban residence	0.446	0.016	7584	7584	2.812	0.036	0.414	0.478
Literate	0.985	0.002	7584	7584	1.566	0.002	0.980	0.989
No education or only primary 4-year	0.017	0.003	7584	7584	1.838	0.162	0.011	0.022
Secondary education or higher	0.494	0.014	7584	7584	2.455	0.029	0.466	0.522
University education or higher	0.133	0.011	7584	7584	2.701	0.079	0.112	0.154
Net attendance ratio for primary school	0.952	0.004	5471	5131	1.282	0.004	0.944	0.960
Never married	0.311	0.009	7584	7584	1.627	0.028	0.293	0.328
Currently married/in union	0.659	0.009	7584	7584	1.696	0.014	0.641	0.678
Married before age 20	0.287	0.008	5113	5130	1.257	0.028	0.271	0.303
First sexual intercourse before age 18	0.358	0.007	5113	5130	1.110	0.021	0.343	0.373
Currently pregnant	0.020	0.002	7584	7584	1.326	0.107	0.016	0.024
Children ever born	1.638	0.023	7584	7584	1.318	0.014	1.592	1.685
Children surviving	1.578	0.022	7584	7584	1.301	0.014	1.534	1.621
Children ever born to women age 40-49	2.804	0.040	2300	2319	1.406	0.014	2.725	2.884
Knows any contraceptive method	0.995	0.001	4967	5001	1.296	0.001	0.992	0.998
Ever used contraceptive method	0.909	0.005	4967	5001	1.311	0.006	0.898	0.919
Currently using any contraceptive method	0.693	0.011	4967	5001	1.744	0.016	0.671	0.716
Currently using a modern method	0.106	0.006	4967	5001	1.336	0.055	0.095	0.118
Currently using pill	0.016	0.002	4967	5001	1.198	0.133	0.012	0.020
Currently using condom	0.040	0.004	4967	5001	1.275	0.089	0.032	0.047
Currently using withdrawal	0.579	0.011	4967	5001	1.628	0.020	0.556	0.602
Obtained method from public sector source	0.527	0.029	603	578	1.442	0.056	0.469	0.586
Wants no more children	0.697	0.008	4967	5001	1.216	0.011	0.681	0.713
Wants to delay birth at least 2 years	0.087	0.005	4967	5001	1.326	0.061	0.076	0.097
Unmet need for family planning	0.128	0.007	4967	5001	1.541	0.057	0.113	0.143
Ideal family size	2.551	0.016	7522	7515	1.423	0.006	2.518	2.584
Mother received antenatal care from								
Mother received tetanus injection for last birth	0.631	0.018	1341	1310	1.353	0.029	0.595	0.667
Mother received medical assistance at delivery	0.993	0.002	1616	1576	1.216	0.002	0.989	0.998
Had diarrhoea in two weeks before survey	0.053	0.007	1586	1550	1.236	0.136	0.039	0.068
Vaccination register at health centre seen	0.958	0.016	291	292	1.353	0.017	0.927	0.990
Received BCG	0.979	0.012	291	292	1.477	0.013	0.955	1.000
Received DPT and hepatitis B (3 doses)	0.976	0.013	291	292	1.410	0.013	0.951	1.000
Received polio (3 doses)	0.980	0.012	291	292	1.468	0.012	0.957	1.000
Received measles	0.967	0.010	291	292	0.935	0.010	0.948	0.987
Fully immunized	0.951	0.013	291	292	1.039	0.014	0.925	0.977
Height-for-age (below -2SD)	0.193	0.013	1309	1289	1.191	0.069	0.166	0.220
Weight-for-height (below -2SD)	0.091	0.011	1309	1289	1.387	0.123	0.069	0.114
Weight-for-age (below -2SD)	0.052	0.008	1309	1289	1.179	0.147	0.037	0.068
BMI <18.5.	0.032	0.004	7352	7330	1.884	0.121	0.024	0.039
Any anaemia (children)	0.174	0.014	1381	1322	1.286	0.079	0.146	0.201
Any anaemia (women)	0.190	0.007	7467	7443	1.546	0.037	0.176	0.204
Has heard of HIV/AIDS	0.934	0.005	7584	7584	1.620	0.005	0.924	0.943
Knows about condoms	0.737	0.010	7584	7584	2.059	0.014	0.717	0.758
Knows about limiting partners	0.782	0.009	7584	7584	1.901	0.012	0.764	0.800
Has comprehensive knowledge of HIV/AIDS	0.284	0.011	7584	7584	2.127	0.039	0.262	0.306
Knows about mother-to-child transmission of HIV through breastfeeding	0.750	0.008	7584	7584	1.656	0.011	0.733	0.766
Has accepting attitudes towards people with HIV	0.061	0.004	7049	7081	1.526	0.071	0.052	0.070
Has hypertension	0.200	0.009	3618	3580	1.400	0.047	0.182	0.219
Total fertility rate (past 3 years)	1.588	0.076	21209	21231	1.404	0.048	1.437	1.739
Neonatal mortality	10.860	3.032	1641	1600	1.181	0.279	4.797	16.924
Post-neonatal mortality	6.759	2.096	1644	1605	1.128	0.310	2.567	10.950
Infant mortality	17.619	3.727	1644	1605	1.168	0.212	10.165	25.073
Child mortality	3.985	1.891	1647	1606	1.296	0.474	0.204	7.766
Under-5 mortality	21.534	4.511	1650	1611	1.295	0.209	12.513	30.555
MEN								
Urban residence	0.462	0.015	3013	3013	1.661	0.033	0.432	0.492
Literate	0.982	0.004	3013	3013	1.825	0.004	0.974	0.991
No education	0.018	0.004	3013	3013	1.457	0.195	0.011	0.025
Secondary education or higher	0.589	0.016	3013	3013	1.739	0.026	0.558	0.620
University education or higher	0.120	0.012	3013	3013	2.029	0.100	0.096	0.144
Never married	0.428	0.011	3013	3013	1.223	0.026	0.406	0.451
Currently married/in union	0.565	0.011	3013	3013	1.211	0.019	0.543	0.587
Married before age 20	0.034	0.005	1958	1951	1.293	0.157	0.023	0.044
First sexual intercourse before age 18	0.269	0.012	1958	1951	1.163	0.043	0.245	0.292
Children ever born	1.346	0.031	3013	3013	1.105	0.023	1.285	1.407
Ever used contraceptive method	0.961	0.006	1680	1703	1.230	0.006	0.949	0.972
Wants no more children	0.689	0.013	1680	1703	1.186	0.019	0.662	0.716
Wants to delay birth at least 2 years	0.054	0.006	1680	1703	1.167	0.120	0.041	0.067
Ideal family size	2.626	0.023	2934	2930	1.245	0.009	2.579	2.673
Has heard of HIV/AIDS	0.941	0.007	3013	3013	1.568	0.007	0.928	0.955
Knows about condoms	0.833	0.013	3013	3013	1.869	0.015	0.808	0.859
Knows about limiting partners	0.814	0.014	3013	3013	1.960	0.017	0.786	0.842
Has comprehensive knowledge of HIV/AIDS	0.203	0.010	3013	3013	1.343	0.049	0.183	0.222
Has accepting attitudes towards people with HIV	0.063	0.008	2799	2836	1.817	0.133	0.046	0.079
Has hypertension	0.276	0.011	2875	2837	1.293	0.039	0.255	0.298

Table B. 3 Sampling errors for Urban sample, Albania 2008-09

Variable	Value (R)	Stand- ard error (SE)	Number of cases		Design effect (DEFT)	Relative error (SE/R)	Confidence limits	
				Weight-				
			(N)	(WN)			R-2SE	R+2SE
WOMEN								
Urban residence	1.000	0.000	3846	3380	na	0.000	1.000	1.000
Literate	0.990	0.003	3846	3380	1.763	0.003	0.984	0.996
No education or only primary 4-year	0.015	0.004	3846	3380	2.114	0.273	0.007	0.024
Secondary education or higher	0.734	0.019	3846	3380	2.649	0.026	0.697	0.772
University education or higher	0.258	0.018	3846	3380	2.544	0.070	0.222	0.294
Net attendance ratio for primary school	0.954	0.007	2535	2048	1.327	0.007	0.940	0.968
Never married	0.327	0.015	3846	3380	2.035	0.047	0.296	0.358
Currently married/in union	0.635	0.016	3846	3380	2.119	0.026	0.602	0.668
Married before age 20	0.218	0.010	2721	2373	1.299	0.047	0.198	0.239
First sexual intercourse before age 18	0.310	0.010	2721	2373	1.149	0.033	0.290	0.330
Currently pregnant	0.017	0.003	3846	3380	1.389	0.168	0.012	0.023
Children ever born	1.415	0.035	3846	3380	1.614	0.025	1.346	1.485
Children surviving	1.380	0.033	3846	3380	1.589	0.024	1.314	1.446
Children ever born to women age 40-49	2.379	0.047	1207	1058	1.450	0.020	2.286	2.473
Knows any contraceptive method	0.999	0.000	2530	2145	0.927	0.000	0.998	1.000
Ever used contraceptive method	0.928	0.006	2530	2145	1.211	0.007	0.916	0.940
Currently using any contraceptive method	0.744	0.013	2530	2145	1.442	0.017	0.719	0.769
Currently using a modern method	0.119	0.009	2530	2145	1.444	0.078	0.101	0.138
Currently using pill	0.020	0.004	2530	2145	1.247	0.172	0.013	0.027
Currently using condom	0.051	0.006	2530	2145	1.478	0.127	0.038	0.064
Currently using withdrawal	0.618	0.014	2530	2145	1.446	0.023	0.590	0.646
Obtained method from public sector source	0.377	0.039	351	297	1.518	0.104	0.299	0.456
Wants no more children	0.677	0.012	2530	2145	1.244	0.017	0.654	0.700
Wants to delay birth at least 2 years	0.086	0.008	2530	2145	1.355	0.088	0.071	0.101
Unmet need for family planning	0.097	0.008	2530	2145	1.389	0.084	0.081	0.114
Ideal family size	2.391	0.022	3813	3352	1.371	0.009	2.347	2.434
Mother received antenatal care from								
Mother received tetanus injection for last birth	0.689	0.024	612	520	1.252	0.035	0.641	0.736
Mother received medical assistance at delivery	0.999	0.001	716	609	0.779	0.001	0.997	1.000
Had diarrhoea in two weeks before survey	0.057	0.008	706	600	0.888	0.149	0.040	0.074
Vaccination register at health centre seen	0.986	0.012	126	109	1.123	0.012	0.963	1.000
Received BCG	0.983	0.016	126	109	1.402	0.017	0.950	1.000
Received DPT and hepatitis B (3 doses)	0.988	0.012	126	109	1.194	0.012	0.965	1.000
Received polio (3 doses)	1.000	0.000	126	109	na	0.000	1.000	1.000
Received measles	1.000	0.000	126	109	na	0.000	1.000	1.000
Fully immunized	0.971	0.019	126	109	1.291	0.020	0.932	1.000
Height-for-age (below -2SD)	0.198	0.019	598	522	1.138	0.097	0.160	0.237
Weight-for-height (below -2SD)	0.106	0.021	598	522	1.638	0.197	0.064	0.147
Weight-for-age (below -2SD)	0.046	0.010	598	522	1.185	0.229	0.025	0.067
BMI <18.5.	0.036	0.007	3757	3293	2.344	0.200	0.021	0.050
Any anaemia (children)	0.131	0.020	625	537	1.403	0.149	0.092	0.170
Any anaemia (women)	0.146	0.008	3807	3348	1.364	0.053	0.131	0.162
Has heard of HIV/AIDS	0.979	0.004	3846	3380	1.563	0.004	0.972	0.986
Knows about condoms	0.857	0.010	3846	3380	1.702	0.011	0.838	0.877
Knows about limiting partners	0.882	0.009	3846	3380	1.823	0.011	0.863	0.901
Has comprehensive knowledge of HIV/AIDS	0.403	0.018	3846	3380	2.234	0.044	0.368	0.439
Knows about mother-to-child transmission of HIV through breastfeeding	0.825	0.008	3846	3380	1.385	0.010	0.808	0.842
Has accepting attitudes towards people with HIV	0.068	0.007	3743	3309	1.654	0.100	0.055	0.082
Has hypertension	0.158	0.011	1877	1609	1.338	0.071	0.135	0.180
Total fertility rate (past 3 years)	1.306	0.111	10870	9576	1.643	0.085	1.085	1.527
Neonatal mortality	6.960	2.200	1864	1555	1.121	0.316	2.561	11.360
Post-neonatal mortality	5.342	1.854	1864	1555	1.053	0.347	1.634	9.050
Infant mortality	12.302	2.892	1864	1555	1.071	0.235	6.518	18.087
Child mortality	0.207	0.149	1864	1555	0.465	0.721	0.000	0.506
Under-5 mortality	12.507	2.897	1864	1555	1.064	0.232	6.713	18.301
MEN								
Urban residence	1.000	0.000	1655	1391	na	0.000	1.000	1.000
Literate	0.985	0.004	1655	1391	1.461	0.004	0.976	0.994
No education	0.023	0.006	1655	1391	1.733	0.277	0.010	0.036
Secondary education or higher	0.730	0.018	1655	1391	1.634	0.024	0.695	0.766
University education or higher	0.217	0.022	1655	1391	2.132	0.100	0.174	0.260
Never married	0.456	0.016	1655	1391	1.346	0.036	0.423	0.489
Currently married/in union	0.536	0.016	1655	1391	1.335	0.031	0.503	0.569
Married before age 20	0.030	0.007	1121	929	1.445	0.244	0.016	0.045
First sexual intercourse before age 18	0.290	0.019	1121	929	1.408	0.066	0.251	0.328
Children ever born	1.123	0.043	1655	1391	1.310	0.039	1.036	1.210
Ever used contraceptive method	0.974	0.007	904	746	1.228	0.007	0.961	0.987
Wants no more children	0.641	0.021	904	746	1.294	0.032	0.600	0.682
Wants to delay birth at least 2 years	0.058	0.010	904	746	1.243	0.167	0.038	0.077
Ideal family size	2.470	0.028	1624	1368	1.311	0.011	2.415	2.526
Has heard of HIV/AIDS	0.979	0.005	1655	1391	1.441	0.005	0.969	0.989
Knows about condoms	0.897	0.012	1655	1391	1.544	0.013	0.874	0.920
Knows about limiting partners	0.884	0.011	1655	1391	1.448	0.013	0.861	0.907
Has comprehensive knowledge of HIV/AIDS	0.295	0.014	1655	1391	1.284	0.049	0.267	0.324
Has accepting attitudes towards people with HIV	0.089	0.015	1607	1362	2.041	0.163	0.060	0.118
Has hypertension	0.239	0.014	1606	1353	1.341	0.060	0.211	0.268
na $=$ Not applicable								

Table B. 4 Sampling errors for Rural sample, Albania 2008-09

Variable	Value (R)	Standard error (SE)	Number of cases		Design effect (DEFT)	Relative error (SE/R)	Confidence limits	
				Weight-				
			(N)	(WN)			R-2SE	$\mathrm{R}+2 \mathrm{SE}$
WOMEN								
Urban residence	0.000	0.000	3738	4204	na	na	0.000	0.000
Literate	0.980	0.003	3738	4204	1.429	0.003	0.974	0.987
No education or only primary 4-year	0.018	0.004	3738	4204	1.631	0.198	0.011	0.025
Secondary education or higher	0.300	0.012	3738	4204	1.595	0.040	0.276	0.324
University education or higher	0.032	0.004	3738	4204	1.414	0.128	0.024	0.040
Net attendance ratio for primary school	0.951	0.005	2936	3083	1.228	0.005	0.941	0.961
Never married	0.298	0.009	3738	4204	1.140	0.029	0.280	0.315
Currently married/in union	0.679	0.009	3738	4204	1.125	0.013	0.662	0.697
Married before age 20	0.346	0.011	2392	2757	1.105	0.031	0.324	0.367
First sexual intercourse before age 18	0.399	0.011	2392	2757	1.081	0.027	0.377	0.420
Currently pregnant	0.022	0.003	3738	4204	1.285	0.141	0.016	0.028
Children ever born	1.818	0.024	3738	4204	0.859	0.013	1.771	1.865
Children surviving	1.736	0.022	3738	4204	0.866	0.013	1.692	1.781
Children ever born to women age 40-49	3.161	0.061	1093	1261	1.426	0.019	3.038	3.284
Knows any contraceptive method	0.992	0.002	2437	2856	1.219	0.002	0.987	0.996
Ever used contraceptive method	0.894	0.008	2437	2856	1.304	0.009	0.878	0.910
Currently using any contraceptive method	0.655	0.018	2437	2856	1.828	0.027	0.620	0.690
Currently using a modern method	0.096	0.007	2437	2856	1.248	0.077	0.082	0.111
Currently using pill	0.013	0.003	2437	2856	1.163	0.206	0.008	0.018
Currently using condom	0.031	0.004	2437	2856	1.085	0.123	0.024	0.039
Currently using withdrawal	0.550	0.017	2437	2856	1.680	0.031	0.516	0.583
Obtained method from public sector source	0.686	0.034	252	281	1.156	0.049	0.618	0.753
Wants no more children	0.712	0.011	2437	2856	1.185	0.015	0.690	0.734
Wants to delay birth at least 2 years	0.087	0.007	2437	2856	1.283	0.084	0.072	0.101
Unmet need for family planning	0.151	0.011	2437	2856	1.519	0.073	0.129	0.173
Ideal family size	2.681	0.023	3709	4162	1.440	0.009	2.634	2.727
Mother received antenatal care from skilled provider	0.962	0.008	729	790	1.150	0.009	0.945	0.978
Mother received tetanus injection for last birth	0.592	0.026	729	790	1.385	0.043	0.541	0.644
Mother received medical assistance at delivery	0.990	0.004	900	967	1.175	0.004	0.982	0.998
Had diarrhoea in two weeks before survey	0.051	0.011	880	949	1.400	0.207	0.030	0.072
Vaccination register at health centre seen	0.941	0.024	165	183	1.316	0.026	0.893	0.990
Received BCG	0.977	0.017	165	183	1.462	0.017	0.943	1.000
Received DPT (3 doses)	0.969	0.019	165	183	1.388	0.020	0.931	1.000
Received polio and hepatitis B (3 doses)	0.969	0.019	165	183	1.388	0.020	0.931	1.000
Received measles	0.948	0.016	165	183	0.915	0.017	0.916	0.980
Fully immunized	0.939	0.018	165	183	0.958	0.019	0.904	0.975
Height-for-age (below -2SD)	0.189	0.018	711	766	1.184	0.096	0.153	0.225
Weight-for-height (below-2SD)	0.082	0.012	711	766	1.154	0.151	0.057	0.106
Weight-for-age (below -2SD)	0.057	0.011	711	766	1.135	0.189	0.035	0.078
BMI <18.5.	0.029	0.004	3595	4037	1.350	0.131	0.021	0.036
Any anaemia (children)	0.203	0.018	756	785	1.156	0.089	0.167	0.239
Any anaemia (women)	0.225	0.010	3660	4095	1.460	0.045	0.205	0.245
Has heard of HIV/AIDS	0.897	0.007	3738	4204	1.477	0.008	0.883	0.912
Knows about condoms	0.641	0.014	3738	4204	1.809	0.022	0.612	0.669
Knows about limiting partners	0.701	0.012	3738	4204	1.580	0.017	0.677	0.725
Has comprehensive knowledge of HIV/AIDS	0.188	0.008	3738	4204	1.307	0.044	0.171	0.205
Knows about mother-to-child transmission of HIV through breastfeeding	0.689	0.012	3738	4204	1.577	0.017	0.665	0.713
Has accepting attitudes towards people with HIV	0.055	0.006	3306	3772	1.459	0.105	0.043	0.066
Has hypertension	0.235	0.014	1741	1971	1.406	0.061	0.206	0.263
Total fertility rate (past 3 years)	1.831	0.093	10338	11656	1.193	0.051	1.645	2.016
Neonatal mortality	12.211	2.970	2253	2370	1.213	0.243	6.272	18.151
Post-neonatal mortality	11.351	2.379	2255	2371	1.046	0.210	6.593	16.108
Infant mortality	23.562	3.766	2255	2371	1.106	0.160	16.030	31.094
Child mortality	4.595	1.563	2256	2372	1.164	0.340	1.469	7.721
Under-5 mortality	28.049	4.213	2258	2373	1.155	0.150	19.622	36.475
MEN								
Urban residence	0.000	0.000	1358	1622	na	na	0.000	0.000
Literate	0.980	0.007	1358	1622	1.911	0.007	0.966	0.995
No education	0.014	0.004	1358	1622	1.120	0.257	0.007	0.021
Secondary education or higher	0.468	0.022	1358	1622	1.656	0.048	0.423	0.513
University education or higher	0.036	0.008	1358	1622	1.609	0.225	0.020	0.053
Never married	0.405	0.014	1358	1622	1.071	0.035	0.376	0.433
Currently married/in union	0.590	0.014	1358	1622	1.054	0.024	0.562	0.618
Married before age 20	0.036	0.007	837	1022	1.156	0.206	0.021	0.051
First sexual intercourse before age 18	0.250	0.014	837	1022	0.934	0.056	0.222	0.278
Children ever born	1.537	0.041	1358	1622	0.935	0.027	1.454	1.620
Ever used contraceptive method	0.951	0.009	776	957	1.160	0.010	0.932	0.969
Wants no more children	0.727	0.018	776	957	1.139	0.025	0.690	0.763
Wants to delay birth at least 2 years	0.051	0.009	776	957	1.098	0.171	0.033	0.068
Ideal family size	2.763	0.037	1310	1562	1.180	0.013	2.689	2.836
Has heard of HIV/AIDS	0.909	0.012	1358	1622	1.476	0.013	0.886	0.932
Knows about condoms	0.778	0.021	1358	1622	1.884	0.027	0.736	0.821
Knows about limiting partners	0.754	0.023	1358	1622	1.941	0.030	0.708	0.799
Has comprehensive knowledge of HIV/AIDS	0.123	0.011	1358	1622	1.265	0.092	0.101	0.146
Has accepting attitudes towards people with HIV	0.038	0.008	1192	1475	1.486	0.216	0.022	0.055
Has hypertension	0.310	0.016	1269	1484	1.210	0.051	0.279	0.342
na = Not applicable								

Table B. 5 Sampling errors for Coastal sample, Albania 2008-09

Variable	Value (R)	Stand- ard error (SE)	Number of cases		Design effect (DEFT)	Relative error (SE/R)	Confidence limits	
			Un-	Weight-				
			(N)	(WN)			R-2SE	$\mathrm{R}+2 \mathrm{SE}$
WOMEN								
Urban residence	0.422	0.019	1961	2129	1.699	0.045	0.384	0.460
Literate	0.985	0.003	1961	2129	1.012	0.003	0.979	0.991
No education or only primary 4-year	0.011	0.003	1961	2129	1.113	0.241	0.006	0.016
Secondary education or higher	0.460	0.017	1961	2129	1.508	0.037	0.426	0.494
University education or higher	0.096	0.007	1961	2129	1.116	0.077	0.081	0.111
Net attendance ratio for primary school	0.953	0.006	1310	1416	1.009	0.006	0.941	0.966
Never married	0.288	0.009	1961	2129	0.906	0.032	0.270	0.307
Currently married/in union	0.681	0.010	1961	2129	0.977	0.015	0.660	0.701
Married before age 20	0.278	0.010	1334	1442	0.830	0.037	0.258	0.298
First sexual intercourse before age 18	0.360	0.013	1334	1442	0.976	0.036	0.335	0.386
Currently pregnant	0.020	0.003	1961	2129	1.026	0.164	0.013	0.026
Children ever born	1.679	0.030	1961	2129	0.881	0.018	1.619	1.740
Children surviving	1.620	0.029	1961	2129	0.874	0.018	1.563	1.677
Children ever born to women age 40-49	2.804	0.059	655	701	1.187	0.021	2.686	2.922
Knows any contraceptive method	0.999	0.001	1337	1450	0.983	0.001	0.997	1.000
Ever used contraceptive method	0.916	0.008	1337	1450	1.077	0.009	0.900	0.933
Currently using any contraceptive method	0.657	0.017	1337	1450	1.336	0.026	0.622	0.692
Currently using a modern method	0.091	0.008	1337	1450	1.047	0.090	0.075	0.108
Currently using pill	0.011	0.003	1337	1450	0.968	0.250	0.006	0.017
Currently using condom	0.025	0.004	1337	1450	0.962	0.164	0.017	0.033
Currently using withdrawal	0.553	0.017	1337	1450	1.284	0.032	0.518	0.588
Obtained method from public sector source	0.644	0.042	128	141	0.984	0.065	0.561	0.728
Wants no more children	0.698	0.014	1337	1450	1.124	0.020	0.670	0.727
Wants to delay birth at least 2 years	0.089	0.008	1337	1450	1.016	0.089	0.073	0.105
Unmet need for family planning	0.159	0.014	1337	1450	1.396	0.088	0.131	0.187
Ideal family size	2.604	0.026	1956	2124	1.247	0.010	2.553	2.655
Mother received antenatal care from skilled provider	0.990	0.006	318	352	1.071	0.006	0.978	1.000
Mother received tetanus injection for last birth	0.745	0.033	318	352	1.360	0.044	0.679	0.811
Mother received medical assistance at delivery	0.992	0.005	393	435	1.042	0.005	0.983	1.000
Had diarrhoea in two weeks before survey	0.053	0.012	386	428	0.999	0.228	0.029	0.077
Vaccination register at health centre seen	0.963	0.026	73	83	1.217	0.027	0.911	1.000
Received BCG	0.962	0.026	73	83	1.172	0.027	0.910	1.000
Received DPT (3 doses)	0.984	0.016	73	83	1.124	0.016	0.952	1.000
Received polio and hepatitis B (3 doses)	0.984	0.016	73	83	1.124	0.016	0.952	1.000
Received measles	0.970	0.022	73	83	1.104	0.022	0.927	1.000
Fully immunized	0.948	0.029	73	83	1.133	0.030	0.890	1.000
Height-for-age (below -2SD)	0.179	0.026	344	382	1.214	0.144	0.127	0.230
Weight-for-height (below-2SD)	0.081	0.014	344	382	0.944	0.173	0.053	0.108
Weight-for-age (below -2SD)	0.060	0.013	344	382	1.015	0.213	0.035	0.086
BMI <18.5	0.030	0.005	1907	2071	1.215	0.157	0.021	0.040
Any anaemia (children)	0.213	0.028	349	385	1.240	0.129	0.158	0.268
Any anaemia (women)	0.202	0.012	1936	2101	1.263	0.057	0.179	0.225
Has heard of HIV/AIDS	0.951	0.009	1961	2129	1.919	0.010	0.933	0.970
Knows about condoms	0.751	0.015	1961	2129	1.571	0.020	0.720	0.782
Knows about limiting partners	0.767	0.015	1961	2129	1.605	0.020	0.736	0.797
Has comprehensive knowledge of HIV/AIDS	0.296	0.015	1961	2129	1.452	0.051	0.266	0.326
Knows about mother-to-child transmission of HIV through breastfeeding	0.799	0.013	1961	2129	1.391	0.016	0.774	0.824
Has accepting attitudes towards people with HIV	0.063	0.006	1868	2026	1.076	0.096	0.051	0.075
Has hypertension	0.215	0.014	929	1011	1.009	0.063	0.188	0.242
Total fertility rate (past 3 years)	1.655	0.118	5493	5964	1.062	0.071	1.419	1.892
Neonatal mortality	3.973	2.002	989	1091	1.009	0.504	0.000	7.977
Post-neonatal mortality	9.446	2.907	989	1091	0.992	0.308	3.631	15.261
Infant mortality	13.419	3.711	989	1091	1.058	0.277	5.997	20.840
Child mortality	2.735	1.565	989	1091	1.042	0.572	0.000	5.865
Under-5 mortality	16.117	4.230	989	1091	1.099	0.262	7.657	24.577
MEN								
Urban residence	0.435	0.022	753	800	1.200	0.050	0.392	0.478
Literate	0.989	0.003	753	800	0.880	0.003	0.982	0.996
No education	0.016	0.004	753	800	0.979	0.283	0.007	0.025
Secondary education or higher	0.545	0.023	753	800	1.284	0.043	0.498	0.591
University education or higher	0.076	0.009	753	800	0.898	0.114	0.059	0.094
Never married	0.417	0.015	753	800	0.859	0.037	0.386	0.448
Currently married/in union	0.578	0.015	753	800	0.843	0.026	0.548	0.609
Married before age 20	0.024	0.008	490	520	1.181	0.339	0.008	0.041
First sexual intercourse before age 18	0.265	0.023	490	520	1.139	0.086	0.220	0.311
Children ever born	1.364	0.057	753	800	1.013	0.042	1.251	1.478
Ever used contraceptive method	0.908	0.017	435	462	1.229	0.019	0.874	0.942
Wants no more children	0.719	0.023	435	462	1.050	0.032	0.673	0.764
Wants to delay birth at least 2 years	0.073	0.015	435	462	1.168	0.199	0.044	0.103
Ideal family size	2.745	0.051	731	778	1.168	0.019	2.643	2.847
Has heard of HIV/AIDS	0.937	0.016	753	800	1.785	0.017	0.905	0.968
Knows about condoms	0.807	0.021	753	800	1.464	0.026	0.765	0.849
Knows about limiting partners	0.815	0.019	753	800	1.376	0.024	0.776	0.854
Has comprehensive knowledge of HIV/AIDS	0.198	0.014	753	800	0.977	0.072	0.170	0.227
Has accepting attitudes towards people with HIV	0.042	0.008	708	749	1.067	0.192	0.026	0.058
Has hypertension	0.369	0.017	711	752	0.926	0.045	0.336	0.403

na $=$ Not applicable

Table B. 6 Sampling errors for Central sample, Albania 2008-09

Variable	Value (R)	Standard error (SE)	Number of cases		Design effect (DEFT)	Relative error (SE/R)	Confidence limits	
				Weight-				
			(N)	(WN)			R-2SE	R+2SE
WOMEN								
Urban residence	0.317	0.015	2115	3477	1.448	0.046	0.288	0.346
Literate	0.983	0.004	2115	3477	1.492	0.004	0.975	0.991
No education or only primary 4-year	0.022	0.005	2115	3477	1.683	0.246	0.011	0.032
Secondary education or higher	0.426	0.015	2115	3477	1.377	0.035	0.396	0.455
University education or higher	0.081	0.007	2115	3477	1.123	0.082	0.067	0.094
Net attendance ratio for primary school	0.948	0.007	1466	2445	1.194	0.008	0.933	0.963
Never married	0.286	0.010	2115	3477	1.009	0.035	0.266	0.306
Currently married/in union	0.685	0.010	2115	3477	1.004	0.015	0.665	0.706
Married before age 20	0.321	0.013	1457	2378	1.086	0.041	0.294	0.347
First sexual intercourse before age 18	0.370	0.012	1457	2378	0.966	0.033	0.345	0.394
Currently pregnant	0.020	0.004	2115	3477	1.182	0.178	0.013	0.028
Children ever born	1.703	0.027	2115	3477	0.815	0.016	1.649	1.756
Children surviving	1.637	0.026	2115	3477	0.830	0.016	1.585	1.689
Children ever born to women age 40-49	2.793	0.067	668	1075	1.358	0.024	2.658	2.927
Knows any contraceptive method	0.992	0.003	1437	2383	1.072	0.003	0.987	0.997
Ever used contraceptive method	0.900	0.009	1437	2383	1.185	0.010	0.881	0.919
Currently using any contraceptive method	0.711	0.021	1437	2383	1.722	0.029	0.670	0.753
Currently using a modern method	0.106	0.009	1437	2383	1.112	0.085	0.088	0.124
Currently using pill	0.011	0.003	1437	2383	1.147	0.282	0.005	0.018
Currently using condom	0.046	0.005	1437	2383	0.979	0.118	0.035	0.057
Currently using withdrawal	0.597	0.020	1437	2383	1.549	0.034	0.557	0.637
Obtained method from public sector source	0.561	0.044	169	263	1.153	0.079	0.473	0.649
Wants no more children	0.713	0.013	1437	2383	1.081	0.018	0.687	0.738
Wants to delay birth at least 2 years	0.093	0.009	1437	2383	1.199	0.099	0.075	0.111
Unmet need for family planning	0.111	0.012	1437	2383	1.391	0.104	0.088	0.134
Ideal family size	2.600	0.027	2096	3440	1.265	0.010	2.546	2.654
Mother received antenatal care from								
Mother received tetanus injection for last birth	0.584	0.030	372	624	1.173	0.051	0.524	0.643
Mother received medical assistance at delivery	0.993	0.004	437	741	1.130	0.004	0.984	1.000
Had diarrhoea in two weeks before survey	0.060	0.013	428	726	1.193	0.225	0.033	0.087
Vaccination register at health centre seen	0.946	0.028	86	145	1.151	0.029	0.890	1.000
Received BCG	0.981	0.019	86	145	1.325	0.020	0.942	1.000
Received DPT (3 doses)	0.961	0.024	86	145	1.146	0.025	0.914	1.000
Received polio and hepatitis B (3 doses)	0.970	0.022	86	145	1.213	0.023	0.926	1.000
Received measles	0.952	0.016	86	145	0.699	0.017	0.920	0.984
Fully immunized	0.932	0.021	86	145	0.786	0.023	0.890	0.974
Height-for-age (below -2SD)	0.184	0.022	352	590	1.078	0.118	0.141	0.228
Weight-for-height (below-2SD)	0.088	0.016	352	590	1.096	0.181	0.056	0.119
Weight-for-age (below -2SD)	0.042	0.013	352	590	1.162	0.308	0.016	0.068
BMI <18.5.	0.027	0.004	2036	3341	1.128	0.150	0.019	0.035
Any anaemia (children)	0.163	0.023	359	595	1.197	0.143	0.117	0.210
Any anaemia (women)	0.212	0.012	2051	3379	1.295	0.055	0.188	0.235
Has heard of HIV/AIDS	0.917	0.007	2115	3477	1.153	0.008	0.903	0.931
Knows about condoms	0.696	0.016	2115	3477	1.614	0.023	0.664	0.728
Knows about limiting partners	0.758	0.012	2115	3477	1.256	0.015	0.735	0.782
Has comprehensive knowledge of HIV/AIDS	0.230	0.010	2115	3477	1.131	0.045	0.209	0.250
Knows about mother-to-child transmission of HIV through breastfeeding	0.709	0.013	2115	3477	1.356	0.019	0.682	0.735
Has accepting attitudes towards people with HIV	0.055	0.007	1946	3189	1.295	0.122	0.041	0.068
Has hypertension	0.234	0.017	997	1642	1.298	0.074	0.199	0.268
Total fertility rate (past 3 years)	1.742	0.108	5905	9695	1.120	0.062	1.527	1.957
Neonatal mortality	14.286	3.800	1094	1840	1.081	0.266	6.686	21.885
Post-neonatal mortality	7.453	2.644	1094	1840	1.043	0.355	2.166	12.740
Infant mortality	21.738	4.389	1094	1840	1.010	0.202	12.961	30.516
Child mortality	3.389	1.774	1095	1842	1.129	0.523	0.000	6.937
Under-5 mortality	25.054	4.842	1095	1842	1.049	0.193	15.369	34.738
MEN								
Urban residence	0.331	0.019	874	1443	1.204	0.058	0.292	0.369
Literate	0.977	0.009	874	1443	1.699	0.009	0.960	0.994
No education	0.020	0.007	874	1443	1.408	0.335	0.007	0.033
Secondary education or higher	0.555	0.026	874	1443	1.534	0.046	0.504	0.607
University education or higher	0.082	0.013	874	1443	1.424	0.161	0.055	0.108
Never married	0.413	0.016	874	1443	0.988	0.040	0.380	0.446
Currently married/in union	0.582	0.016	874	1443	0.976	0.028	0.550	0.615
Married before age 20	0.044	0.010	568	938	1.104	0.215	0.025	0.064
First sexual intercourse before age 18	0.297	0.016	568	938	0.837	0.054	0.265	0.329
Children ever born	1.400	0.045	874	1443	0.882	0.032	1.309	1.490
Ever used contraceptive method	0.976	0.007	495	840	0.980	0.007	0.963	0.990
Wants no more children	0.708	0.021	495	840	1.025	0.030	0.666	0.750
Wants to delay birth at least 2 years	0.046	0.009	495	840	0.991	0.204	0.027	0.064
Ideal family size	2.591	0.037	846	1395	1.103	0.014	2.517	2.665
Has heard of HIV/AIDS	0.945	0.010	874	1443	1.332	0.011	0.924	0.966
Knows about condoms	0.823	0.023	874	1443	1.789	0.028	0.777	0.869
Knows about limiting partners	0.791	0.026	874	1443	1.859	0.032	0.740	0.843
Has comprehensive knowledge of HIV/AIDS	0.149	0.013	874	1443	1.058	0.086	0.123	0.174
Has accepting attitudes towards people with HIV	0.050	0.010	828	1364	1.325	0.202	0.030	0.070
Has hypertension	0.296	0.018	814	1331	1.109	0.060	0.260	0.331

na $=$ Not applicable

Table B. 7 Sampling errors for Mountain sample, Albania 2008-09

Variable	Value (R)	Stand- ard error (SE)	Number of cases		Design effect (DEFT)	Relative error (SE/R)	Confidence limits	
				Weight-				
			(N)	(WN)			R-2SE	$\mathrm{R}+2 \mathrm{SE}$
WOMEN								
Urban residence	0.229	0.010	2366	777	1.132	0.043	0.209	0.249
Literate	0.977	0.004	2366	777	1.233	0.004	0.969	0.985
No education or only primary 4-year	0.019	0.003	2366	777	1.192	0.175	0.012	0.026
Secondary education or higher	0.371	0.014	2366	777	1.405	0.038	0.343	0.399
University education or higher	0.045	0.004	2366	777	0.914	0.087	0.037	0.053
Net attendance ratio for primary school	0.947	0.006	2052	658	1.099	0.006	0.935	0.959
Never married	0.360	0.011	2366	777	1.069	0.029	0.339	0.381
Currently married/in union	0.621	0.011	2366	777	1.089	0.018	0.599	0.642
Married before age 20	0.291	0.013	1521	487	1.146	0.046	0.264	0.317
First sexual intercourse before age 18	0.336	0.013	1521	487	1.071	0.039	0.310	0.362
Currently pregnant	0.021	0.003	2366	777	0.897	0.125	0.016	0.027
Children ever born	1.935	0.039	2366	777	0.966	0.020	1.856	2.014
Children surviving	1.819	0.034	2366	777	0.913	0.019	1.750	1.887
Children ever born to women age 40-49	3.759	0.102	663	217	1.523	0.027	3.555	3.963
Knows any contraceptive method	0.995	0.003	1493	482	1.407	0.003	0.990	1.000
Ever used contraceptive method	0.914	0.009	1493	482	1.188	0.009	0.896	0.931
Currently using any contraceptive method	0.671	0.015	1493	482	1.252	0.023	0.641	0.702
Currently using a modern method	0.115	0.009	1493	482	1.112	0.080	0.097	0.133
Currently using pill	0.024	0.006	1493	482	1.462	0.239	0.013	0.036
Currently using condom	0.026	0.005	1493	482	1.107	0.176	0.017	0.035
Currently using withdrawal	0.553	0.019	1493	482	1.453	0.034	0.515	0.590
Obtained method from public sector source	0.738	0.047	181	53	1.437	0.064	0.644	0.832
Wants no more children	0.676	0.012	1493	482	1.030	0.018	0.651	0.701
Wants to delay birth at least 2 years	0.081	0.008	1493	482	1.118	0.098	0.065	0.096
Unmet need for family planning	0.160	0.014	1493	482	1.426	0.085	0.133	0.187
Ideal family size	2.819	0.027	2352	772	1.358	0.010	2.764	2.873
Mother received antenatal care from								
Mother received tetanus injection for last birth	0.563	0.027	469	157	1.171	0.047	0.510	0.616
Mother received medical assistance at delivery	0.991	0.003	571	193	0.857	0.003	0.984	0.998
Had diarrhoea in two weeks before survey	0.055	0.008	557	189	0.797	0.138	0.040	0.070
Vaccination register at health centre seen	0.962	0.020	99	34	1.033	0.020	0.922	1.001
Received BCG	1.000	0.000	99	34	na	0.000	1.000	1.000
Received DPT and hepatitis B (3 doses)	1.000	0.000	99	34	na	0.000	1.000	1.000
Received polio (3 doses)	1.000	0.000	99	34	na	0.000	1.000	1.000
Received measles	1.000	0.000	99	34	na	0.000	1.000	1.000
Fully immunized	1.000	0.000	99	34	na	0.000	1.000	1.000
Height-for-age (below -2SD)	0.278	0.026	434	144	1.206	0.093	0.227	0.330
Weight-for-height (below-2SD)	0.091	0.014	434	144	1.052	0.159	0.062	0.120
Weight-for-age (below -2SD)	0.092	0.016	434	144	1.094	0.174	0.060	0.124
BMI <18.5.	0.026	0.004	2291	750	1.243	0.159	0.018	0.034
Any anaemia (children)	0.242	0.021	482	161	1.111	0.086	0.201	0.284
Any anaemia (women)	0.169	0.011	2345	769	1.381	0.063	0.147	0.190
Has heard of HIV/AIDS	0.879	0.012	2366	777	1.845	0.014	0.854	0.904
Knows about condoms	0.625	0.015	2366	777	1.498	0.024	0.596	0.655
Knows about limiting partners	0.703	0.017	2366	777	1.762	0.024	0.670	0.736
Has comprehensive knowledge of HIV/AIDS	0.173	0.010	2366	777	1.297	0.058	0.152	0.193
Knows about mother-to-child transmission of HIV through breastfeeding	0.631	0.013	2366	777	1.359	0.021	0.604	0.658
Has accepting attitudes towards people with HIV	0.060	0.007	2115	683	1.272	0.109	0.047	0.073
Has hypertension	0.244	0.012	1116	364	0.959	0.051	0.219	0.268
Total fertility rate (past 3 years)	1.929	0.114	6536	2146	1.132	0.059	1.702	2.156
Neonatal mortality	18.076	4.494	1530	505	1.234	0.249	9.088	27.065
Post-neonatal mortality	20.207	4.225	1532	506	1.142	0.209	11.758	28.657
Infant mortality	38.284	7.452	1532	506	1.352	0.195	23.380	53.188
Child mortality	4.057	1.609	1532	506	1.096	0.397	0.839	7.274
Under-5 mortality	42.185	7.996	1534	506	1.424	0.190	26.194	58.177
MEN								
Urban residence	0.265	0.012	866	277	0.800	0.045	0.241	0.289
Literate	0.979	0.009	866	277	1.736	0.009	0.961	0.996
No education	0.023	0.006	866	277	1.173	0.257	0.011	0.036
Secondary education or higher	0.493	0.021	866	277	1.258	0.043	0.450	0.535
University education or higher	0.056	0.008	866	277	1.051	0.147	0.040	0.072
Never married	0.445	0.018	866	277	1.077	0.041	0.409	0.482
Currently married/in union	0.545	0.017	866	277	0.997	0.031	0.511	0.578
Married before age 20	0.021	0.006	543	168	1.033	0.304	0.008	0.034
First sexual intercourse before age 18	0.122	0.015	543	168	1.092	0.126	0.091	0.152
Children ever born	1.569	0.063	866	277	1.047	0.040	1.443	1.694
Ever used contraceptive method	0.977	0.005	482	151	0.765	0.005	0.967	0.988
Wants no more children	0.726	0.023	482	151	1.138	0.032	0.680	0.772
Wants to delay birth at least 2 years	0.046	0.009	482	151	0.974	0.203	0.027	0.064
Ideal family size	2.952	0.037	842	269	1.014	0.013	2.878	3.027
Has heard of HIV/AIDS	0.845	0.016	866	277	1.290	0.019	0.813	0.876
Knows about condoms	0.734	0.018	866	277	1.227	0.025	0.697	0.771
Knows about limiting partners	0.690	0.019	866	277	1.193	0.027	0.653	0.728
Has comprehensive knowledge of HIV/AIDS	0.121	0.011	866	277	0.981	0.090	0.099	0.142
Has accepting attitudes towards people with HIV	0.055	0.010	748	234	1.189	0.179	0.036	0.075
Has hypertension	0.269	0.018	837	267	1.171	0.067	0.233	0.305
na $=$ Not applicable								

Variable	Value (R)	Standard error (SE)	Number of cases		Design effect (DEFT)	Relative error (SE/R)	Confidence limits	
			Un-	Weight-				
			(N)	(WN)			R-2SE	$\mathrm{R}+2 \mathrm{SE}$
WOMEN								
Urban residence	1.000	0.000	1142	1201	na	0.000	1.000	1.000
Literate	0.993	0.004	1142	1201	1.531	0.004	0.985	1.000
No education or only primary 4-year	0.012	0.005	1142	1201	1.648	0.446	0.001	0.022
Secondary education or higher	0.830	0.026	1142	1201	2.352	0.032	0.778	0.882
University education or higher	0.405	0.030	1142	1201	2.076	0.074	0.345	0.466
Net attendance ratio for primary school	0.970	0.009	643	612	1.235	0.009	0.953	0.988
Never married	0.389	0.032	1142	1201	2.196	0.081	0.326	0.453
Currently married/in union	0.572	0.034	1142	1201	2.314	0.059	0.504	0.639
Married before age 20	0.203	0.016	801	823	1.151	0.081	0.170	0.236
First sexual intercourse before age 18	0.331	0.018	801	823	1.064	0.053	0.296	0.366
Currently pregnant	0.017	0.006	1142	1201	1.565	0.349	0.005	0.029
Children ever born	1.188	0.052	1142	1201	1.428	0.044	1.084	1.293
Children surviving	1.176	0.050	1142	1201	1.396	0.042	1.076	1.275
Children ever born to women age 40-49	2.211	0.115	314	327	1.885	0.052	1.981	2.440
Knows any contraceptive method	0.999	0.001	700	686	0.887	0.001	0.997	1.001
Ever used contraceptive method	0.918	0.012	700	686	1.135	0.013	0.895	0.942
Currently using any contraceptive method	0.723	0.020	700	686	1.195	0.028	0.683	0.764
Currently using a modern method	0.132	0.023	700	686	1.772	0.172	0.086	0.177
Currently using pill	0.037	0.008	700	686	1.151	0.222	0.021	0.054
Currently using condom	0.057	0.015	700	686	1.721	0.265	0.027	0.087
Currently using withdrawal	0.589	0.023	700	686	1.256	0.040	0.543	0.636
Obtained method from public sector source	0.223	0.042	125	121	1.121	0.188	0.140	0.307
Wants no more children	0.654	0.020	700	686	1.095	0.030	0.615	0.694
Wants to delay birth at least 2 years	0.064	0.011	700	686	1.232	0.179	0.041	0.087
Unmet need for family planning	0.099	0.015	700	686	1.319	0.151	0.069	0.128
Ideal family size	2.138	0.066	1118	1179	1.954	0.031	2.007	2.270
Mother received antenatal care from skilled provider 1.000 0.000 182 177 na 0.000 1.000 1.000								
Mother received tetanus injection for last birth	0.630	0.042	182	177	1.134	0.067	0.546	0.715
Mother received medical assistance at delivery	1.000	0.000	215	207	na	0.000	1.000	1.000
Had diarrhoea in two weeks before survey	0.030	0.008	215	207	0.599	0.273	0.014	0.047
Vaccination register at health centre seen	1.000	0.000	33	30	na	0.000	1.000	1.000
Received BCG	1.000	0.000	33	30	na	0.000	1.000	1.000
Received DPT (3 doses)	1.000	0.000	33	30	na	0.000	1.000	1.000
Received polio and hepatitis B (3 doses)	1.000	0.000	33	30	na	0.000	1.000	1.000
Received measles	1.000	0.000	33	30	na	0.000	1.000	1.000
Fully immunized	1.000	0.000	33	30	na	0.000	1.000	1.000
Height-for-age (below -2SD)	0.183	0.029	179	173	0.946	0.157	0.126	0.241
Weight-for-height (below -2SD)	0.128	0.054	179	173	2.066	0.424	0.020	0.237
Weight-for-age (below -2SD)	0.035	0.015	179	173	1.054	0.418	0.006	0.065
BMI <18.5.	0.052	0.017	1118	1169	2.532	0.326	0.018	0.085
Any anaemia (children)	0.065	0.017	191	182	0.929	0.261	0.031	0.099
Any anaemia (women)	0.119	0.011	1135	1195	1.141	0.092	0.097	0.141
Has heard of HIV/AIDS	0.985	0.006	1142	1201	1.580	0.006	0.974	0.996
Knows about condoms	0.905	0.014	1142	1201	1.637	0.016	0.877	0.934
Knows about limiting partners	0.928	0.016	1142	1201	2.149	0.018	0.895	0.961
Has comprehensive knowledge of HIV/AIDS	0.492	0.031	1142	1201	2.080	0.063	0.430	0.554
Knows about mother-to-child transmission of								
HIV through breastfeeding	0.859	0.016	1142	1201	1.506	0.018	0.828	0.890
Has accepting attitudes towards people with HIV	0.076	0.017	1120	1183	2.139	0.222	0.042	0.110
Has hypertension Total fertility rate (past 3 years)	0.049 0.993	0.009 0.179	576 3275	564 3427	0.964 1.858	0.176 0.180	0.032 0.636	0.067 1.351
Neonatal mortality	0.000	0.000	504	490	na	na	0.000	0.000
Post-neonatal mortality	1.909	1.930	504	490	0.967	1.011	0.000	5.933
Infant mortality	1.909	1.930	504	490	0.967	1.011	0.000	5.933
Child mortality	0.000	0.000	504	490	na	na	0.000	0.000
Under-5 mortality	1.909	1.930	504	490	0.967	1.011	0.000	5.933
MEN								
Urban residence	1.000	0.000	520	493	na	0.000	1.000	1.000
Literate	0.989	0.005	520	493	1.115	0.005	0.980	0.999
No education	0.014	0.005	520	493	1.006	0.369	0.004	0.025
Secondary education or higher	0.815	0.025	520	493	1.438	0.030	0.766	0.864
University education or higher	0.337	0.044	520	493	2.139	0.132	0.248	0.425
Never married	0.482	0.035	520	493	1.612	0.073	0.411	0.553
Currently married/in union	0.505	0.035	520	493	1.598	0.069	0.435	0.576
Married before age 20	0.023	0.008	357	325	1.031	0.353	0.007	0.040
First sexual intercourse before age 18	0.269	0.036	357	325	1.526	0.133	0.197	0.340
Children ever born	1.033	0.070	520	493	1.241	0.068	0.893	1.173
Ever used contraceptive method	0.994	0.004	268	249	0.884	0.004	0.986	1.002
Wants no more children	0.547	0.038	268	249	1.234	0.069	0.472	0.623
Wants to delay birth at least 2 years	0.049	0.013	268	249	0.989	0.265	0.023	0.076
Ideal family size	2.357	0.033	515	487	1.030	0.014	2.292	2.422
Has heard of HIV/AIDS	0.993	0.003	520	493	0.886	0.003	0.986	0.999
Knows about condoms	0.963	0.008	520	493	0.938	0.008	0.947	0.978
Knows about limiting partners	0.947	0.011	520	493	1.081	0.011	0.926	0.969
Has comprehensive knowledge of HIV/AIDS	0.414	0.031	520	493	1.416	0.074	0.353	0.476
Has accepting attitudes towards people with HIV	0.135	0.033	515	489	2.195	0.245	0.069	0.201
Has hypertension	0.083	0.016	513	486	1.338	0.196	0.051	0.116

Three types of tables are included in this appendix to examine the quality of the data collected in the 2008-09 ADHS:

- Table C. 1 contains the single-year age distribution of the de facto household population by sex. The purpose of Table C. 1 is to examine the age structure obtained in the 2008-09 ADHS for evidence of heaping, especially ages ending in 0 and 5 , and to examine the age limits of eligibility for interview, comparing women with men.
- Tables C.2.1 and C.2.2 contain the age distribution of the eligible respondents. The purpose of these tables is to detect both displacement of respondents out of the eligible age range and differential response rates by age.
- Table C. 3 shows completeness of reporting of basic indicators. The purpose of this table is to examine the amount of missing information for certain key indicators. High levels of missing data may indicate that the non-missing data are biased or of poor quality.
- Table C. 4 shows the distribution of births by calendar years. The purpose of Table C. 4 is to examine the impact of omission of births in the five years preceding the survey and the transference of births out of the dates of eligibility for the health, calendar and anthropometry sections of the questionnaire.
- Table C. 5 contains information on the reporting of age at death in days and Table C. 6 shows the reporting of age at death in months. The purposes of these tables are to examine the possible omission of neonatal and early neonatal deaths and to examine the effects of age at death heaping.
- Table C. 7 contains nutritional status indicators for children under five years of age, based on the NCHS/CDC/WHO reference population and can be used for comparison with older nutritional status data that did not use the newer WHO Child Growth Standards.

Table C. 1 Household age distribution				
Single-year age distribution of the de facto household population by sex (weighted), Albania 2008-09				
Age	Women		Men	
	Number	Percent	Number	Percent
0	119	0.8	165	1.1
1	133	0.8	138	0.9
2	165	1.0	147	1.0
3	163	1.0	162	1.1
4	207	1.3	187	1.3
5	175	1.1	207	1.4
6	164	1.0	218	1.5
7	217	1.4	260	1.8
8	260	1.7	299	2.1
9	254	1.6	260	1.8
10	262	1.7	237	1.6
11	292	1.8	337	2.3
12	327	2.1	323	2.2
13	335	2.1	354	2.4
14	326	2.1	335	2.3
15	336	2.1	280	1.9
16	357	2.3	321	2.2
17	336	2.1	293	2.0
18	252	1.6	303	2.1
19	225	1.4	220	1.5
20	256	1.6	208	1.4
21	171	1.1	221	1.5
22	215	1.4	177	1.2
23	177	1.1	150	1.0
24	176	1.1	164	1.1
25	182	1.2	130	0.9
26	175	1.1	137	0.9
27	179	1.1	96	0.7
28	153	1.0	132	0.9
29	182	1.2	100	0.7
30	164	1.0	95	0.7
31	173	1.1	100	0.7
32	180	1.1	132	0.9
33	182	1.2	140	1.0
34	174	1.1	119	0.8
35	226	1.4	139	1.0
36	186	1.2	149	1.0
37	220	1.4	136	0.9
38	238	1.5	170	1.2
39	240	1.5	195	1.3
40	261	1.7	242	1.7
41	232	1.5	185	1.3
42	249	1.6	165	1.1
43	241	1.5	189	1.3
44	269	1.7	204	1.4
45	234	1.5	228	1.6
46	210	1.3	221	1.5
47	244	1.5	259	1.8
48	236	1.5	243	1.7
49	162	1.0	193	1.3
50	278	1.8	263	1.8
51	210	1.3	208	1.4
52	252	1.6	215	1.5
53	228	1.4	225	1.6
54	187	1.2	197	1.4
55	166	1.0	182	1.3
56	185	1.2	154	1.1
57	179	1.1	177	1.2
58	165	1.0	165	1.1
59	150	0.9	173	1.2
60	159	1.0	169	1.2
61	182	1.2	149	1.0
62	141	0.9	116	0.8
63	140	0.9	134	0.9
64	130	0.8	148	1.0
65	135	0.9	133	0.9
66	154	1.0	175	1.2
67	133	0.8	107	0.7
68	145	0.9	110	0.8
69	129	0.8	108	0.7
70+	1,229	7.8	1,129	7.8
Don't know	11	0.1	8	0.1
Total	15,782	100.0	14,508	100.0

Table C.2.1 Age distribution of eligible and interviewed women

De facto household population of women age 10-54, interviewed women age 15-49, and percentage of eligible women who were interviewed (weighted), by five-year age groups, Albania 2008-09

	Household population of women age Age group	Interviewed women age 15-49		Percentage of eligible women interviewed
	$10-54$	Number	Percent	na
$10-14$	1,541	na	na	
$15-19$	1,506	1,483	19.7	98.4
$20-24$	995	965	12.8	96.9
$25-29$	871	842	11.2	96.6
$30-34$	874	861	11.4	98.5
$35-39$	1,110	1,093	14.5	98.4
$40-44$	1,252	1,224	16.2	97.8
$45-49$	1,086	1,074	14.2	98.9
$50-54$	1,155	na	na	na
$15-49$	7,695	7,542	100.0	98.0

Note: The de facto population includes all residents and non-residents who stayed in the household the night before the interview. Weights for both household population of women and interviewed women are household weights. Age is based on the household schedule.
na $=$ Not applicable

Table C.2.2 Age distribution of eligible and interviewed men

De facto household population of men age 10-54, interviewed men age 15-49 and percentage of eligible men who were interviewed (weighted), by five-year age groups, Albania 2008-09

	Household population of men age	Interviewed men age 15-49		Percentage of eligible men
Ane group	$10-54$	Number	Percent	natewed

Note: The de facto population includes all residents and non-residents who stayed in the household the night before the interview. Weights for both household population of men and interviewed men are household weights. Age is based on the household schedule.
na $=$ Not applicable

Table C. 3 Completeness of reporting
Percentage of observations with information missing for specific demographic and health questions (weighted), Albania 2008-09

Subject	Reference group	Percentage with information missing	Number of cases
Birth date	Births in past 15 years		
Month only		0.21	6,994
Month and year		0.00	6,994
Age at death	Dead children born in past 15 years	0.00	203
Age/date at first union ${ }^{1}$	Ever-married women age 15-49	0.00	5,227
	Ever-married men age 15-49	0.00	1,722
Respondent's education	All women age 15-49	0.00	7,584
	All men age 15-49	0.00	3,013
Diarrhoea in past 2 weeks	Living children age 0-59 months	0.58	1,550
Anthropometry	From the Household Questionnaire Living children age 0-59 months		
Height		4.24	1,564
Weight		4.04	1,564
Height or weight		4.24	1,564
Anaemia	From the Household Questionnaire		
	Living children age 0-59 months	6.35	1,412
	All women age 15-49	3.13	7,695
	All men age 15-49	6.94	3,149
Blood pressure	All women 15-49	3.97	3,728
	All men 15-49	5.85	3,013

${ }^{1}$ Both year and age missing

Table C. 4 Births by calendar years

Number of births, percentage with complete birth date, sex ratio at birth, and calendar year ratio by calendar year, according to living, dead, and total children (weighted), Albania 2008-09

Calendar year	Number of births			Percentage with complete birth date ${ }^{1}$			Sex ratio at birth ${ }^{2}$			Calendar year ratio ${ }^{3}$		
	Living	Dead	Total									
2009	23	0	23	100.0	*	100.0	115.5	*	115.5	na	na	na
2008	263	1	264	100.0	100.0	100.0	140.1	*	141.4	na	na	na
2007	260	5	265	100.0	100.0	100.0	102.2	188.9	103.5	89.2	95.8	89.3
2006	319	10	329	100.0	100.0	100.0	99.8	162.3	101.2	110.0	186.5	111.3
2005	321	5	327	100.0	100.0	100.0	98.8	*	102.1	88.3	59.4	87.6
2004	408	8	416	100.0	100.0	100.0	89.7	60.4	89.1	120.2	131.0	120.4
2003	358	7	365	100.0	100.0	100.0	118.4	914.9	121.5	90.0	79.0	89.8
2002	388	9	396	99.5	92.5	99.3	107.5	321.1	109.8	94.3	94.5	94.3
2001	464	12	476	100.0	100.0	100.0	129.2	168.9	130.1	98.7	100.4	98.8
2000	552	15	567	100.0	95.7	99.9	124.7	160.6	125.5	115.0	135.8	115.5
2005-2009	1,186	22	1,208	100.0	100.0	100.0	108.1	287.8	109.9	na	na	na
2000-2004	2,169	51	2,220	99.9	97.4	99.9	114.0	181.6	115.2	na	na	na
1995-1999	2,880	100	2,980	100.0	92.0	99.7	102.6	102.7	102.6	na	na	na
1990-1994	2,955	127	3,082	100.0	92.8	99.7	96.7	126.9	97.8	na	na	na
<1989	2,773	161	2,934	99.7	84.9	98.8	103.4	140.0	105.1	na	na	na
All	11,964	461	12,426	99.9	90.7	99.5	103.8	135.0	104.8	na	na	na

[^35]
Table C. 5 Reporting of age at death in days

Distribution of reported deaths under one month of age by age at death in days and the percentage of neonatal deaths reported to occur at ages $0-6$ days, for five-year periods preceding the survey (weighted), Albania 2008-09

	Number of years preceding the survey				
Age at death (days)	$0-4$	$5-9$	$10-14$	$15-19$	0
<1	8	8	13	11	40
1	2	7	8	5	22
2	1	1	2	3	7
3	0	2	8	1	12
4	0	1	1	1	3
5	0	1	2	1	4
6	0	0	0	1	1
7	1	0	6	0	7
8	0	0	0	0	0
10	0	0	0	1	1
14	1	0	2	3	7
15	1	0	1	2	4
21	2	0	3	1	6
22	0	1	0	0	1
29	0	0	0	2	2
30	0	0	2	0	2
Total $0-30$	17	22	48	32	120
Percent early neonatal ${ }^{1}$	67.1	89.6	71.1	71.2	74.0

${ }^{1} \leq 6$ days / ≤ 30 days

Table C. 6 Reporting of age at death in months

Distribution of reported deaths under two years of age by age at death in months and the percentage of infant deaths reported to occur at age under one month, for five-year periods preceding the survey, Albania 2008-09

	Number of years preceding the survey				
Age at death (months)	$0-4$	$5-9$	$10-14$	$15-19$	Total $0-19$
$<1^{\text {a }}$	17	22	48	32	120
1	1	3	12	10	25
2	1	9	11	7	28
3	2	5	7	6	19
4	1	1	5	2	10
5	1	2	1	1	4
6	1	2	8	12	23
7	0	0	1	9	11
8	0	4	2	5	11
9	0	0	2	1	3
10	0	1	2	2	5
11	0	0	5	6	10
12	0	0	1	3	4
13	0	0	0	4	4
14	0	2	0	0	2
15	2	0	0	0	3
16	0	0	0	0	0
18	0	0	2	1	3
		24	49	103	93
Total $0-11$	71.6	45.5	46.1	35.0	44.5
Percent neonatal					

${ }^{1}$ Under one month / under one year
${ }^{\text {a }}$ Includes deaths under one month reported in days

Table C. 7 Nutritional status of children based on NCHS/CDC/WHO International Reference Population

Percentage of children under five years classified as malnourished according to three anthropometric indices of nutritional status: height-for-age, weight-for-height, and weight-for-age, by background characteristics, based on the NCHS/CDC/WHO International Reference Population, Albania 2008-09

Background characteristic	Height-for-age			Weight-for-height				Weight-for-age				
	Percentage below -3 SD	Percentage below -2 SD 1	Mean Zscore (SD)	Percentage below -3 SD	$\begin{gathered} \hline \text { Per- } \\ \text { centage } \\ \text { below } \\ -2 \text { SD }^{1} \\ \hline \end{gathered}$	Percentage above +2 SD	Mean Zscore (SD)	Percentage below -3 SD	Percentage below -2 SD 1	Percentage above +2 SD	Mean Z-score (SD)	
Age in months												
<6	3.9	19.6	-0.2	6.6	16.0	18.1	0.2	1.4	3.7	3.8	0.0	93
6-8	(5.9)	(11.2)	(0.1)	(3.5)	(11.4)	(13.2)	(0.0)	(3.0)	(8.2)	(4.1)	(0.0)	40
9-11	(2.0)	(18.4)	(-0.0)	(3.1)	(7.0)	(4.8)	(-0.1)	(0.0)	(17.0)	(6.8)	(-0.3)	47
12-17	5.0	15.9	-0.1	0.9	4.7	18.2	0.7	2.2	3.3	16.9	0.4	120
18-23	13.2	26.9	-0.8	0.5	5.0	22.7	0.5	0.2	9.0	9.9	-0.1	108
24-35	8.3	16.6	-0.2	0.9	5.4	15.0	0.4	1.2	5.4	7.7	0.1	265
36-47	7.6	17.3	-0.3	1.4	5.8	17.1	0.6	1.4	4.9	8.6	0.2	273
48-59	4.2	9.1	-0.1	4.3	5.7	18.2	0.6	1.3	5.7	10.5	0.3	342
Sex												
Male	6.2	15.0	-0.2	3.9	7.6	16.6	0.3	1.4	6.2	7.9	0.1	652
Female	6.8	16.3	-0.2	0.9	5.3	17.5	0.6	1.2	5.5	10.7	0.2	635
Birth interval in months ${ }^{2}$												
First birth ${ }^{3}$	7.0	10.7	-0.0	2.4	7.8	16.5	0.3	1.8	6.5	9.5	0.2	429
<24	10.4	20.9	-0.6	3.3	9.2	11.9	0.0	3.1	10.3	8.0	-0.4	123
24-47	7.3	20.1	-0.3	2.2	6.4	19.6	0.7	0.9	5.9	9.5	0.3	294
48+	4.3	16.0	-0.2	2.5	4.4	17.4	0.5	0.5	4.0	8.9	0.2	410
Size at birth ${ }^{2,4}$												
Very small	*	*	*	*	*	*	*	*	*	*	*	16
Small	5.6	15.3	-0.2	1.3	9.1	15.0	0.4	1.1	3.4	9.4	0.1	80
Average or larger	6.5	15.6	-0.2	2.6	6.3	17.2	0.5	1.3	6.0	9.2	0.2	1,153
Mother's nutritional status ${ }^{5}$												
Thin (BMI<18.5)	*	*	*	*	*	*	*	*	*	*	*	17
Normal (BMI 18.5-24.9)	7.6	15.9	-0.2	2.0	6.4	16.4	0.4	1.5	7.0	9.5	0.1	687
Overweight/ obese ($\mathrm{BMI} \geq 25$)	5.0	14.4	-0.2	3.2	6.6	18.0	0.5	1.1	4.5	9.2	0.2	564
Residence												
Urban	6.7	15.7	-0.2	4.0	8.1	17.5	0.4	1.6	6.3	8.5	0.1	520
Rural	6.4	15.6	-0.2	1.4	5.4	16.7	0.5	1.1	5.6	9.8	0.2	767
Region												
Coastal	7.5	13.9	-0.3	1.3	5.7	11.9	0.3	1.5	6.6	6.4	-0.0	386
Central	4.7	15.4	-0.1	1.3	5.3	19.9	0.6	0.7	4.4	10.0	0.3	582
Mountain	13.3	23.1	-0.7	2.5	6.8	17.7	0.5	3.6	11.6	11.3	-0.1	147
Urban Tirana	4.7	14.3	0.2	8.8	12.1	18.3	0.4	1.0	4.2	11.4	0.3	172
Mother's education ${ }^{6}$												
No education/ Primary 4-year	(20.4)	(29.7)	(-0.5)	(0.0)	(7.9)	(7.0)	(-0.1)	(1.9)	(18.4)	(6.9)	(-0.4)	42
Primary 8-year	6.5	15.8	-0.3	1.8	6.0	16.5	0.5	0.9	5.8	8.3	0.1	797
Secondary, professional, technical	5.2	14.3	-0.1	4.0	6.1	17.1	0.5	1.9	4.6	10.5	0.3	301
University+	4.7	13.2	0.1	3.5	10.4	22.1	0.5	2.1	5.6	12.7	0.4	136
Wealth quintile												
Lowest	12.2	26.5	-0.8	2.0	4.3	22.8	0.7	1.8	8.9	10.7	0.0	275
Second	3.3	10.3	-0.0	0.7	8.7	9.6	0.2	1.2	3.9	6.1	0.1	243
Middle	4.7	13.1	0.0	0.9	4.3	17.1	0.5	1.0	5.1	9.5	0.4	300
Fourth	7.4	15.0	-0.4	3.1	6.4	14.9	0.4	1.2	7.5	8.1	0.0	245
Highest	4.7	12.4	0.2	6.1	9.9	20.4	0.4	1.3	3.5	11.8	0.4	225
Total	6.5	15.7	-0.2	2.4	6.5	17.1	0.5	1.3	5.9	9.3	0.2	1,287

Note: Table is based on children who slept in the household the night before the interview. Each of the indices is expressed in standard deviation units (SD) from the median of the NCHS/CDC/WHO Child Growth Standards. Table is based on children with valid date of birth (month and year) and valid measurement of both height and weight.
${ }^{1}$ Includes children who are below -3 standard deviations (SD) from the International Reference Population median
${ }^{2}$ Excludes children whose mothers were not interviewed
${ }^{3}$ First born twins (triplets, etc.) are counted as first births because they do not have a previous birth interval.
${ }^{4}$ Excludes 7 cases with information missing on child's size at birth
${ }^{5}$ Excludes children whose mothers were not weighed and measured. Mother's nutritional status in terms of BMI (Body Mass Index) is presented in
Table 11.10. Excludes 9 cases with information missing on child's size at birth
${ }^{6}$ For women who were not interviewed, information is taken from the Household Questionnaire. Excludes children whose mothers were not listed in the Household Questionnaire

ADMINISTRATION
National Directors
Dr. Alban Ylli, Director, Institute of Public Health (IPH), Ministry of Health (MoH)
Dr. Ines Nurja, Director, Institute of Statistics (INSTAT)
Survey Coordinators
Lantona Sado, Programme Coordinator, Institute of Statistics (INSTAT)
Dr. Elizana Petrela, Deputy Director, Institute of Public Health (IPH), Ministry of Health (MoH)
Assistant Survey Coordinators
Nurie Caushi, Institute of Statistics (INSTAT)
Artur Qesku, Institute of Statistics (INSTAT)
Nedime Ceka, Head of the Reproductive Sector, Ministry of Health (MoH)
Bajram Dejda, Institute of Public Health (IPH), Ministry of Health (MoH)
\section*{Survey Staff}
Institute of Statistics (INSTAT)
Ledia Thomo, Deputy Director Emira Galanxhi, Demographer Aida Guxho, Head of IT Ervin Shahmeti, Head of Cartography Liljana Boci, Sample Selection Pranvera Elezi, Quality Control Anisa Omuri, Quality Control Ruzhdie Biçi, Quality Control Lorena Kola, Quality Control
Institute of Public Health (IPH), Ministry of Health ($\mathbf{M o H}$) Alba Merdani, Quality Control Adriatik Gabrani, Quality Control Miranda Hajdini, Quality Control Dritan Bala, Quality Control
Scientific and Technical Advisory Committees
Dr. Zamira Sinoimeri, Vice Minister, Ministry of Health
Dr. Gazmend Bejtja, Director, Public Health Directorate
Dr. Mariana Bukli, Health Programme Officer, UNICEF
Robert Carr, Deputy Representative, UNICEF
Flora Ismaili, Programme Analyst, UNFPA
Dr. Manuela Bello, Assistant Representative, UNFPA
Ornela Abazi, Consultant, UNFPA
Zhaneta Shatri, Health Team Leader, USAID
Anshu Banerjee, Representative, WHO
Vasil Miho, National Professional Health System, WHO
Rahel Boesch, Deputy Country Director, Swiss Cooperation Office in Albania
Enkeleda Sula, National Programme Officer, Swiss Cooperation Office in Albania
Elda Bagaviki, National Programme Officer, Swiss Cooperation Office in Albania

ICF Macro Staff
Trevor Croft, Survey Manager/Data Processing Specialist Zhuzhi Moore, Survey Manager Anne Cross, Deputy Director Pav Govindasamy, Regional Coordinator
Sri Poedjastoeti, Technical Reviewer
Jasbir Sangha, Technical Reviewer
Sidney Moore, Managing Editor
Kaye Mitchell, Document Production/Graphics Specialist
Chris Gramer, Graphics Specialist
Erica Nybro, Dissemination Specialist
Hannah Guedenet, Dissemination Specialist
\section*{Project Accountants}
Ardian Paravani, Excecutive Director, Nesmark Foundation Eltjon Huta, Administrative Coordinator, Nesmark Foundation
Data Processing Staff
Ogerta Elezaj, Institute of Statistics (INSTAT)
Blerina Spahiu, Institute of Statistics (INSTAT)
Arbi Ishmaku, Institute of Statistics (INSTAT)
Ervin Toçi, Institute of Public Health (IPH)

Data Collection Teams

Team 1: Lushnje
Arber Bilbili, Supervisor Dhurata Spahiu, Interviewer Elona Kapllani, Interviewer Esmeralda Nushi, Interviewer Fadil Kallanxhiu, Interviewer

Ilson Baxhija, Interviewer
Team 2: Diber
Arian Stafa, Supervisor
Albi Loçi, Interviewer
Evisa Sulejmani, Interviewer
Miranda Kallaverja, Interviewer
Netiona Koprencka, Interviewer
Olsi Murataj, Interviewer
Team 3: Durres
Dritan Dushaj, Supervisor
Dorian Dushaj, Interviewer
Elona Stafuka, Interviewer
Ermal Ndreu, Interviewer
Kledia Bajrami, Interviewer
Sibiana Kullolli, Interviewer

Team 4: Elbasan
Zamira Çabiri, Supervisor Ada Myrto, Interviewer Baki Hasa, Interviewer Elira Mata, Interviewer
Leoreta Qerazi, Interviewer
Nertil Dhimitri, Interviewer
Team 5: Librazhd
Dhurata Ejupi, Supervisor
Arber Jano, Interviewer
Eljon Pashaj, Interviewer Envisa Dervishi, Interviewer
Gerta Shani, Interviewer Irma Gjona, Interviewer

Team 6: Fier
Themi Mile, Supervisor
Arlinda Gjika, Interviewer
Dorian Dani, Interviewer
Erisa Qalliu, Interviewer
Gerta Cina, Interviewer
Xhino Mema, Interviewer

Team 7: Vlore
Enkelejda Ngjelina, Supervisor Arjan Zhupa, Interviewer Blerina Zhuta, Interviewer Dorina Mezini, Interviewer Leonard Billa, Interviewer Tatjana Tyto, Interviewer

Team 8: Korce
Klodi Peshkatari, Supervisor Antonela Tili, Interviewer Arta Shameti, Interviewer Endri Çanaku, Interviewer Fioralba Zeneli, Interviewer Gert Spahiu, Interviewer

Team 9: Kukes
Olsi Kurtaga, Supervisor
Eldorado Velo, Interviewer Lavdim Mulaj, Interviewer Lubjana Velo, Interviewer
Nexhmie Gerxhaliu, Interviewer Marsida Koroveshi, Interviewer

Team 10: Shkoder
Shpetim Boriçi, Supervisor Greta Turku, Interviewer Ilirian Komini, Interviewer Kleida Ismailaj, Interviewer Mateo Roshi, Interviewer
Zamira Koleci, Interviewer Aldo Huqi, Interviewer

Team 11: Tirana I
Brunilda Hylviu, Supervisor
Matilda Memaj, Supervisor
Adem Kapxhiu, Interviewer Aishe Zaimaj, Interviewer Endrit Elbasani, Interviewer Flora Ahmataj, Interviewer Jetmira Çomo, Interviewer

Team 12: Tirana II
Rezarta Mezini, Supervisor
Alfisa Shahu, Interviewer
Besfort Lamallari, Interviewer Klaudia Bani, Interviewer
Suzana Topollaj, Interviewer
Nexhbedin Meda, Interviewer

THE NATIONAL INSTITUTE OF STATISTICS (INSTAT) AND THE INSTITUTE FOR PUBLIC HEALTH (IPH)

IDENTIFICATION		
PLACE NAME		
NAME OF HOUSEHOLD HEAD		
PSU NUMBER		
HOUSEHOLD NUMBER		
PREFECTURE		
TIRANA/SMALL CITY/TOWN/RURAL (TIRANA=1, SMALL CITY=2, TOWN=3, RURAL=4)		
HOUSEHOLD SELECTED FOR MALE SURVEY	$\begin{aligned} & \text { YES } \\ & \text { NO } \end{aligned}$	1 2

SUPERVISOR		FIELD EDITOR		OFFICE EDITOR	KEYED BY
		NAME			
DATE		DATE		-	

Introduction and Consent

Hello. My name is \qquad and I am working with the National Institute of Statistics and the Institute for Public Health. We are conducting a national survey about various health issues. We would very much appreciate your participation in this survey. The survey usually takes between 10 and 15 minutes to complete.

As part of the survey we would first like to ask some questions about your household. All of the answers you give will be confidential. Participation in the survey is completely voluntary. If we should come to any question you don't want to answer, just let me know and I will go on to the next question; or you can stop the interview at any time. However, we hope you will participate in the survey since your views are important.

At this time, do you want to ask me anything about the survey?
May I begin the interview now?

Signature of interviewer: \qquad Date: \qquad

RESPONDENT AGREES TO BE INTERVIEWED ... 1 RESPONDENT DOES NOT AGREE TO BE INTERVIEWED ... $2 \rightarrow$ END

HOUSEHOLD SCHEDULE

CODES FOR Q. 3: RELATIONSHIP TO HEAD OF HOUSEHOLD
$01=$ HEAD $\quad 07=$ PARENT-IN-LAW
$02=$ WIFE OR HUSBAND $08=$ BROTHER OR SISTER
$14=$ COHABITING PARTNER $09=$ NIECE/NEPHEW BY BLOOD
$03=$ SON OR DAUGHTER $10=$ NIECE/NEPHEW BY MARRIAGE
$04=$ SON-IN-LAW OR $11=$ OTHER RELATIVE
DAUGHTER-IN-LAW $12=$ ADOPTED/FOSTER
$05=$ GRANDCHILD STEPCHILD
$06=$ PARENT $\quad 13=$ NOT RELATED
$98=$ DON'T KNOW

2A) Just to make sure that I have a complete
listing. Are there any other persons such as sma
children or infants that we have not listed?

YES	ADD TO \rightarrow TABLE	NO
YES	ADD TO \rightarrow TABLE	NO
t	ADD TO	

$01=$ HEAD	$07=$ PARENT-IN-LAW
$02=$ WIFE OR HUSBAND	$08=$ BROTHER OR SISTER
$14=$ COHABITING PARTNER	$09=$ NIECE/NEPHEW BY BLOOD
$03=$ SON OR DAUGHTER	$10=$ NIECE/NEPHEW BY MARRIAGE
$04=$ SON-IN-LAW OR	$11=$ OTHER RELATIVE
	DAUGHTER-IN-LAW
$05=$ GRANDCHILD	$12=$ ADOPTED/FOSTER $/$
$06=$ PARENT	
	STEPCHILD
	$98=$ NOT RELATED

HOUSEHOLD CHARACTERISTICS

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES		SKIP
101	What is the main source of drinking water for members of your household?	PIPED WATER PIPED INTO DWELLING PIPED TO YARD/PLOT PUBLIC TAP/STANDPIPE TUBE WELL OR BOREHOLE DUG WELL PROTECTED WELL UNPROTECTED WELL WATER FROM SPRING PROTECTED SPRING UNPROTECTED SPRING RAINWATER TANKER TRUCK CART WITH SMALL TANK SURFACE WATER (RIVER/DAM/ LAKE/POND/STREAM/CANAL/ IRRIGATION CHANNEL) BOTTLED WATER OTHER	$\begin{aligned} & 11 \\ & 12 \\ & 13 \\ & 21 \\ & 31 \\ & 32 \\ & \\ & 41 \\ & 42 \\ & 42 \\ & 51 \\ & 61 \\ & 71 \end{aligned}$ 96	
102	What is the main source of water used by your household for other purposes such as cooking and handwashing?	PIPED WATER PIPED INTO DWELLING PIPED TO YARD/PLOT PUBLIC TAP/STANDPIPE TUBE WELL OR BOREHOLE DUG WELL PROTECTED WELL UNPROTECTED WELL WATER FROM SPRING PROTECTED SPRING UNPROTECTED SPRING RAINWATER TANKER TRUCK CART WITH SMALL TANK SURFACE WATER (RIVER/DAM/ LAKE/POND/STREAM/CANAL/ IRRIGATION CHANNEL) BOTTLED WATER OTHER (SPECIFY)	11 12 13 21 31 32 41 42 51 61 71 81 91 96	
103	Where is that water source located?	IN OWN YARD/PLOT ELSEWHERE		$\longrightarrow 106$
104	How long does it take to go there, get water, and come back?	MINUTES DON'T KNOW		
105	Who usually goes to this source to fetch the water for your household?	ADULT WOMAN ADULT MAN FEMALE CHILD UNDER 15 YEARS OLD MALE CHILD UNDER 15 YEARS OLD OTHER \qquad	1 2 3 4 6	
106	Do you do anything to the water to make it safer to drink?	YES NO DON'T KNOW	1 2 8	

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
112	What type of fuel does your household mainly use for cooking?		$\square \rightarrow 115$ $\longrightarrow 117$
113	In this household, is food cooked on an open fire, an open stove or a closed stove?	OPEN FIRE $\quad \ldots \ldots \ldots \ldots \ldots \ldots$ 1 OPEN STOVE $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$ 2 CLOSED STOVE WITH CHIMNEY $\ldots \ldots$. 3 OTHER 	$\rightarrow 115$
114	Does this (fire/stove) have a chimney/hood?	YES . 1 NO	
115	Is the cooking usually done in the house, in a separate building, or outdoors?		$\square \rightarrow 117$
116	Do you have a separate room which is used as a kitchen?		
117	MAIN MATERIAL OF THE FLOOR. RECORD OBSERVATION.		

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES		SKIP
118	MAIN MATERIAL OF THE ROOF. RECORD OBSERVATION.	RUDIMENTARY ROOFING RUSTIC MAT WOOD PLANKS CARDBOARD FINISHED ROOFING METAL WOOD CALAMINE/CEMENT FIBER CERAMIC TILES CEMENT ROOFING SHINGLES REINFORCED CONCRETE OTHER (SPECIFY)	21 23 24 31 32 33 34 35 36 37 96	
119	MAIN MATERIAL OF THE EXTERIOR WALLS. RECORD OBSERVATION.	RUDIMENTARY WALLS STONE WITH MUD UNCOVERED ADOBE PLYWOOD CARDBOARD REUSED WOOD FINISHED WALLS CEMENT STONE WITH LIME/CEMENT BRICKS CEMENT BLOCKS COVERED ADOBE WOOD PLANKS/SHINGLES OTHER \qquad	22 23 24 25 26 31 32 33 34 35 36 96	
120	How many rooms in this household are used for sleeping?	ROOMS		
121	Does any member of this household own: A watch? A bicycle? A motorcycle or motor scooter? An animal-drawn cart? A car or truck? A tractor? A boat with a motor?		$\begin{array}{r} \mathrm{NO} \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \end{array}$	
122	Does any member of this household own any agricultural land?	YES NO	1 2	$\rightarrow 124$
123	How much agricultural land do members of this household own?		 95 98	
124	Does this household own any livestock, herds, other farm animals, or poultry?	$\begin{aligned} & \text { YES } \\ & \text { NO } \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\longrightarrow 126$

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
125	How many of the following animals does this household own? IF NONE, ENTER '00'. IF MORE THAN 95, ENTER ' 95 '. IF UNKNOWN, ENTER '98'. Cattle? Milk cows or bulls? Horses, donkeys, or mules? Goats? Sheep? Chickens? Pigs?	CATTLE cows/BULLS HORSES/DONKEYS/MULES GOATS SHEEP CHICKENS PIGS	
126	Does any member of this household have a bank account?		
138	ASK RESPONDENT FOR A TEASPOONFUL OF COOKING SALT. TEST SALT FOR IODINE USING BOTH IODIDE KIT AND IODATE KIT. RECORD PPM (PARTS PER MILLION)	IODINE TEST	

MIGRATION

NO.	QUESTIONS AND FILTERS					CODING CATEGORIES		SKIP
201	Now let me ask you a few questions about migration. Please tell me if there is any usual member of your household in 1990 or later, who now: A Resides outside of Albania? B Resides in a different district in Albania? IF YES: How many persons live elsewhere? IF NONE, RECORD '00'.					NUMBER . NO ONE RESID DIFFERENT DIS IG IN RICT/COUNTRY 00	$\longrightarrow 301$
LINE	NAME	RELATION- SHIP TO HH HEAD	SEX	AGE	CURRENT DISTRICT OR COUNTRY	YEAR FIRST LEFT	REASON FOR MOVING WITHIN ALBANIA OR LEAVING ALBANIA	
	Please list the first names of the persons who used to reside in this household who are now living in another district of Albania or country	What is the relationship of (NAME) to (NAME OF HEAD OF HOUSEHOLD)?	Is (NAME) male or female?	How old is (NAME) now?	In what district of Albania or country does (NAME) live now?	In what year did (NAME) first (move to another district of Albania/ leave Albania to reside in another country)?	What was (NAME)'s main reason for first (moving to that other district of Albania/leaving Albania)?	
(202)	(203)	(204)	(205)	(206)	(207)	(208)	(209)	
01			$\begin{array}{cc} M & F \\ 1 & 2 \end{array}$	IN YEARS	$\begin{aligned} & \text { DISTRICT } \\ & \begin{array}{\|l\|l\|l\|} \hline & & \\ 1 \cdot & \\ \text { COUNTRY } \\ \hline \end{array} \\ & 2 \cdot \\ & \hline \end{aligned}$	DON'T KNOW 9998	WORK 1 STUDY 2 ACCOM.SPOUSE/FAMILY 3 MARRY FOREIGNER 4 OTHER	
02			$\begin{array}{cc} M & F \\ 1 & 2 \end{array}$	IN YEARS		DON'T KNOW 9998	WORK 1 STUDY 2 ACCOM.SPOUSE/FAMILY 3 MARRY FOREIGNER 4 OTHER	
03			$\begin{array}{cc} M & F \\ 1 & 2 \end{array}$	IN YEARS		DON'T KNOW 9998		
04			M F 12	IN YEARS		DON'T KNOW 9998	$\begin{array}{ll} \text { WORK } & 1 \\ \text { STUDY } & 2 \\ \text { ACCOM.SPOUSE/FAMILY } & 3 \\ \text { MARRY FOREIGNER } & 4 \\ \text { OTHER } \end{array}$	

* Codes for Q204

02 = WIFE OR HUSBAND
14 = COHABITING PARTNER
03 = SON OR DAUGHTER
$04=$ SON-IN-LAW OR DAUGHTER-IN-LAW
$05=$ GRANDCHILD

TICK HERE IF CONTINUATION SHEET USED

11 = OTHER RELATIVE
$12=$ ADOPTED/FOSTER/
STEPCHILD
$13=$ NOT RELATED
98 = DON'T KNOW

CHILD DISCIPLINE
FOR ONE CHILD AGED 2 THROUGH 14

WEIGHT, HEIGHT AND HEMOGLOBIN MEASUREMENT FOR CHILDREN AGE 0-5

WEIGHT, HEIGHT AND HEMOGLOBIN MEASUREMENT FOR CHILDREN AGE 0-5

WEIGHT, HEIGHT AND HEMOGLOBIN MEASUREMENT FOR WOMEN AGE 15-49

PSU NUMBER		HOUSEHOLD NUMBER		NAME OF HEAD			
		WOMAN 1		WOMAN 2		WOMAN 3	
	LINE NUMBER (COLUMN 9) NAME (COLUMN 2)	LINE NUMBER NAME	\square	LINE NUMBER NAME	$\ldots \ldots . \cdot \square$	LINE NUMBER \qquad \square NAME \qquad	
524	PREGNANCY STATUS: CHECK 226 IN WOMAN'S QUESTIONNAIRE OR ASK: Are you pregnant?			YES NO DK	$\begin{aligned} & 1 \\ & 2 \\ & 8 \end{aligned}$	YES NO DK	$\begin{aligned} & 1 \\ & 2 \\ & 8 \end{aligned}$
526	CHECK 523 AND PREPARE EQUIPMENT AND SUPPLIES FOR THE TEST(S) FOR WHICH CONSENT HAS BEEN OBTAINED AND PROCEED WITH THE TEST(S). A FINAL OUTCOME FOR THE THE ANEMIA TEST PROCEDURE MUST BE RECORDED IN 528 FOR EACH ELIGIBLE WOMAN EVEN IF SHE WAS NOT PRESENT, REFUSED, OR COULD NOT BE TESTED FOR SOME OTHER REASON.						
527	RECORD HEMOGLOBIN LEVEL HERE AND IN ANEMIA PAMPHLET.	G/DL $\quad \ldots \ldots \ldots . \square$		G/DL .	. $\square . \square$	G/DL	$\square . \square$
528	RECORD RESULT CODE OF HEMOGLOBIN MEASUREMENT.	MEASURED NOT PRESENT REFUSED OTHER	$\begin{array}{ll} . & 1 \\ \cdots & 2 \\ \cdots & 3 \\ \cdots & 6 \end{array}$	MEASURED NOT PRESENT REFUSED OTHER		MEASURED NOT PRESENT REFUSED OTHER	

WEIGHT, HEIGHT AND HEMOGLOBIN MEASUREMENT FOR MEN AGE 15-49

LOOK AT THE LAST DIGIT OF THE QUESTIONNAIRE NUMBER ON THE COVER PAGE.
THIS IS THE NUMBER OF THE ROW YOU SHOULD GO TO.

CHECK THE TOTAL NUMBER OF CHILDREN AGED 2-14 IN COLUMN (11A) OF THE HOUSEHOLD QUESTIONNAIRE. THIS IS THE NUMBER OF THE COLUMN YOU SHOULD GO TO.

FIND THE BOX WHERE THE ROW AND THE COLUMN MEET AND CIRCLE THE NUMBER THAT APPEARS IN THE BOX. THIS NUMBER IS USED TO IDENTIFY WHETHER THE FIRST ('1'), SECOND ('2'), THIRD (' 3 '), ETC. ELIGIBLE CHILD AGED 2-14 LISTED IN THE HOUSEHOLD SCHEDULE WILL BE REFERRED TO IN THE CHILD DISCIPLINE QUESTIONS.

WRITE THE NAME AND LINE NUMBER IN Q. 303.
EXAMPLE: IF THE QUESTIONNAIRE NUMBER IS ‘ 3716 ’, GO TO ROW ‘ 6 ’.
IF THERE ARE THREE CHILDREN AGE 2-14 IN THE HOUSEHOLD, GO TO COLUMN ' 3 '.
FIND THE BOX WHERE ROW '6' AND COLUMN '3' MEET. THE NUMBER IN THAT BOX ('2') INDICATES THAT THE SECOND CHILD AGED 2-14 IN THE HOUSEHOLD LISTING SHOULD BE REFERRED TO IN THE CHILD DISCIPLINE QUESTIONS. SUPPOSE THE LINE NUMBERS OF THE THREE CHILDREN ARE '03', ‘04', AND ‘07’. THE CHILD TO BE REFERRED TO IN THE CHILD DISCIPLINE QUESTIONS IS THE SECOND ONE, I.E., THE CHILD ON LINE '04'.

LAST DIGIT OF THE QUESTIONNAIRE NUMBER (ROW)	TOTAL NUMBER OF ELIGIBLE CHILDREN IN THE HOUSEHOLD (COLUMN)							
	1	2	3	4	5	6	7	8
0	1	2	2	4	3	6	5	4
1	1	1	3	1	4	1	6	5
2	1	2	1	2	5	2	7	6
3	1	1	2	3	1	3	1	7
4	1	2	3	4	2	4	2	8
5	1	1	1	1	3	5	3	1
6	1	2	2	2	4	6	4	2
7	1	1	3	3	5	1	5	3
8	1	2	1	4	1	2	6	4
9	1	1	2	1	2	3	7	5

ALBANIA
THE NATIONAL INSTITUTE OF STATISTICS (INSTAT) AND THE INSTITUTE FOR PUBLIC HEALTH (IPH)

INTRODUCTION AND CONSENT

INFORMED CONSENT

Hello. My name is \qquad and I am working with the National Institute of Statistics and
the Institute for Public Health. We are conducting a national survey that asks women and men about various health issues. We would very much appreciate your participation in this survey. As part of this survey, we are asking people throughout the country to have their blood pressure and pulse read. This information will help the government to plan health services.

The survey usually takes between 30 and 60 minutes to complete. During the interview, I would like to measure your blood pressure and pulse. This will be done three times. This is a harmless procedure although you may feel a slight discomfort when the blood pressure cuff is applied to your arm. Your answers to the questions and the blood pressure and pulse measurements will be kept strictly confidential and will not be shared with anyone other than members of our survey team.
Participation in this survey is voluntary, and if we should come to any question you don't want to answer, just let me know and I will go on to the next question; you can choose not to have your blood pressure taken; or you can stop the interview at any time. However, we hope that you will participate in this survey since your views are important.

The results of this blood pressure and pulse measurement will be given to you orally and in writing after the interview with an explanation of the meaning of your blood pressure and pulse numbers. Elevated blood pressure or pulse is dangerous to your health, and it is important to know your numbers. Although we will give you the results of this test, we cannot provide you with any counseling, further testing or treatment if your blood pressure is elevated.
At this time, do you want to ask me anything about the survey?
May we take your blood pressure? May I begin the interview now?

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES		SKIP
101	RECORD THE TIME.	HOUR MINUTES	,	
101X	CHECK HOUSEHOLD QUESTIONNAIRE: HOUSEHOLD SELECTED FOR MALE SURVEY NO \square			$\longrightarrow 102$
101A	Before taking your blood pressure, I would to ask a few questions about things that may affect these measurements. Have you done any of the following within the past 30 minutes: Eaten anything? Had coffee, tea, cola or other drink that has caffeine? Smoked any tobacco product?	 EATES HAD CAFFEINATED DRINK 1 SMOKED $\quad \ldots ~$ 1	$\begin{gathered} \mathrm{NO} \\ 2 \\ 2 \\ 2 \end{gathered}$	
101B	May I begin the process of measuring your blood pressure? BEFORE TAKING THE FIRST BLOOD PRESSURE READING MEASURE THE CIRCUMFERENCE OF THE RESPONDENT'S ARM MIDWAY BETWEEN THE ELBOW AND THE SHOULDER. RECORD THE MEASUREMENT IN CENTIMETERS.	ARM CIRCUMFERENCE (IN CENTIMETERS)		
101C	USE THE ARM CIRCUMFERENCE MEASUREMENT TO SELECT THE APPROPRIATE BLOOD PRESSURE MONITOR MODEL AND CUFF SIZE. CIRCLE THE CODE FOR THE MODEL AND CUFF SIZE.	MODEL 712C SMALL: <22 CM MEDIUM/LARGE: 22 CM - 42 CM MODEL 789 EXTRA LARGE: 42 CM - 60 CM	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	
101D	May I measure your blood pressure and pulse at this time? RECORD BLOOD PRESSURE AND PULSE MEASUREMENT IN 1ST COLUMN IN 1036.	BLOOD PRESSURE TAKEN BLOOD PRESSURE NOT TAKEN		

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
102	How long have you been living continuously in (NAME OF CURRENT PLACE OF RESIDENCE)? IF LESS THAN ONE YEAR, RECORD '00' YEARS.		$\rightarrow 106$
103	Just before you moved here, did you live in a city, in a town, or in the countryside?		
103A	Before you moved here, which district did you move from?	DISTRICT OUTSIDE OF ALBANIA	
106	In what month and year were you born?		
107	How old were you at your last birthday? COMPARE AND CORRECT 106 AND/OR 107 IF INCONSISTENT.	AGE IN COMPLETED YEARS ${ }^{\text {a }}$	
107A	CHECK 106, YEAR OF BIRTH: BORN IN 1 OR LAT		$\rightarrow 108$
107B	In 1990, which district did you live in?		
108	Have you ever attended school?	YES . 1 NO	$\longrightarrow 112$
109	What is the highest level of school you attended: primary 4 -year, 8 -year, generic secondary, professional, technical, university, post university/graduate?		
110	What is the highest class you completed at that level?	CLASS	
111	CHECK 109: PRIMARY (4/5-YEAR) SECONDARY OR 8/9-YEAR OR HIGHER		$\rightarrow 115$
112	Now I would like you to read this sentence to me. SHOW CARD TO RESPONDENT. IF RESPONDENT CANNOT READ WHOLE SENTENCE, PROBE: Can you read any part of the sentence to me?	```CANNOT READ AT ALL 1 ABLE TO READ ONLY PARTS OF SENTENCE 2 ABLE TO READ WHOLE SENTENCE. . 3 NO CARD WITH REQUIRED LANGUAGE``` \qquad ```NoneNone ```	

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
115	Do you read a newspaper or magazine almost every day, at least once a week, less than once a week or not at all?		
116	Do you listen to the radio almost every day, at least once a week, less than once a week or not at all?		
117	Do you watch television almost every day, at least once a week, less than once a week or not at all?		
118	What is your religion?		
119	To what ethnic group do you belong?		

SECTION 2. REPRODUCTION

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
201	Now I would like to ask about all the births you have had during your life. Have you ever given birth?	YES . 2 NO	$\rightarrow 206$
202	Do you have any sons or daughters to whom you have given birth who are now living with you?		$\rightarrow 204$
203	How many sons live with you? And how many daughters live with you? IF NONE, RECORD '00'.	SONS AT HOME DAUGHTERS AT HOME	
204	Do you have any sons or daughters to whom you have given birth who are alive but do not live with you?	YES . 2 NO	$\longrightarrow 206$
205	How many sons are alive but do not live with you? And how many daughters are alive but do not live with you? IF NONE, RECORD '00'.	SONS ELSEWHERE DAUGHTERS ELSEWHERE	
206	Have you ever given birth to a boy or girl who was born alive but later died? IF NO, PROBE: Any baby who cried or showed signs of life but did not survive?	YES . 1 NO	$\longrightarrow 208$
207	How many boys have died? And how many girls have died? IF NONE, RECORD '00'.	BOYS DEAD GIRLS DEAD	
208	SUM ANSWERS TO 203, 205, AND 207, AND ENTER TOTAL. IF NONE, RECORD '00'.	TOTAL	
209	CHECK 208: Just to make sure that I have this right: you have had in TOTAL \qquad births during your life. Is that correct? YES		
210	CHECK 208: ONE OR MORE NO BIRTHS BIRTHS \square		$\longrightarrow 226$

211 Now I would like to record the names of all your births, whether still alive or not, starting with the first one you had. RECORD NAMES OF ALL THE BIRTHS IN 212. RECORD TWINS AND TRIPLETS ON SEPARATE LINES. (IF THERE ARE MORE THAN 12 BIRTHS, USE AN ADDITIONAL QUESTIONNAIRE, STARTING WITH THE SECOND ROW).

212	213	214		216	217 IF ALIVE:	218 IF ALIVE:	$\begin{aligned} & 219 \\ & \text { IF ALIVE: } \end{aligned}$	220 IF DEAD:	221
What name was given to your (first/next) baby?	Were any of these births twins? IF YES RECORD "2" IF NO RECORD "1"	Is (NAME) a boy or a girl?	In what month and year was (NAME) born? PROBE: What is his/her birthday?	Is (NAME) still alive?	How old was (NAME) at his/her last birthday? RECORD AGE IN COMPLETED YEARS.	Is (NAME) living with you?	RECORD HOUSE- HOLD LINE NUMBER OF CHILD (RECORD '00' IF CHILD NOT LISTED IN HOUSE- HOLD).	How old was when he/she IF '1 YR', PR How many m was (NAME)? RECORD D LESS THAN MONTH; MO LESS THAN YEARS; OR	Were there any other live births between (NAME OF PREVIOUS BIRTH) and (NAME), including any children who died after birth?
01	SING 1 MULT 2	$\begin{array}{ll}\text { BOY } & 1 \\ \text { GIRL } & 2\end{array}$	MONTH YEAR	$\begin{array}{r} \text { YES . . } 1 \\ \text { NO . . } 2 \\ \downarrow \\ \downarrow \\ 220 \end{array}$	AGE IN YEARS	$\begin{aligned} & \text { YES } \ldots 1 \\ & \text { NO } 2 \end{aligned}$	LINE NUMBER (NEXT BIRTH)	DAYS ... 1 MONTHS 2 YEARS . . 3	
02	SING 1 MULT 2	$\begin{array}{ll}\text { BOY } & 1 \\ \text { GIRL } & 2\end{array}$	MONTH YEAR	$\begin{array}{r} \text { YES . . } 1 \\ \text { NO . . } 2 \\ \downarrow \\ \downarrow \\ 220 \end{array}$	AGE IN YEARS	$\begin{aligned} & \text { YES } \ldots 1 \\ & \text { NO } 2 \end{aligned}$	LINE NUMBER (GO TO 221)	DAYS ... 1 MONTHS 2 YEARS . . 3	$\begin{gathered} \text { YES } 1 \\ \text { ADD } 4 \\ \text { BIRTH } \\ \text { NO } 2 \\ \text { NEXT\& } \\ \text { BIRTH } \end{gathered}$
03	SING 1 MULT 2	$\begin{array}{ll}\text { BOY } & 1 \\ \text { GIRL } & 2\end{array}$	MONTH YEAR	$\begin{array}{r} \text { YES . . } 1 \\ \text { NO . . } 2 \\ \downarrow \\ \downarrow 220 \end{array}$	AGE IN YEARS	$\begin{aligned} & \text { YES . . . } 1 \\ & \text { NO . . . } 2 \end{aligned}$	LINE NUMBER (GO TO 221)	DAYS ... 1 MONTHS 2 YEARS . . 3	$\begin{gathered} \text { YES } 1 \\ \text { ADD } \downarrow \\ \text { BIRTH } \\ \text { NO } \\ \text { NEXT\& } \\ \text { BIRTH } \end{gathered}$
04	SING 1 MULT 2		MONTH YEAR	$\begin{array}{r} \text { YES . . } 1 \\ \text { NO . . } 2 \\ \downarrow \\ \downarrow \\ 220 \end{array}$	AGE IN YEARS	$\begin{aligned} & \text { YES . . . } 1 \\ & \text { NO . . . } 2 \end{aligned}$	LINE NUMBER (GO TO 221)	DAYS ... 1 MONTHS 2 YEARS . . 3	$\begin{gathered} \text { YES } 1 \\ \text { ADD } 4 \\ \text { BIRTH } \\ \text { NO } 2 \\ \text { NEXT } \\ \text { BIRTH } \end{gathered}$
05	SING 1 MULT 2		MONTH YEAR	$\begin{array}{r} \text { YES . . } 1 \\ \text { NO . . } 2 \\ \downarrow \\ \downarrow \\ 220 \end{array}$	AGE IN YEARS	$\begin{aligned} & \text { YES . . . } 1 \\ & \text { NO } 2 \end{aligned}$	LINE NUMBER (GO TO 221)	DAYS ... 1 MONTHS 2 YEARS . . 3	$\begin{gathered} \text { YES } 1 \\ \text { ADD } \downarrow \\ \text { BIRTH } \\ \text { NO } \\ \text { NEXT ل } \\ \text { BIRTH } \end{gathered}$
06	SING 1 MULT 2		MONTH YEAR	$\begin{array}{r} \text { YES . . } 1 \\ \text { NO . . } 2 \\ \downarrow \\ \downarrow \\ 220 \end{array}$	AGE IN YEARS	$\begin{aligned} & \text { YES . . . } 1 \\ & \text { NO } 2 \end{aligned}$	LINE NUMBER (GO TO 221)	DAYS ... 1 MONTHS 2 YEARS . . 3	$\begin{gathered} \text { YES } 1 \\ \text { ADD } \downarrow \\ \text { BIRTH } \\ \text { NO } 2 \\ \text { NEXT\& } \\ \text { BIRTH } \end{gathered}$
07	SING 1 MULT 2		MONTH \square YEAR	$\begin{array}{r} \text { YES . . } 1 \\ \text { NO . . . } 2 \\ \downarrow \\ 220 \end{array}$	AGE IN YEARS	$\begin{aligned} & \text { YES . . } 1 \\ & \text { NO } 2 \end{aligned}$	LINE NUMBER (GO TO 221)	DAYS ... 1 MONTHS 2 YEARS . . 3	$\begin{gathered} \text { YES } 1 \\ \text { ADD } 4 \\ \text { BIRTH } \\ \text { NO } 2 \\ \text { NEXT\& } \\ \text { BIRTH } \end{gathered}$

212	213	214		216	217 IF ALIVE:	218 IF ALIVE:	219 IF ALIVE:	220 IF DEAD:	221
What name was given to your next baby?	Were any of these births twins? IF YES RECORD "2" IF NO RECORD "1"	Is (NAME) a boy or a girl?	In what month and year was (NAME) born? PROBE: What is his/her birthday?	Is (NAME) still alive?	How old was (NAME) at his/her last birthday? RECORD AGE IN COM- PLETED YEARS.	Is (NAME) living with you?	RECORD HOUSE- hold line NUMBER OF CHILD (RECORD '00' IF CHILD NOT LISTED IN HOUSEHOLD).	How old was when he/she IF '1 YR', PR How many m was (NAME) RECORD DA LESS THAN MONTH; MO LESS THAN YEARS; OR	Were there any other live births between (NAME OF PREVIOUS BIRTH) and (NAME), including any children who died after birth?
08	SING 1 MULT 2	$\begin{array}{ll} \text { BOY } & 1 \\ \text { GIRL } & 2 \end{array}$	MONTH YEAR	$\begin{aligned} & \text { YES . . } 1 \\ & \text { NO . . . } 2 \\ & \downarrow \\ & 220 \end{aligned}$	AGE IN YEARS	$\begin{aligned} & \text { YES ... } 1 \\ & \text { NO } 2 \end{aligned}$	LINE NUMBER (GO TO 221)	DAYS ... 1 MONTHS 2 YEARS . . 3	$\begin{gathered} \text { YES } 1 \\ \text { ADD } \downarrow \\ \text { BIRTH } \\ \text { NO2 } \\ \text { NEXT\& } \\ \text { BIRTH } \end{gathered}$
09	SING 1 MULT 2	$\begin{array}{ll} \text { BOY } & 1 \\ \text { GIRL } & 2 \end{array}$	MONTH YEAR	$\begin{aligned} & \text { YES . . } 1 \\ & \text { NO . . . } 2 \\ & \downarrow \\ & 220 \end{aligned}$	AGE IN YEARS	$\begin{aligned} & \text { YES ... } 1 \\ & \text { NO ... } 2 \end{aligned}$	LINE NUMBER (GO TO 221)	DAYS ... 1 MONTHS 2 YEARS . . 3	$\begin{gathered} \text { YES } 1 \\ \text { ADD } 4 \\ \text { BIRTH } \\ \text { NO } \\ \text { NEXT\& } \\ \text { BIRTH } \end{gathered}$
10	SING 1 MULT 2	$\begin{array}{ll} \text { BOY } & 1 \\ \text { GIRL } & 2 \end{array}$	MONTH YEAR	$\begin{aligned} & \text { YES . . } 1 \\ & \text { NO . . . } 2 \\ & \downarrow \\ & \downarrow 20 \end{aligned}$	AGE IN YEARS	$\begin{aligned} & \text { YES ... } 1 \\ & \text { NO ... } 2 \end{aligned}$	LINE NUMBER (GO TO 221)	DAYS ... 1 MONTHS 2 YEARS . . 3	$\begin{gathered} \text { YES } 1 \\ \text { ADD } \downarrow \\ \text { BIRTH } \\ \text { NO } 2 \\ \text { NEXT\& } \\ \text { BIRTH } \end{gathered}$
11	SING 1 MULT 2	$\begin{array}{ll} \text { BOY } & 1 \\ \text { GIRL } & 2 \end{array}$	MONTH YEAR	$\begin{aligned} & \text { YES . . } 1 \\ & \text { NO . . . } 2 \\ & \downarrow \\ & 220 \end{aligned}$	AGE IN YEARS	$\begin{aligned} & \text { YES . . . } 1 \\ & \text { NO } 2 \end{aligned}$	LINE NUMBER (GO TO 221)	DAYS... 1 MONTHS 2 YEARS . . 3	$\begin{gathered} \text { YES ... } 1 \\ \text { ADD } \downarrow \\ \text { BIRTH } \\ \text { NO } 2 \\ \text { NEXT\& } \\ \text { BIRTH } \end{gathered}$
12	SING 1 MULT 2	$\begin{array}{ll} \text { BOY } & 1 \\ \text { GIRL } & 2 \end{array}$	MONTH YEAR	$\begin{array}{r} \text { YES . . } 1 \\ \text { NO . . . } 2 \\ \downarrow \\ \downarrow \\ 220 \end{array}$	AGE IN YEARS	$\begin{aligned} & \text { YES ... } 1 \\ & \text { NO } 2 \end{aligned}$	LINE NUMBER (GO TO 221)	DAYS ... 1 MONTHS 2 YEARS . . 3	$\begin{gathered} \text { YES } 1 \\ \text { ADD } \downarrow \\ \text { BIRTH } \\ \text { NO } 2 \\ \text { NEXT\& } \\ \text { BIRTH } \end{gathered}$
222	Have you BIRTH)?	any live ES, REC	irths since the RD BIRTH(S)	of (NAME BLE.	OF LAST	$\begin{aligned} & \text { YES . . } \\ & \text { NO . . . } \end{aligned}$			$\begin{aligned} & 1 \\ & 2 \end{aligned}$
223	COMPARE NUMB ARE S CH	08 WITH RS ME CK:	UUMBER OF B NUMBER DIFF R EACH BIRT R EACH BIRT R EACH LIVIN R EACH DEAD R AGE AT DE MBER OF MO	S IN HIST E \square AR OF BIR CE JANUA ILD: CURR LD: AGE AT 2 MONTH	ORY ABOVE RTH IS RECO RY 2003: M RENT AGE I T DEATH IS S OR 1 YEAR:	ND MARK: E AND REC DED. NTH AND Y RECORDED ECORDED. PROBE TO	ONCILE) AR OF BIRTH DETERMINE	ARE RECOR XACT	
224	CHECK 215 IF NONE,	AND ENT CORD '0'	R THE NUMB AND SKIP TO	F BIRTHS	IN 2003 OR				

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
235	Did you have any miscarriages, abortions or stillbirths that ended before 2003?		$\longrightarrow 237$
236	When did the last such pregnancy that terminated before 2003 end?	MONTH YEAR	
237	When did your last menstrual period start? (DATE, IF GIVEN)		
238	From one menstrual period to the next, are there certain days when a woman is more likely to become pregnant if she has sexual relations?		$\xrightarrow{\longrightarrow} 301$
239	Is this time just before her period begins, during her period, right after her period has ended, or halfway between two periods?		

SECTION 3. CONTRACEPTION

301	Now I would like to talk about family planning - the various ways or methods that a couple can use to delay or avoid a pregnancy. Which ways or methods have you heard about? FOR METHODS NOT MENTIONED SPONTANEOUSLY, ASK: Have you ever heard of (METHOD)? CIRCLE CODE 1 IN 301 FOR EACH METHOD MENTIONED SPONTANEOUSLY. THEN PROCEED DOWN COLUMN 301, READING THE NAME AND DESCRIPTION OF EACH METHOD NOT MENTIONED SPONTANEOUSLY. CIRCLE CODE 1 IF METHOD IS RECOGNIZED, AND CODE 2 IF NOT RECOGNIZED. THEN, FOR EACH METHOD WITH CODE 1 CIRCLED IN 301, ASK 302.		302 Have you ever used (METHOD)?
01	FEMALE STERILIZATION Women can have an operation to avoid having any more children.		Have you ever had an operation to avoid having any more children?
02	MALE STERILIZATION Men can have an operation to avoid having any more children.		Have you ever had a partner who had an operation to avoid having any more children?
03	PILL Women can take a pill every day to avoid becoming pregnant.		YES $\ldots \ldots \ldots \ldots \ldots \ldots$ 1 NO $\ldots \ldots \ldots \ldots \ldots \ldots$ $\ldots \ldots \ldots$
04	IUD Women can have a loop or coil placed inside them by a doctor or a nurse.	$\begin{array}{llll} \text { YES } & \ldots \ldots \ldots \ldots & 1 \\ \text { NO } & \ldots \ldots \ldots \ldots & { }^{2} \eta \end{array}$	YES $\ldots \ldots \ldots \ldots \ldots \ldots$ 1 NO $\ldots \ldots \ldots \ldots \ldots \ldots$ \ldots
05	INJECTABLES Women can have an injection by a health provider that stops them from becoming pregnant for one or more months.		YES $\ldots \ldots \ldots \ldots \ldots \ldots$ 1 NO $\ldots \ldots \ldots \ldots \ldots \ldots$ \ldots
06	IMPLANTS Women can have several small rods placed in their upper arm by a doctor or nurse which can prevent pregnancy for one or more years.		YES $\ldots \ldots \ldots \ldots \ldots$ 1 NO $\ldots \ldots \ldots \ldots \ldots \ldots$ $\ldots \ldots \ldots$
07	CONDOM Men can put a rubber sheath on their penis before sexual intercourse.		YES $\ldots \ldots \ldots \ldots \ldots$ 1 NO $\ldots \ldots \ldots \ldots \ldots \ldots$ \ldots
08	FEMALE CONDOM Women can place a sheath in their vagina before sexual intercourse.		YES $\ldots \ldots \ldots \ldots \ldots \ldots$ 1 NO $\ldots \ldots \ldots \ldots \ldots \ldots$ $\ldots \ldots \ldots$
09	LACTATIONAL AMENORRHEA METHOD (LAM)	$\begin{array}{llll} \text { YES } & \ldots \ldots \ldots \ldots & 1 \\ \text { NO } & \ldots \ldots \ldots \ldots & { }^{2} \downarrow \end{array}$	YES $\ldots \ldots \ldots \ldots \ldots \ldots$ 1 NO $\ldots \ldots \ldots \ldots \ldots \ldots$ $\ldots \ldots \ldots$
10	RHYTHM METHOD Every month that a woman is sexually active she can avoid pregnancy by not having sexual intercourse on the days of the month she is most likely to get pregnant.		YES $\ldots \ldots \ldots \ldots \ldots$ 1 NO $\ldots \ldots \ldots \ldots \ldots \ldots .$. 2
11	WITHDRAWAL Men can be careful and pull out before climax.		YES $\ldots \ldots \ldots \ldots \ldots \ldots$ 1 NO $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$ \ldots
12	EMERGENCY CONTRACEPTION As an emergency measure after unprotected sexual intercourse, women can take special pills at any time within five days to prevent pregnancy.		YES $\ldots \ldots \ldots \ldots \ldots \ldots$ 1 NO $\ldots \ldots \ldots \ldots \ldots \ldots$. 2
13	Have you heard of any other ways or methods that women or men can use to avoid pregnancy?		
303	CHECK 302:		$\rightarrow 307$

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
304	Have you ever used anything or tried in any way to delay or avoid getting pregnant?	YES . 1 NO	$\longrightarrow 306$
305	ENTER '0' IN THE CALENDAR IN EACH BLANK MONTH.		$\rightarrow 333$
306	What have you used or done? CORRECT 302 AND 303 (AND 301 IF NECESSARY).		
307	Now I would like to ask you about the first time that you did something or used a method to avoid getting pregnant. How many living children did you have at that time, if any? IF NONE, RECORD '00'.	NUMBER OF CHILDREN	
308	CHECK 302 (01):		$\rightarrow 311 \mathrm{~A}$
309	CHECK 226: NOT PREGNANT PREGNANT OR UNSURE		$\rightarrow 322$
310	Are you currently doing something or using any method to delay or avoid getting pregnant?		$\rightarrow 322$
311	Which method are you using? CIRCLE ALL MENTIONED. IF MORE THAN ONE METHOD MENTIONED, FOLLOW SKIP INSTRUCTION FOR HIGHEST METHOD IN LIST. CIRCLE 'A' FOR FEMALE STERILIZATION.		
312	RECORD IF CODE 'C' FOR PILL IS CIRCLED IN 311. RECORD NAME OF BRAND IF PACKAGE SEEN.		$\rightarrow 314$
313	Do you know the brand name of the (pills/condoms) you are using? RECORD NAME OF BRAND.	BRAND NAME $\overline{(S P E C I F Y)}$ DON'T KNOW	

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
323	CHECK 311/311A: CIRCLE METHOD CODE: IF MORE THAN ONE METHOD CODE CIRCLED IN 311/311A, CIRCLE CODE FOR HIGHEST METHOD IN LIST.		$\longrightarrow 333$ $\longrightarrow 326$ $\longrightarrow 335$ $\longrightarrow 324 A$ $\longrightarrow 335$ $\longrightarrow 335$
324	Where did you obtain (CURRENT METHOD) when you started using it?		
324 A	Where did you learn how to use the rhythm/lactational amenorhea method? IF UNABLE TO DETERMINE IF HOSPITAL, HEALTH CENTER, OR CLINIC IS PUBLIC OR PRIVATE MEDICAL, WRITE THE NAME OF THE PLACE.		
325	CHECK 311/311A: CIRCLE METHOD CODE: IF MORE THAN ONE METHOD CODE CIRCLED IN 311/311A, CIRCLE CODE FOR HIGHEST METHOD IN LIST.		$\begin{array}{\|} \longrightarrow 332 \\ \longrightarrow 329 \\ \longrightarrow 329 \\ \longrightarrow 329 \\ \longrightarrow 335 \\ \longrightarrow 335 \end{array}$
326	You obtained (CURRENT METHOD FROM 323) from (SOURCE OF METHOD FROM 316 OR 324) in (DATE FROM 319/319A). At that time, were you told about side effects or problems you might have with the method?	YES . 1 NO	\longrightarrow 327A
327	Were you ever told by a health worker about side effects or problems you might have with the method?	YES . 1 NO	$\longrightarrow 329$

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
327A	Who told you about the side effects or problems you might have with the method?	FAMILY DOCTOR $\ldots \ldots \ldots \ldots \ldots$ 11 OBSTETRICIAN/GYNECOLOGIST . 12 NURSE/MIDWIFE $\ldots \ldots \ldots \ldots \ldots$ 13 PRIVATE DOCTOR $\ldots \ldots \ldots \ldots \ldots$ 21 PHARMACY $\ldots \ldots \ldots \ldots \ldots \ldots$ 22 OTHER $\ldots \ldots \ldots$	
328	Were you told what to do if you experienced side effects or problems?	YES . 2 NO	
329	CHECK 326:	YES . 1 NO	$\longrightarrow 331$
330	Were you ever told by a health worker about other methods of family planning that you could use?	YES . 1 NO	
331	CHECK 311/311A: CIRCLE METHOD CODE: IF MORE THAN ONE METHOD CODE CIRCLED IN 311/311A, CIRCLE CODE FOR HIGHEST METHOD IN LIST.		
332	Where did you obtain (CURRENT METHOD) the last time? PROBE TO IDENTIFY THE TYPE OF SOURCE AND CIRCLE THE APPROPRIATE CODE. IF UNABLE TO DETERMINE IF HOSPITAL, HEALTH CENTER OR CLINIC IS PUBLIC OR PRIVATE MEDICAL, WRITE THE NAME OF THE PLACE. (NAME OF PLACE)		

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
333	Do you know of a place where you can obtain a method of family planning?		$\rightarrow 335$
334	Where is that? Any other place? PROBE TO IDENTIFY EACH TYPE OF SOURCE AND CIRCLE THE APPROPRIATE CODE(S). IF UNABLE TO DETERMINE IF HOSPITAL, HEALTH CENTER OR CLINIC IS PUBLIC OR PRIVATE MEDICAL, WRITE THE NAME OF THE PLACE.		
335	In the last 12 months, were you visited at home by a health worker who talked to you about family planning?	YES $\ldots \ldots$. 2 NO	
336	In the last 12 months, have you visited a health facility for care for yourself (or your children)?		$\rightarrow 401$
337	Did any staff member at the health facility speak to you about family planning methods?	YES . 1 NO 2	

SECTION 4. PREGNANCY AND POSTNATAL CARE

401	CHECK 224: ONE OR MORE BIRTHS IN 2003 OR LATER	BIR IN 2 OR LA		$\rightarrow 576$
402	CHECK 215: ENTER IN THE TABLE THE LINE NUMBER, NAME, AND SURVIVAL STATUS OF EACH BIRTH IN 2003 OR LATER. ASK THE QUESTIONS ABOUT ALL OF THESE BIRTHS. BEGIN WITH THE LAST BIRTH. (IF THERE ARE MORE THAN 3 BIRTHS, USE LAST 2 COLUMNS OF ADDITIONAL QUESTIONNAIRES). Now I would like to ask you some questions about the health of all your children born in the last five years. (We will talk about each separately.)			
403	LINE NUMBER FROM 212	LAST BIRTH LINE NO. \square	NEXT-TO-LAST BIRTH LINE NO.	SECOND-FROM-LAST BIRTH LINE NO.
404	FROM 212 AND 216	NAME \qquad LIVING \square DEAD	NAME \qquad LIVING \square DEAD \square	NAME \qquad LIVING DEAD
405	At the time you became pregnant with (NAME), did you want to become pregnant then, did you want to wait until later, or did you not want to have any (more) children at all?			
406	How much longer would you have liked to wait?	 MONTHS . .1 YEARS . .2 	 MONTHS .1 YEARS . .2	
407	Did you see anyone for antenatal care for this pregnancy? IF YES: Whom did you see? Anyone else? PROBE TO IDENTIFY EACH TYPE OF PERSON AND RECORD ALL MENTIONED.	HEALTH PERSONNEL FAMILY DOCTOR A OBSTETRICIAN/ GYNECOLOGIST B NURSE/MIDWIFE . C OTHER \qquad X \qquad NO ONE \qquad (SKIP TO 414)		

NO.	QUESTIONS AND FILTERS	LAST BIRTH NAME \qquad	NEXT-TO-LAST BIRTH NAME \qquad	SECOND-FROM-LAST BIRTH NAME \qquad
408	Where did you receive antenatal care for this pregnancy? Anywhere else? PROBE TO IDENTIFY TYPE(S) OF SOURCE(S) AND CIRCLE THE APPROPRIATE CODE(S). IF UNABLE TO DETERMINE IF A HOSPITAL, HEALTH CENTER, OR CLINIC IS PUBLIC OR PRIVATE MEDICAL, WRITE THE NAME OF THE PLACE.			
409	How many months pregnant were you when you first received antenatal care for this pregnancy?	MONTHS \square DON'T KNOW \qquad		
410	How many times did you receive antenatal care during this pregnancy?	NUMBER OF TIMES \square DON'T KNOW \qquad		
411	As part of your antenatal care during this pregnancy, were any of the following done at least once? Were you weighed? Was your blood pressure measured? Did you give a urine sample? Did you give a blood sample? Did you have an ultrasound examination?			
411A	How many months pregnant were you when you first had an ultrasound examination?	MONTHS \square DON'T KNOW 98		
411B	During this pregnancy, how many times did you have an ultrasound examination?	TIMES \square DON'T KNOW 8		

NO.	QUESTIONS AND FILTERS	LAST BIRTH NAME \qquad	NEXT-TO-LAST BIRTH NAME \qquad	SECOND-FROM-LAST BIRTH NAME \qquad
412	During (any of) your antenatal care visit(s), were you told about the signs of pregnancy complications?	YES $\ldots \ldots \ldots \ldots$ 1 NO $\ldots \ldots \ldots \ldots$ 2 (SKIP TO 414) 1 DON'T KNOW $\ldots \ldots$. 8		
412A	What problems during pregnancy were you told about? RECORD ALL MENTIONED	BLEEDING DURING FIRST 5 MONTHS. A BLEEDING AT 6 MONTHS OR MORE B HIGH BLOOD PRESSURE C DIABETES D WATER RETENTION OR EDEMA E ANEMIA F URINARY TRACT INFECTION G RISK OF PRETERM DELIVERY H RH ISO- IMMUNIZATION . I OTHER \qquad X		
413	Were you told where to go if you had any of these complications?	YES $\ldots \ldots \ldots \ldots .$. 1 NO $\ldots \ldots \ldots . .$. 2 DON'T KNOW $\ldots .$. 8		
413A	As part of your antenatal care during this pregnancy, did you receive any information about: Nutrition? Smoking during pregnancy? Drinking alcohol during pregnancy? Delivery? Postnatal care? Breastfeeding? Contraception? Sexually transmitted infections?	YES NO NUTRITION . 1 2 SMOKING . 1 2 ALCOHOL . 1 2 DELIVERY . 1 2 POSTNATAL 1 2 BREASTFD . 1 2 CONTRACEP 1 2 STI 1 2		
414	During this pregnancy, were you given a vaccine injection in the arm or buttock to prevent the baby from getting tetanus, that is, convulsions after birth?	YES $\ldots \ldots \ldots \ldots$ 1 NO $\ldots \ldots \ldots \ldots$ 2 NO (SKIP TO 417) 2 DON'T KNOW $\ldots \ldots$. 8		
415	During this pregnancy, how many times did you get this tetanus vaccine injection?	TIMES \square DON'T KNOW		
416	CHECK 415:			
417	At any time before this pregnancy, did you receive any tetanus injections, either to protect yourself or another baby?	YES $\ldots \ldots \ldots \ldots$ 1 NO $\ldots \ldots \ldots \ldots$ 2 (SKIP TO 421) DON'T KNOW $\ldots \ldots$ 8		

NO.	QUESTIONS AND FILTERS	LAST BIRTH NAME \qquad	NEXT-TO-LAST BIRTH NAME \qquad	SECOND-FROM-LAST BIRTH NAME \qquad
418	Before this pregnancy, how many other times did you receive a tetanus injection? IF 7 OR MORE TIMES, RECORD '7'.	TIMES \square DON'T KNOW 8		
419	In what month and year did you receive the last tetanus injection before this pregnancy?	MONTH DK MONTH 98		
420	How many years ago did you receive that tetanus injection?	YEARS AGO		
421	During this pregnancy, were you given or did you buy any iron tablets or iron syrup? SHOW TABLETS/SYRUP.			
422	During the whole pregnancy, for how many days did you take the tablets or syrup? IF ANSWER IS NOT NUMERIC, PROBE FOR APPROXIMATE NUMBER OF DAYS.	DAYS \square DON'T KNOW 998		
423	During this pregnancy, did you take any drug for intestinal worms?	YES $\ldots \ldots \ldots \ldots .$. 1 NO $\ldots \ldots \ldots \ldots$ 2 DON'T KNOW $\ldots \ldots$ 8		
424	During this pregnancy, did you have difficulty with your vision during daylight?	YES $\ldots \ldots \ldots \ldots$ $\ldots \ldots .$. 1 NO $\ldots \ldots \ldots$ 2 DON'T KNOW $\ldots \ldots$. 8		
425	During this pregnancy, did you suffer from night blindness?	YES $\ldots \ldots \ldots \ldots \ldots$ 1 NO $\ldots \ldots \ldots \ldots$ 2 DON'T KNOW 8		
432	When (NAME) was born, was he/she very large, larger than average, average, smaller than average, or very small?	VERY LARGE 1 LARGER THAN AVERAGE 2 AVERAGE 3 SMALLER THAN AVERAGE 4 VERY SMALL 5 DON'T KNOW 8	VERY LARGE 1 LARGER THAN AVERAGE 2 AVERAGE 3 SMALLER THAN AVERAGE 4 VERY SMALL 5 DON'T KNOW 8	VERY LARGE 1 LARGER THAN AVERAGE 2 AVERAGE 3 SMALLER THAN AVERAGE 4 VERY SMALL 5 DON'T KNOW 8
433	Was (NAME) weighed at birth?	$\begin{gathered} \text { YES } \ldots \ldots \ldots \ldots \ldots \\ \\ \text { NO } \ldots \ldots \ldots \ldots \\ \begin{array}{c} 1 \\ \text { (SKIP TO 435) } \\ \text { DON'T KNOW } \ldots \ldots \end{array} \\ \hline \end{gathered}$		

NO.	QUESTIONS AND FILTERS	LAST BIRTH NAME \qquad	NEXT-TO-LAST BIRTH NAME \qquad	SECOND-FROM-LAST BIRTH NAME \qquad
438	Was (NAME) delivered by caesarean section?		$\begin{array}{cc}\text { YES } \ldots \ldots \ldots \ldots & 1 \\ \text { NO } \ldots \ldots \ldots \ldots & 2 \\ (\text { SKIP TO 439) } & \end{array}$	$\begin{array}{ccc} \text { YES } \ldots \ldots \ldots \ldots \ldots & 1 \\ \text { NO } & 2 \\ (\text { SKIP TO 439 }) \longleftarrow \end{array}$
438A	What was the main reason that you delivered by caesarean section?	BABY TOO BIG/ PELVIS TOO SMALL 01 MALPRESENTATION 02 BABY STARTED TO SUFFER 03 PROLONGED LABOR/FAILED INDUCTION 04 OBSTETRIC HEMORRHAGE 05 PREVIOUS C-SECTION 06 ON REQUEST 07 OTHER \qquad 96	BABY TOO BIG/ PELVIS TOO SMALL 01 MALPRESENTATION 02 BABY STARTED TO SUFFER 03 PROLONGED LABOR/FAILED INDUCTION 04 OBSTETRIC HEMORRHAGE 05 PREVIOUS C-SECTION 06 ON REQUEST 07 OTHER \qquad 96 (SPECIFY) DON'T KNOW 98	BABY TOO BIG/ PELVIS TOO SMALL 01 MALPRESENTATION 02 BABY STARTED TO SUFFER 03 PROLONGED LABOR/FAILED INDUCTION 04 OBSTETRIC HEMORRHAGE 05 PREVIOUS C-SECTION 06 ON REQUEST 07 OTHER \qquad 96 \qquad DON'T KNOW 98
439	Before you were discharged after (NAME) was born, did any health care provider check on your health?			
440	How long after delivery did the first check take place? IF LESS THAN ONE DAY, RECORD HOURS. IF LESS THAN ONE WEEK, RECORD DAYS.	 HOURS 1 DAYS 2 WEEKS 3 DON'T KNOW		
441	Who checked on your health at that time? PROBE FOR MOST QUALIFIED PERSON.			
442	After you were discharged, did any health care provider check on your health?			

NO.	QUESTIONS AND FILTERS	LAST BIRTH NAME \qquad	NEXT-TO-LAST BIRTH NAME \qquad	SECOND-FROM-LAST BIRTH NAME \qquad
443	Why didn't you deliver in a health facility? PROBE: Any other reason? RECORD ALL MENTIONED.	COST TOO MUCH . . A FACILITY NOT OPEN . B TOO FAR/ NO TRANSPORTATION DON'T TRUST FACILITY/POOR QUALITY SERVICE D NO FEMALE PROVIDER AT FACILITY . . E NOT THE FIRST CHILD F RESPONDENT SAYS NOT NECESSARY HUSBAND THOUGHT NOT NECESSARY H FAMILY THOUGHT NOT NECESSARY HUSBAND/FAMILY DID NOT ALLOW .. J NOT CUSTOMARY . . K OTHER		
444	After (NAME) was born, did any health care provider check on your health?			
445	How long after delivery did the first check take place? IF LESS THAN ONE DAY, RECORD HOURS. IF LESS THAN ONE WEEK, RECORD DAYS.	HOURS 1 DAYS 2 WEEKS 3		
446	Who checked on your health at that time? PROBE FOR MOST QUALIFIED PERSON.	HEALTH PERSONNEL FAMILY DOCTOR 11 OBSTETRICIAN/ GYNECOLOGIST 12 NURSE/MIDWIFE . 13 OTHER \qquad 96 (SPECIFY)		

\begin{tabular}{|c|c|c|c|c|}
\hline NO. \& QUESTIONS AND FILTERS \& \begin{tabular}{l}
LAST BIRTH \\
NAME \(\qquad\)
\end{tabular} \& \begin{tabular}{l}
NEXT-TO-LAST BIRTH \\
NAME \(\qquad\)
\end{tabular} \& \begin{tabular}{l}
SECOND-FROM-LAST BIRTH \\
NAME \(\qquad\)
\end{tabular} \\
\hline 452 \& \begin{tabular}{l}
Where did this first check of (NAME) take place? \\
PROBE TO IDENTIFY THE TYPE OF SOURCE AND CIRCLE THE APPROPRIATE CODE. \\
IF UNABLE TO DETERMINE IF A HOSPITAL, HEALTH CENTER, OR CLINIC IS PUBLIC OR PRIVATE MEDICAL, WRITE THE NAME OF THE PLACE.
\end{tabular} \& \& \& \\
\hline 453A \& \begin{tabular}{l}
In the first six months after delivery, were you given or did you buy any iodine tablets? \\
SHOW COMMON TYPES OF IODINE TABLETS
\end{tabular} \& \& \& \\
\hline 454 \& Has your menstrual period returned since the birth of (NAME)? \& \& \& \\
\hline 455 \& Did your period return between the birth of (NAME) and your next pregnancy? \& \& YES \(\ldots \ldots \ldots \ldots .\).
NO \(\ldots \ldots \ldots \ldots\)
\((\) SKIP TO 459\()\) \& \begin{tabular}{ccc}
YES \(\ldots \ldots \ldots \ldots \ldots\) \& 1 \\
NO \(\ldots \ldots \ldots \ldots\) \& 2 \\
(SKIP TO 459)
\end{tabular} \\
\hline 456 \& For how many months after the birth of (NAME) did you not have a period? \& \begin{tabular}{l}
MONTHS \\
DON'T KNOW 98
\end{tabular} \& \begin{tabular}{l}
MONTHS \(\square\) \\
DON'T KNOW 98
\end{tabular} \& \begin{tabular}{l}
MONTHS \(\square\) \\
DON'T KNOW 98
\end{tabular} \\
\hline 457

458 \& | CHECK 226: |
| :--- |
| IS RESPONDENT PREGNANT? |
| Have you begun to have sexual intercourse again since the birth of (NAME)? | \& \& \&

\hline 459 \& For how many months after the birth of (NAME) did you not have sexual intercourse? \& | MONTHS |
| :--- |
| DON'T KNOW 98 | \& | MONTHS |
| :--- |
| DON'T KNOW | \& | MONTHS |
| :--- |
| DON'T KNOW |

\hline
\end{tabular}

NO.	QUESTIONS AND FILTERS	LAST BIRTH NAME \qquad	NEXT-TO-LAST BIRTH NAME \qquad	SECOND-FROM-LAST BIRTH NAME \qquad
470B	Sometimes adults taking care of children have to leave the house to go shopping, wash clothes, or for other reasons and have to leave young children with others. Since last (DAY OF THE WEEK) how many times was (NAME) left in the care of another child (that is, someone less than 10 years old)? IF NONE, RECORD '00'.	NUMBER OF TIMES \square NONE 00 DON'T KNOW	NUMBER OF TIMES NONE 00 DON'T KNOW	NUMBER OF TIMES \square NONE \qquad 00 DON'T KNOW \qquad 98
470C	In the past week, how many times was (NAME) left alone? IF NONE, RECORD '00'.	NUMBER OF TIMES NONE 00 DON'T KNOW 98	NUMBER OF TIMES NONE 00 DON'T KNOW	NUMBER OF TIMES NONE 00 DON'T KNOW \qquad
471		GO BACK TO 405 IN NEXT COLUMN; OR, IF NO MORE BIRTHS, GO TO 501.	GO BACK TO 405 IN NEXT COLUMN; OR, IF NO MORE BIRTHS, GO TO 501.	GO BACK TO 405 IN NEXT-TO-LAST COLUMN OF NEW QUESTIONNAIRE; OR, IF NO MORE BIRTHS, GO TO 501.

SECTION 5. CHILD IMMUNIZATION AND HEALTH AND CHILD'S AND WOMAN'S NUTRITION

NO.	QUESTIONS AND FILTERS	LAST BIRTH NAME \qquad	NEXT-TO-LAST BIRTH NAME	SECOND-FROM-LAST BIRTH NAME
507	Has (NAME) received any vaccinations that are not recorded on this card? RECORD 'YES' ONLY IF RESPONDENT MENTIONS BCG, POLIO 1-3, DPT 1-3, AND/OR MEASLES VACCINES.	YES (PROBE FOR VACCINATIONS AND WRITE '66' IN THE CORRESPONDING DAY COLUMN IN 506) (SKIP TO 516) NO \ldots. (SKIP TO 516) T KNOW 8		
508	Did (NAME) ever receive any vaccinations to prevent him/her from getting diseases?		YES $\ldots \ldots \ldots \ldots$ 1 NO $\ldots \ldots \ldots \ldots$ 2 (SKIP TO 516$)$ ${ }_{1}$ DON'T KNOW $\ldots \ldots$ 8	YES $\ldots \ldots \ldots \ldots$ 1 NO $\ldots \ldots \ldots \ldots$ 2 (SKIP TO 516$)$ 1 DON'T KNOW $\ldots \ldots$ 8
509	Please tell me if (NAME) received any of the following vaccinations: A BCG vaccination against tuberculosis, that is, an injection in the arm or shoulder that usually causes a scar?	YES $\ldots \ldots \ldots \ldots$ 1 NO 2 DON'T KNOW 8	YES $\ldots \ldots \ldots \ldots$ 1 NO $\ldots \ldots \ldots \ldots$ 2 DON'T KNOW 8	YES $\ldots \ldots \ldots \ldots$ $. \ldots .$. 1 NO $\ldots \ldots \ldots \ldots$ 2 DON'T KNOW 8
509B	Polio vaccine, that is, drops in the mouth?	$\begin{aligned} & \text { YES } \ldots \ldots \ldots \ldots \ldots \\ & \text { NO } \ldots \ldots \ldots \ldots \\ & \begin{array}{c} 1 \\ \text { (SKIP TO 509E) } \end{array} \mathfrak{H}_{1} \\ & \text { DON'T KNOW } \ldots . . . \end{aligned}$		YES $\ldots \ldots \ldots \ldots \ldots$NO $\ldots \ldots \ldots \ldots$(SKIP TO 509E)$\underbrace{}_{1}$DON'T KNOW $\ldots \ldots$
509D	How many times was the polio vaccine received?	NUMBER OF TIMES \square	NUMBER OF TIMES \square	NUMBER OF TIMES \square
509E	A DPT vaccination, that is, an injection given in the thigh or buttocks, sometimes at the same time as polio drops?	YES $\ldots \ldots \ldots \ldots$NO $\ldots \ldots \ldots \ldots$1 (SKIP TO 509G) \boldsymbol{H}_{1}DON'T KNOW $\ldots \ldots$	YES $\ldots \ldots \ldots \ldots$ 1 NO $\ldots \ldots \ldots \ldots$ 2 $($ SKIP TO 509 G$)$ ${ }_{1}$ DON'T KNOW 8	
509F	How many times was a DPT vaccination received?	NUMBER OF TIMES \square	NUMBER OF TIMES \square	NUMBER OF TIMES \square
509G	A Hepatitis B vaccination, that is, an injection given in the upper arm or shoulder, sometimes at the same time as the DPT injection?	$\begin{aligned} & \text { YES } \ldots \ldots \ldots \ldots \ldots \\ & \text { NO } \ldots \ldots \ldots \ldots \\ & \begin{array}{c} \ldots \\ \text { (SKIP TO 509I) } \end{array} \mathfrak{H}_{1} \end{aligned}$	YES $\ldots \ldots \ldots \ldots$ 1 NO $\ldots \ldots \ldots \ldots$ 2 (SKIP TO 509I) ${ }^{2}$ DON'T KNOW $\ldots \ldots$ 8	YES $\ldots \ldots \ldots \ldots$ 1 NO $\ldots \ldots \ldots \ldots$ 2 (SKIP TO 509I) DON'T KNOW $\ldots \ldots$ 8
509H	How many times was a Hepatitis B vaccination received?	NUMBER OF TIMES \square	NUMBER OF TIMES \square	NUMBER OF TIMES
5091	A measles injection or an MMR or MR injection - that is, a shot in the arm at the age of 12 months or older - to prevent him/her from getting measles?	YES $\ldots \ldots \ldots \ldots$ 1 NO $\ldots \ldots \ldots \ldots$ \ldots DON'T KNOW 8	YES $\ldots \ldots \ldots \ldots$ 1 NO $\ldots \ldots \ldots \ldots$ \ldots DON'T KNOW $\ldots \ldots$ 8	
516	In the last seven days, did (NAME) take iron syrup like this? SHOW COMMON TYPES OF SYRUPS.	$\begin{array}{llll} \text { YES } \ldots \ldots \ldots \ldots & \ldots \\ \text { NO } & 2 \\ \text { DON'T KNOW } & 8 \end{array}$	YES $\ldots \ldots \ldots \ldots$ 1 NO $\ldots \ldots \ldots \ldots$ 2 DON'T KNOW 8	YES $\ldots \ldots \ldots . . .$. 1 NO $\ldots \ldots \ldots . .$. 2 DON'T KNOW $\ldots \ldots$. 8
517	Has (NAME) taken any drug for intestinal worms in the last six months?	YES $\ldots \ldots \ldots \ldots$ 1 NO $\ldots \ldots \ldots \ldots$ \ldots DON'T KNOW 8	YES $\ldots \ldots \ldots \ldots$ 1 NO $\ldots \ldots \ldots \ldots$ \ldots DON'T KNOW $\ldots \ldots$ 8	YES $\ldots \ldots \ldots \ldots$ 1 NO $\ldots \ldots \ldots \ldots$ 2 DON'T KNOW $\ldots \ldots$. 8

NO.	QUESTIONS AND FILTERS	LAST BIRTH NAME \qquad	NEXT-TO-LAST BIRTH NAME \qquad	SECOND-FROM-LAST BIRTH NAME \qquad
518	Has (NAME) had diarrhea in the last 2 weeks?	YES $\ldots \ldots \ldots \ldots \ldots$ 1 NO $\ldots \ldots \ldots \ldots$ 2 (SKIP TO 533) ${ }^{1}$ DON'T KNOW $\ldots \ldots$ 8	YES $\ldots \ldots \ldots \ldots$ 1 NO $\ldots \ldots \ldots \ldots$ 2 (SKIP TO 533) DON'T KNOW $\ldots \ldots$ 8	YES $\ldots \ldots \ldots \ldots$ 1 NO $\ldots \ldots \ldots \ldots$ 2 (SKIP TO 533) DON'T KNOW $\ldots \ldots$ 8
519	Was there any blood in the stools?	YES $\ldots \ldots \ldots \ldots$ $\ldots \ldots$ 1 NO $\ldots \ldots \ldots \ldots$ \ldots DON'T KNOW $\ldots \ldots$ 8	YES $\ldots \ldots \ldots \ldots$ $\ldots \ldots$ 1 NO $\ldots \ldots \ldots \ldots$ 2 DON'T KNOW $\ldots \ldots$ 8	YES $\ldots \ldots \ldots \ldots$ 1 NO $\ldots \ldots \ldots \ldots$ 2 DON'T KNOW $\ldots \ldots$ 8
520	Now I would like to know how much (NAME) was given to drink during the diarrhea (including breastmilk). Was he/she given less than usual to drink, about the same amount, or more than usual to drink? IF LESS, PROBE: Was he/she given much less than usual to drink or somewhat less?	$\begin{array}{lll} \text { MUCH LESS } & 1 \\ \text { SOMEWHAT LESS . . } & 2 \\ \text { ABOUT THE SAME . } & 3 \\ \text { MORE } & 4 \\ \text { NOTHING TO DRINK } & 5 \\ \text { DON'T KNOW } & 8 \end{array}$	MUCH LESS 1 SOMEWHAT LESS . 2 ABOUT THE SAME . 3 MORE 4 NOTHING TO DRINK 5 DON'T KNOW 8	MUCH LESS $\ldots . .$. 1 SOMEWHAT LESS . . 2 ABOUT THE SAME . . 3 MORE 4 NOTHING TO DRINK 5 DON'T KNOW 8
521	When (NAME) had diarrhea, was he/she given less than usual to eat, about the same amount, more than usual, or nothing to eat? IF LESS, PROBE: Was he/she given much less than usual to eat or somewhat less?	MUCH LESS 1 SOMEWHAT LESS . 2 ABOUT THE SAME . 3 MORE 4 STOPPED FOOD 5 NEVER GAVE FOOD 6 DON'T KNOW 8	MUCH LESS 1 SOMEWHAT LESS . 2 ABOUT THE SAME . 3 MORE 4 STOPPED FOOD . 5 NEVER GAVE FOOD 6 DON'T KNOW 8	MUCH LESS $\ldots . .$. 1 SOMEWHAT LESS . . 2 ABOUT THE SAME . 3 MORE 4 STOPPED FOOD 5 NEVER GAVE FOOD 6 DON'T KNOW 8
522	Did you seek advice or treatment for the diarrhea from any source?	YES $\ldots \ldots \ldots \ldots \ldots$NO $\ldots \ldots \ldots \ldots$1 $($ SKIP TO 527$)$	YES $\ldots \ldots \ldots \ldots \ldots$ NO $\ldots \ldots \ldots \ldots$ (SKIP TO 527$) \longleftarrow$	YES $\ldots \ldots \ldots \ldots \ldots$NO $\ldots \ldots \ldots \ldots$1 $($ SKIP TO 527$)$${ }^{2}$
523	Where did you seek advice or treatment? Anywhere else? PROBE TO IDENTIFY EACH TYPE OF SOURCE AND CIRCLE THE APPROPRIATE CODE(S). IF UNABLE TO DETERMINE IF A HOSPITAL, HEALTH CENTER, OR CLINIC IS PUBLIC OR PRIVATE MEDICAL, WRITE THE THE NAME OF THE PLACE.	```PUBLIC SECTOR PUBLIC HOSPITAL A PUBLIC HEALTH CENTER B HEALTH POST C POLYCLINIC ... D OTHER PUBLIC``` \qquad ```NoneNone ``` \qquad ```None \\ OTHER SOURCE SHOP M \\ OTHER ``` \qquad ```XNone```	```PUBLIC SECTOR PUBLIC HOSPITAL A PUBLIC HEALTH CENTER B HEALTH POST C POLYCLINIC ... D OTHER PUBLIC - F (SPECIFY) PRIVATE MEDICAL SECTOR PVT. HOSPITAL/ CLINIC......... G PHARMACY ... H PVT DOCTOR ... I OTHER PRIVATE MED.``` \qquad ```OTHER SOURCE SHOP M \\ OTHER``` \qquad ```XNone```	```PUBLIC SECTOR PUBLIC HOSPITAL A PUBLIC HEALTH CENTER B HEALTH POST C POLYCLINIC ... D OTHER PUBLIC``` \qquad ```NoneNone ``` \qquad ```None \\ OTHER SOURCE SHOP M \\ OTHER ``` \qquad ```XNone```
524	CHECK 523:			

NO.	QUESTIONS AND FILTERS	LAST BIRTH NAME	NEXT-TO-LAST BIRTH NAME	SECOND-FROM-LAST BIRTH NAME
525	Where did you first seek advice or treatment? USE LETTER CODE FROM 523.	FIRST PLACE ... \square	FIRST PLACE ... \square	FIRST PLACE ...
526	How many days after the diarrhea began did you first seek advice or treatment for (NAME)? IF THE SAME DAY, RECORD '00'.	DAYS	DAYS	DAYS
527	Does (NAME) still have diarrhea?	YES $\ldots \ldots \ldots \ldots$ 1 NO $\ldots \ldots \ldots . .$. 2 DON'T KNOW 8		YES $\ldots \ldots \ldots \ldots$ 1 NO $\ldots \ldots \ldots \ldots$ 2 DON'T KNOW $\ldots \ldots$ 8
528	Was he/she given any of the following to drink at any time since he/she started having the diarrhea: a) A fluid made from a special packet called ADIARIL or RAPOLYTE? b) A homemade sugar-salt-water solution?	YES NO DK FLUID FROM ORS PKT . . 1 2 8 HOMEMADE FLUID . .	YES NO DK FLUID FROM ORS PKT . . 1 2 8 HOMEMADE FLUID . . 1 2	YES NO FLUID FROM ORS PKT . . 1 2 8 HOMEMADE FLUID ... 1 2
529	Was anything (else) given to treat the diarrhea?		YES $\ldots \ldots \ldots \ldots \ldots$ 1 NO $\ldots \ldots \ldots \ldots$ 2 (SKIP TO 533) ${ }^{1}+1$ DON'T KNOW $\ldots \ldots$ 8	YES $\ldots \ldots \ldots \ldots$ 1 NO $\ldots \ldots \ldots \ldots$ 2 (SKIP TO 533) . DON'T KNOW $\ldots \ldots$ 8
530	What (else) was given to treat the diarrhea? Anything else? RECORD ALL TREATMENTS GIVEN.			
531	CHECK 530: GIVEN ZINC?			

NO.	QUESTIONS AND FILTERS	LAST BIRTH NAME \qquad	NEXT-TO-LAST BIRTH NAME \qquad	SECOND-FROM-LAST BIRTH NAME \qquad
532	How many times was (NAME) given zinc?	TIMES \square DON'T KNOW .98	TIMES \square DON'T KNOW	TIMES \square DON'T KNOW .98
533	Has (NAME) been ill with a fever at any time in the last 2 weeks?	YES $\ldots \ldots \ldots \ldots$ 1 NO $\ldots \ldots \ldots \ldots$ 2 DON'T KNOW $\ldots \ldots$. 8		YES $\ldots \ldots \ldots \ldots$ 1 NO $\ldots \ldots \ldots \ldots$ 2 DON'T KNOW $\ldots \ldots$ 8
534	Has (NAME) had an illness with a cough at any time in the last 2 weeks?			YES $\ldots \ldots \ldots \ldots \ldots$NO $\ldots \ldots \ldots \ldots$1 (SKIP TO 537) DON'T KNOW $\ldots \ldots$
535	When (NAME) had an illness with a cough, did he/she breathe faster than usual with short, rapid breaths or have difficulty breathing?	YES $\ldots \ldots \ldots \ldots$ 1 NO $\ldots \ldots \ldots \ldots$ 2 (SKIP TO 538) 1 DON'T KNOW 8	YES $\ldots \ldots \ldots \ldots \ldots$ 1 NO $\ldots \ldots \ldots \ldots$ 2 (SKIP TO 538) 1 DON'T KNOW $\ldots \ldots$ 8	$\begin{aligned} & \text { YES } \ldots \ldots \ldots \ldots \ldots \\ & \text { NO } \ldots \ldots \ldots \ldots \\ & \begin{array}{c} \text {. } \\ \text { (SKIP TO 538) } \\ \text { DON'T KNOW } \ldots \ldots \end{array} \\ & \hline \end{aligned}$
536	Was the fast or difficult breathing due to a problem in the chest or to a blocked or runny nose?			
537	CHECK 533: HAD FEVER?			
538	Now I would like to know how much (NAME) was given to drink (including breastmilk) during the illness with a (fever/cough). Was he/she given less than usual to drink, about the same amount, or more than usual to drink? IF LESS, PROBE: Was he/she given much less than usual to drink or somewhat less?	MUCH LESS $\ldots . .$. 1 SOMEWHAT LESS . . 2 ABOUT THE SAME . 3 MORE 4 NOTHING TO DRINK 5 DON'T KNOW 8	MUCH LESS $\ldots . .$. 1 SOMEWHAT LESS . . 2 ABOUT THE SAME . . 3 MORE 4 NOTHING TO DRINK 5 DON'T KNOW 8	MUCH LESS $\ldots . . .$. 1 SOMEWHAT LESS . . 2 ABOUT THE SAME . . 3 MORE 4 NOTHING TO DRINK 5 DON'T KNOW 8
539	When (NAME) had a (fever/cough), was he/she given less than usual to eat, about the same amount, more than usual, or nothing to eat? IF LESS, PROBE: Was he/she given much less than usual to eat or somewhat less?	MUCH LESS $\ldots . .$. 1 SOMEWHAT LESS . 2 ABOUT THE SAME . 3 MORE 4 STOPPED FOOD . . 5 NEVER GAVE FOOD 6 DON'T KNOW 8	MUCH LESS $\ldots . .$. 1 SOMEWHAT LESS . . 2 ABOUT THE SAME . 3 MORE 4 STOPPED FOOD . . 5 NEVER GAVE FOOD 6 DON'T KNOW 8	MUCH LESS $\ldots . . .$. 1 SOMEWHAT LESS . . 2 ABOUT THE SAME . 3 MORE 4 STOPPED FOOD . . 5 NEVER GAVE FOOD 6 DON'T KNOW 8

NO.	QUESTIONS AND FILTERS	LAST BIRTH NAME \qquad	NEXT-TO-LAST BIRTH NAME \qquad	SECOND-FROM-LAST BIRTH NAME
540	Did you seek advice or treatment for the illness from any source?	YES $\ldots \ldots \ldots \ldots \ldots$NO $\ldots \ldots \ldots \ldots$1 $($ SKIP TO 545$)$${ }^{2}$	YES $\ldots \ldots \ldots \ldots \ldots$NO $\ldots \ldots \ldots \ldots$1 $($ SKIP TO 545$)$${ }^{2}$	$\begin{aligned} & \text { YES } \ldots \ldots \ldots \ldots \ldots \\ & \text { NO } \\ & \begin{array}{l} 1 \\ (\text { SKIP TO } 545) \end{array} \end{aligned}$
541	Where did you seek advice or treatment? Anywhere else? PROBE TO IDENTIFY EACH TYPE OF SOURCE AND CIRCLE THE APPROPRIATE CODE(S). IF UNABLE TO DETERMINE IF A HOSPITAL, HEALTH CENTER, OR CLINIC IS PUBLIC OR PRIVATE MEDICAL, WRITE THE THE NAME OF THE PLACE.			
542	CHECK 541:			TWO OR $\left.\begin{array}{\|cc\|}\hline \text { MORE } & \text { ONLY } \\ \text { CODES } & \text { ONE } \\ \text { CODE } \\ \hline \text { CIRCLED } & \text { CIRCLED } \\ \\ & (\text { SKIP TO 544) }\end{array}\right]$
543	Where did you first seek advice or treatment? USE LETTER CODE FROM 541.	FIRST PLACE ...	FIRST PLACE . . \square	FIRST PLACE ... \square
544	How many days after the illness began did you first seek advice or treatment for (NAME)? IF THE SAME DAY, RECORD '00'.	DAYS \square	DAYS \square	DAYS
545	Is (NAME) still sick with a (fever/ cough)?	FEVER ONLY $\ldots .$. 1 COUGH ONLY \ldots 2 BOTH FEVER AND COUGH $\ldots . .$. NO, NEITHER $\ldots .$. 3 DON'T KNOW \ldots. 8	FEVER ONLY $\ldots .$. 1 COUGH ONLY \ldots. 2 BOTH FEVER AND COUGH $\ldots . .$. NO, NEITHER $\ldots .$. 4 DON'T KNOW \ldots 8	FEVER ONLY $\ldots . .$. 1 COUGH ONLY \ldots. 2 BOTH FEVER AND COUGH $\ldots . .$. NO, NEITHER \ldots. 3 DON'T KNOW \ldots 8
546	At any time during the illness, did (NAME) take any drugs for the illness?	YES $\ldots \ldots \ldots \ldots$ 1 NO $\ldots \ldots \ldots \ldots$ 2 (GO BACK TO 503 IN NEXT COLUMN; OR, IF NO MORE BIRTHS, GO TO 573) DON'T KNOW 8	YES $\ldots \ldots \ldots \ldots$ 1 NO $\ldots \ldots \ldots \ldots$ 2 (GO BACK TO 503 IN NEXT COLUMN; OR, IF NO MORE BIRTHS, GO TO 573) DON'T KNOW 8	YES $\ldots \ldots \ldots \ldots$ 1 NO $\ldots \ldots \ldots \ldots$ 2 (GO TO 503 IN NEXT-TO-LAST COLUMN OF NEW QUESTIONNAIRE; OR, IF NO MORE BIRTHS, GO TO 573) DON'T KNOW

NO.	QUESTIONS AND FILTERS	LAST BIRTH NAME \qquad	NEXT-TO-LAST BIRTH NAME \qquad	SECOND-FROM-LAST BIRTH NAME
547	What drugs did (NAME) take? Any other drugs? RECORD ALL MENTIONED.			
572		GO BACK TO 503 IN NEXT COLUMN; OR, IF NO MORE BIRTHS, GO TO 573.	GO BACK TO 503 IN NEXT COLUMN; OR, IF NO MORE BIRTHS, GO TO 573.	GO TO 503 IN NEXT-TO-LAST COLUMN OF NEW QUESTIONNAIRE; OR, IF NO MORE BIRTHS, GO TO 573.

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
573	CHECK 215 AND 218, ALL ROWS: NUMBER OF CHILDREN BORN IN 2003 OR LATER LIVING WITH T ONE OR MORE NONE RECORD NAME OF YOUNGEST CHILD LIVING \qquad WITH HER (AND CONTINUE WITH 574)	RESPONDENT (NAME)	$\rightarrow 576$
574	The last time (NAME FROM 573) passed stools, what was done to dispose of the stools?		
575	CHECK 528(a) AND 528(b), ALL COLUMNS:	FLUID \square PACKET	$\rightarrow 577$
576	Have you ever heard of a special product called ADIARIL or RAPOLYTE that you can get for the treatment of diarrhea?		
577	CHECK 215 AND 218, ALL ROWS: NUMBER OF CHILDREN BORN IN 2005 OR LATER LIVING WITH T ONE OR MORE NONE RECORD NAME OF YOUNGEST CHILD LIVING \qquad WITH HER (AND CONTINUE WITH 578)	RESPONDENT (NAME)	\rightarrow 600X
578	Now I would like to ask you about liquids or foods (NAME FROM 577) had yesterday during the day or at night. Did (NAME FROM 577) (drink/eat): (a) Plain water? (b) Commercially produced infant formula? (c) Any commercially fortified baby food such as Plasmon, Hipp, Franclac, Milupa or Noynoy? (d) Any (other) porridge or gruel?	YES NO DK PLAIN WATER $\ldots \ldots \ldots \ldots$ 1 2 8 FORMULA $\ldots \ldots \ldots \ldots$ 1 2 8 BABY CEREAL $\ldots \ldots .$. 1 2 8 OTHER PORRIDGE/GRUEL. . 1 2 8	
578A	CHECK 578 (a): PLAIN WATER GIVEN YES NO		$\rightarrow 579$
578B	How many times did (NAME FROM 577) name receive plain water yesterday during the day or at night? IF 7 OR MORE TIMES, RECORD ' 7 ’.	NUMBER OF TIMES \square DON'T KNOW 8	

SECTION 6. MARRIAGE AND SEXUAL ACTIVITY

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
600X	CHECK 101X: HOUSEHOLD SELECTED FOR MALE SURVEY YES \square		$\rightarrow 601$
600A	May I measure your blood pressure and pulse at this time? RECORD BLOOD PRESSURE AND PULSE MEASUREMENT IN 2ND COLUMN IN 1036.	$\begin{array}{llll}\text { BLOOD PRESSURE TAKEN } & \ldots & 1 \\ \text { BLOOD PRESSURE NOT TAKEN } & \ldots & 2\end{array}$	
601	Are you currently married or living together with a man as if married?	YES, CURRENTLY MARRIED \ldots ... 1 YES, LIVING WITH A MAN \ldots ... 2 NO, NOT IN UNION 3	$\xrightarrow{\longrightarrow} 604$
602	Have you ever been married or lived together with a man as if married?		$\rightarrow 617$
603	What is your marital status now: are you widowed, divorced, or separated?	WIDOWED . 1 DIVORCED 3	609
604	Is your husband/partner living with you now or is he staying elsewhere?	LIVING WITH HER 1 STAYING ELSEWHERE	
605	Please tell me the name of your husband/the man you are living with as if married RECORD THE HUSBAND'S/PARTNER'S NAME AND LINE NUMBER FROM THE HOUSEHOLD QUESTIONNAIRE. IF HE IS NOT LISTED IN THE HOUSEHOLD, RECORD '00'.	NAME LINE NO. \qquad \square	
609	Have you been married or lived with a man only once or more than once?	ONLY ONCE $\ldots . ~$ 1 MORE THAN ONCE 2	
615	CHECK 609:		$\rightarrow 617$
616	How old were you when you first started living with him?	AGE	
617	CHECK FOR THE PRESENCE OF OTHERS. BEFORE CONTINU	MAKE EVERY EFFORT TO ENSURE PRIVACY.	
618	Now I would like to ask you some questions about sexual activity in order to gain a better understanding of some important life issues. How old were you when you had sexual intercourse for the very first time?	NEVER HAD SEXUAL INTERCOURSE 00 AGE IN YEARS FIRST TIME WHEN STARTED LIVING WITH (FIRST) HUSBAND/PARTNER 95	
619	CHECK 107:AGE $\square-24$ $\square$$\quad$AGE $25-49$		$\longrightarrow 641$
620	Do you intend to wait until you get married to have sexual intercourse for the first time?		$\longrightarrow 641$

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
621	CHECK 107:AGE $\square-24$ \squareAGE $25-49$		$\rightarrow 626$
622	The first time you had sexual intercourse, was a condom used?	YES NO DON'T KNOW/DON'T REMEMBER	
623	How old was the person you first had sexual intercourse with?	AGE OF PARTNER DON'T KNOW	$\longrightarrow 626$
624	Was this person older than you, younger than you, or about the same age as you?	OLDER YOUNGER ABOUT THE SAME AGE DON'T KNOW/DON'T REMEMBER	
625	Would you say this person was ten or more years older than you or less than ten years older than you?	TEN OR MORE YEARS OLDER LESS THAN TEN YEARS OLDER OLDER, UNSURE HOW MUCH	
626	When was the last time you had sexual intercourse? IF LESS THAN 12 MONTHS, ANSWER MUST BE RECORDED IN DAYS, WEEKS OR MONTHS. IF 12 MONTHS (ONE YEAR) OR MORE, ANSWER MUST BE RECORDED IN YEARS.		$\longrightarrow 640$

		LAS SEXUAL P	SECONDSEXUAL P	THIRD-T SEXUAL P	
626A	Now I would like to ask you some questions about your recent sexual activity. Let me assure you again that your answers are completely confidential and will not be told to anyone. If we should come to any question that you don't want to answer, just let me know and we will go to the next question. \longrightarrow SKIP TO 628				
627	When was the last time you had sexual intercourse with this person?			DAYS . 1 WEEKS 2 MONTHS 3	
628	The last time you had sexual intercourse (with this second/third person), was a condom used?	YES NO (SKIP TO	YES $\ldots \ldots \ldots \ldots \ldots$ NO $\ldots \ldots \ldots \ldots$ $\begin{gathered}1 \\ (S K I P ~ T O ~ 630) \\ \longmapsto\end{gathered}$	YES $\ldots \ldots \ldots \ldots \ldots$NO $\ldots \ldots \ldots \ldots$$($ SKIP TO 630$) \longleftarrow$	
629	Did you use a condom every time you had sexual intercourse with this person in the last 12 months?	$\begin{aligned} & \text { YES } \\ & \text { NO } \end{aligned}$			
630	What was the relationship to you of this person with whom you had sexual intercourse? IF BOYFRIEND/FIANCE: Were you living together as if married? IF YES, CIRCLE '2'. IF NO, CIRCLE '3'.	HUSBAND ... (SKIP TO LIVE-IN PARTN BOYFRIEND/FI NOT LIVING RESPONDENT CASUAL ACQUAINTA PROSTITUTE . OTHER \qquad			
631	For how long (have you had/did you have) a sexual relationship with this person? IF ONLY HAD SEXUAL RELATIONS WITH THIS PERSON ONCE, RECORD '01' DAYS.	DAYS . 1 MONTHS 2 YEARS 3	DAYS . 1 MONTHS 2 YEARS 3	DAYS . 1 MONTHS 2 YEARS 3	
632	CHECK 107:	AGE 15-24 (SKIP	AGE AGE $15-24$ $25-49$ \square (SKIP TO 636) \square	AGE AGE $15-24$ $25-49$ \square \square (SKIP TO 636)	
633	How old is this person?	AGE OF PARTNER (SKIP TO 636) DON'T KNOW	AGE OF PARTNER (SKIP TO 636) DON'T KNOW	AGE OF PARTNER \square (SKIP TO 636) DON'T KNOW \qquad	
634	Is this person older than you, younger than you, or about the same age?	OLDER ... YOUNGER SAME AGE DON'T KNOW (SKIP TO	OLDER $\ldots \ldots$. 1 YOUNGER \ldots \ldots 2 SAME AGE $\ldots .$. 3 DON'T KNOW \ldots 8 8 $($ SKIP TO 636$)$ \longleftarrow	OLDER $\ldots . .$. 1 YOUNGER \ldots. . 2 SAME AGE \ldots. 3 3 DON'T KNOW ... 8 (SKIP TO 636)	
635	Would you say this person is ten or more years older than you or less than ten years older than you?	TEN OR MOR YEARS OL LESS THAN T YEARS OL OLDER, UNS HOW MUC	TEN OR MORE YEARS OLDER LESS THAN TEN YEARS OLDER OLDER, UNSURE HOW MUCH $\ldots 3$	TEN OR MORE YEARS OLDER LESS THAN TEN YEARS OLDER OLDER, UNSURE HOW MUCH	

		LAST SEXUAL PARTNER	SECOND-TO-LAST SEXUAL PARTNER	THIRD-TO-LAST SEXUAL PARTNER
636	The last time you had sexual intercourse with this person, did you or this person drink alcohol?	YES $\ldots \ldots \ldots \ldots \ldots$NO $\ldots \ldots \ldots \ldots$1 $($ SKIP TO 638)${ }^{2}$	YES $\ldots \ldots \ldots \ldots \ldots$NO $\ldots \ldots \ldots \ldots$1 $(S K I P ~ T O ~ 638)$ \longmapsto	YES $\ldots \ldots \ldots \ldots \ldots$NO $\ldots \ldots \ldots \ldots$1 $(S K I P ~ T O ~ 639) ~$
637	Were you or your partner drunk at that time? IF YES: Who was drunk?	RESPONDENT ONLY 1 PARTNER ONLY ... 2 RESPONDENT AND PARTNER BOTH . 3 NEITHER 4	RESPONDENT ONLY 1 PARTNER ONLY ... 2 RESPONDENT AND PARTNER BOTH . 3 NEITHER 4	RESPONDENT ONLY 1 PARTNER ONLY ... 2 RESPONDENT AND PARTNER BOTH . 3 NEITHER 4
638	Apart from [this person/these two people], have you had sexual intercourse with any other person in the last 12 months?			
639	In total, with how many different people have you had sexual intercourse in the last 12 months? IF NON-NUMERIC ANSWER, PROBE TO GET AN ESTIMATE. IF NUMBER OF PARTNERS IS GREATER THAN 95, WRITE '95.'			NUMBER OF PARTNERS LAST 12 MONTHS

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
640	In total, with how many different people have you had sexual intercourse in your lifetime? IF NON-NUMERIC ANSWER, PROBE TO GET AN ESTIMATE. IF NUMBER OF PARTNERS IS GREATER THAN 95, WRITE '95.'	NUMBER OF PARTNERS IN LIFETIME \qquad \square DON'T KNOW	
641	Do you know of a place where a person can get condoms?		$\rightarrow 701$
642	Where is that? Any other place? PROBE TO IDENTIFY EACH TYPE OF SOURCE AND CIRCLE THE APPROPRIATE CODE(S). IF UNABLE TO DETERMINE IF HOSPITAL, HEALTH CENTER OR CLINIC IS PUBLIC OR PRIVATE MEDICAL, WRITE THE NAME OF THE PLACE.		
643	If you wanted to, could you yourself get a condom?		

SECTION 7. FERTILITY PREFERENCES

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
701	CHECK 311/311A: NEITHER HE OR SHE STERILIZED STERILIZED		$\rightarrow 713$
702	CHECK 226:	HAVE (A/ANOTHER) CHILD 1 NO MORE/NONE 2 SAYS SHE CAN'T GET PREGNANT . 3 UNDECIDED/DON'T KNOW AND PREGNANT UNDECIDED/DON'T KNOW AND NOT PREGNANT OR UNSURE	
703	CHECK 226: NOT PREGNANT PREGNANT OR UNSURE How long would you like to wait After the birth of the child you from now before the birth of are expecting now, how long (a/another) child? would you like to wait before the birth of another child?		
704	CHECK 226: NOT PREGNANT PREGNANT OR UNSURE		$\rightarrow 709$
705	CHECK 310: USING A CONTRACEPTIVE METHOD?	LY NG \square	$\rightarrow 713$
706	CHECK 703: 24 OR MORE MONTHS OR 02 OR MORE YEARS	-23 MONTHS 00-01 YEAR	$\longrightarrow 709$

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
707	CHECK 702:		
708	CHECK 310: USING A CONTRACEPTIVE METHOD? CUR	YES, NTLY USING	$\rightarrow 713$
709	Do you think you will use a contraceptive method to delay or avoid pregnancy at any time in the future?		$\begin{aligned} & \longrightarrow 711 \\ & \longrightarrow 713 \end{aligned}$
710	Which contraceptive method would you prefer to use?		$[\underbrace{}$

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
711	What is the main reason that you think you will not use a contraceptive method at any time in the future?		
712	Would you ever use a contraceptive method if you were married?		
713	CHECK 216: HAS LIVING CHILDREN NO LIVING CHILDREN If you could go back to the time If you could choose exactly the you did not have any children number of children to have in and could choose exactly the your whole life, how many number of children to have in would that be? your whole life, how many would that be? PROBE FOR A NUMERIC RESPONSE.		$\begin{array}{r} \longrightarrow 715 \\ \\ \\ \longrightarrow 715 \end{array}$
714	How many of these children would you like to be boys, how many would you like to be girls and for how many would the sex not matter?		
715	In the last few months have you: Heard about family planning on the radio? Seen about family planning on the television? Read about family planning in a newspaper or magazine?	YES NO RADIO $\ldots \ldots \ldots \ldots \ldots \ldots$ 1 2 TELEVISION $\ldots \ldots \ldots \ldots \ldots$ 1 2 NEWSPAPER OR MAGAZINE \ldots. 1 2	

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
717	CHECK 601:		$\rightarrow 801$
718	CHECK 311/311A: CODE B, G, OR M CIRCLED \square NO CODE CIRCLED \square OTHER		$\begin{aligned} & \longrightarrow 720 \\ & \longrightarrow 722 \end{aligned}$
719	Does your husband/partner know that you are using a method of family planning?		
720	Would you say that using contraception is mainly your decision, mainly your husband's/partner's decision, or did you both decide together?		
721	CHECK 311/311A: NEITHER HE OR SHE STERILIZED STERILIZED		$\rightarrow 801$
722	Does your husband/partner want the same number of children that you want, or does he want more or fewer than you want?		

SECTION 8. HUSBAND'S BACKGROUND AND WOMAN'S WORK

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
801		NEVER MARRIED AND NEVER \square LIVED WITH A MAN	$\begin{array}{\|l} \longrightarrow 803 \\ \longrightarrow 807 \end{array}$
802	How old was your husband/partner on his last birthday?	AGE IN COMPLETED YEARS	
803	Did your (last) husband/partner ever attend school?	YES NO	$\rightarrow 806$
804	What was the highest level of school he attended: primary 4-year, 8-year, generic secondary, professional, technical, university, post university/graduate?	PRIMARY 4 YEAR PRIMARY 8 YEAR GENERIC SECONDARY PROFESSIONAL TECHNICAL UNIVERSITY POST UNIVERSITY/GRADUATE DON'T KNOW	$\rightarrow 806$
805	What was the highest class he completed at that level?	CLASS DON'T KNOW	
806	CHECK 801: CURRENTLY MARRIED/ FORMERLY MARRIED/ LIVING WITH A MAN LIVED WITH A MAN What is your husband's/partner's What was your (last) husband's/ occupation? partner's occupation? That is, what kind of work does That is, what kind of work did he he mainly do? mainly do?	\square	
807	Aside from your own housework, have you done any work in the last seven days?	YES NO	$\longrightarrow 811$
808	As you know, some women take up jobs for which they are paid in cash or kind. Others sell things, have a small business or work on the family farm or in the family business. In the last seven days, have you done any of these things or any other work?	YES NO	$\longrightarrow 811$
809	Although you did not work in the last seven days, do you have any job or business from which you were absent for leave, illness, vacation, maternity leave or any other such reason?	YES NO	$\longrightarrow 811$
810	Have you done any work in the last 12 months?	$\begin{aligned} & \text { YES } \\ & \text { NO } \end{aligned}$	$\longrightarrow 818$
811	What is your occupation, that is, what kind of work do you mainly do?		
812	CHECK 811: WORKS IN DOES NOT WORK AGRICULTURE IN AGRICULTURE		$\rightarrow 814$

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
813	Do you work mainly on your own land or on family land, or do you work on land that you rent from someone else, or do you work on someone else's land?		
814	Do you do this work for a member of your family, for someone else, or are you self-employed?	FOR FAMILY MEMBER $\ldots \ldots \ldots . .$. 1 FOR SOMEONE ELSE $\ldots \ldots \ldots \ldots$ 2 SELF-EMPLOYED $\ldots \ldots \ldots . .$. 3	
815	Do you usually work at home or away from home?		
816	Do you usually work throughout the year, or do you work seasonally, or only once in a while?	$\begin{array}{llll}\text { THROUGHOUT THE YEAR } \ldots & 1 \\ \text { SEASONALLY/PART OF THE YEAR } & . & 2 \\ \text { ONCE IN A WHILE } & \ldots & 3\end{array}$	
817	Are you paid in cash or kind for this work or are you not paid at all?		
818	CHECK 601: CURRENTLY MARRIED/LIVING NOT IN UNION WITH A MAN		$\rightarrow 827$
819	CHECK 817: CODE 1 OR 2 CIRCLED OTHER		$\rightarrow 822$
820	Who usually decides how the money you earn will be used: mainly you, mainly your husband/partner, or you and your husband/partner jointly?		
821	Would you say that the money that you earn is more than what your husband/partner earns, less than what he earns, or about the same?		$\rightarrow 823$
822	Who usually decides how your husband's/partner's earnings will be used: you, your husband/partner, or you and your husband/partner jointly?		

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES					SKIP
823	Who usually makes decisions about health care for yourself: you, your husband/partner, you and your husband/partner jointly, or someone else?		$V T=1$ ARTNER N \& HUSB LSE $=4$ 2	/PARTNE 3	$\text { NTLY }=$		
824	Who usually makes decisions about making major household purchases?	1	2	3		6	
825	Who usually makes decisions about making purchases for daily household needs?	1	2	3	-	6	
826	Who usually makes decisions about visits to your family or relatives?	1	2	3		6	
827	PRESENCE OF OTHERS AT THIS POINT (PRESENT AND LISTENING, PRESENT BUT NOT LISTENING, OR NOT PRESENT)		$N<10$ D/PART ALES EMALE	PRES. LISTEN. $\begin{array}{cc} \ldots . & 1 \\ . & 1 \\ \ldots & 1 \\ \ldots & 1 \end{array}$	RES./ NOT STEN. 2 2 2 2	NOT PRES. $\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	
828	Sometimes a husband is annoyed or angered by things that his wife does. In your opinion, is a husband justified in hitting or beating his wife in the following situations: If she goes out without telling him? If she neglects the children? If she argues with him? If she refuses to have sex with him? If she burns the food?	GO NEG ARG REF BUR		$\begin{array}{ll} & \\ & \text { YES } \\ & \\ \ldots & 1 \end{array}$	$\begin{aligned} & \mathrm{NO} \\ & \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{gathered} \text { DK } \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \end{gathered}$	

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES		SKIP
901	Now I would like to talk about something else. Have you ever heard of an illness called AIDS?	$\begin{aligned} & \text { YES } \\ & \text { NO } \end{aligned}$	$\begin{array}{ll} \\ \ldots \ldots . & \\ \ldots & 1 \\ \ldots \end{array}$	$\rightarrow 942$
902	Can people reduce their chance of getting the AIDS virus by having just one uninfected sex partner who has no other sex partners?	YES NO DON'T KNOW	$\begin{array}{cc} \ldots . . & 1 \\ \ldots \ldots . & 2 \\ \ldots . . & 8 \end{array}$	
903	Can people get the AIDS virus from mosquito bites?	YES NO DON'T KNOW	$\begin{array}{ll} \ldots . . & 1 \\ \ldots \ldots & 2 \\ \ldots . . & 8 \end{array}$	
904	Can people reduce their chance of getting the AIDS virus by using a condom every time they have sex?	YES NO DON'T KNOW	$\begin{array}{ll} \ldots . . & 1 \\ \ldots \ldots & \\ \ldots \ldots & \\ \ldots \end{array}$	
905	Can people get the AIDS virus by sharing food with a person who has AIDS?	YES NO DON'T KNOW	$\begin{array}{ll} \ldots . . & 1 \\ \ldots \ldots & \\ \ldots \ldots & \\ \ldots \end{array}$	
906	Can people reduce their chance of getting the AIDS virus by not having sexual intercourse at all?	YES NO DON'T KNOW	$\begin{array}{ll} \ldots . . & 1 \\ \ldots \ldots . & 2 \\ \ldots . . & 8 \end{array}$	
907A	Can people get the AIDS virus by touching a person who is infected with the AIDS virus?	YES NO DON'T KNOW	$\begin{array}{ll} \ldots . . & 1 \\ \ldots \ldots . & 2 \\ \ldots . . & 8 \end{array}$	
908	Is it possible for a healthy-looking person to have the AIDS virus?	YES NO DON'T KNOW	$\begin{array}{ll} \ldots \ldots & 1 \\ \ldots \ldots & 2 \\ \ldots \ldots & 8 \end{array}$	
909	Can the virus that causes AIDS be transmitted from a mother to her baby: During pregnancy? During delivery? By breastfeeding?	YES DURING PREG. $\ldots . .$. 1 DURING DELIVERY \ldots 1 BREASTFEEDING \ldots 1	NO DK 2 8 2 8 2 8	
910	CHECK 909: AT LEAST ONE 'YES'	ER		$\rightarrow 912$
911	Are there any special drugs that a doctor or a nurse can give to a woman infected with the AIDS virus to reduce the risk of transmission to the baby?	YES NO DON'T KNOW	$\begin{array}{ll} \ldots . . & 1 \\ \ldots . . & 2 \\ \ldots . & 8 \end{array}$	
912	Have you heard about special antiretroviral drugs that people infected with the AIDS virus can get from a doctor or a nurse to help them live longer?	YES NO DON'T KNOW	$\begin{array}{cc} \ldots . . & 1 \\ \ldots \ldots . & 2 \\ \ldots . . & 8 \end{array}$	
913	CHECK 208 AND 215: LAST BIRTH SINCE JANUARY 2005	HS \square RE 05 \square		$\begin{aligned} & \longrightarrow 922 \\ & \longrightarrow 922 \end{aligned}$
914	CHECK 407 FOR LAST BIRTH: HAD ANTENATAL CARE	NO AL RE		$\rightarrow 922$

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
926	Where was the test done? PROBE TO IDENTIFY THE TYPE OF SOURCE AND CIRCLE THE APPROPRIATE CODE. IF UNABLE TO DETERMINE IF HOSPITAL, HEALTH CENTER, VCT CENTER, OR CLINIC IS PUBLIC OR PRIVATE MEDICAL, WRITE THE NAME OF THE PLACE.		$\rightarrow 929$
927	Do you know of a place where people can go to get tested for the AIDS virus?		$\rightarrow 929$
928	Where is that? Any other place? PROBE TO IDENTIFY EACH TYPE OF SOURCE AND CIRCLE THE APPROPRIATE CODE(S). IF UNABLE TO DETERMINE IF HOSPITAL, HEALTH CENTER VCT CENTER, OR CLINIC IS PUBLIC OR PRIVATE MEDICAL, WRITE THE NAME OF THE PLACE.		
929	Would you buy fresh vegetables from a shopkeeper or vendor if you knew that this person had the AIDS virus?		
930	If a member of your family got infected with the AIDS virus, would you want it to remain a secret or not?		
931	If a member of your family became sick with AIDS, would you be willing to care for her or him in your own household?		
932	In your opinion, if a female teacher has the AIDS virus but is not sick, should she be allowed to continue teaching in the school?	SHOULD BE ALLOWED \ldots. 1 SHOULD NOT BE ALLOWED $\ldots . .$. 2 DK/NOT SURE/DEPENDS \quad. 8	
932A	In your opinion, if a pupil has the AIDS virus but is not sick, should he/she be allowed to continue in the same class as other uninfected children?	SHOULD BE ALLOWED \ldots SHOULD NOT BE ALLOWED \ldots 1 DK/NOT SURE/DEPENDS \ldots. 2	

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
940	Should children age 12-14 be taught about using a condom to avoid getting AIDS?		
941	Should children age 12-14 be taught to wait until they get married to have sexual intercourse in order to avoid getting AIDS?		
942		YES . 1 NO	
943	CHECK 618: HAS HAD SEXUAL HAS NOT HAD SEXUAL INTERCOURSE INTERCOURSE		$\rightarrow 951$
944	CHECK 942: HEARD ABOUT OTHER SEXUALLY TRANSMITTED $\text { YES } \square$	ECTIONS? NO \square	$\rightarrow 946$
945	Now I would like to ask you some questions about your health in the last 12 months. During the last 12 months, have you had a disease which you got through sexual contact?	YES . 1 NO . 8 DONT KNOW	
946	Sometimes women experience a bad smelling abnormal genital discharge. During the last 12 months, have you had a bad smelling abnormal genital discharge?	YES . 1 NO . 8 DON KNOW	
947	Sometimes women have a genital sore or ulcer. During the last 12 months, have you had a genital sore or ulcer?		
948	CHECK 945, 946, AND 947: HAS HAD AN HAS NOT HAD AN INFECTION INFECTION OR (ANY 'YES') DOES NOT KNOW		$\rightarrow 951$
949	The last time you had (PROBLEM FROM 945/946/947), did you seek any kind of advice or treatment?	YES $\ldots .$. 1 NO 2	$\longrightarrow 951$

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
950	Where did you go? Any other place? PROBE TO IDENTIFY EACH TYPE OF SOURCE AND CIRCLE THE APPROPRIATE CODE(S). IF UNABLE TO DETERMINE IF HOSPITAL, HEALTH CENTER VCT CENTER, OR CLINIC IS PUBLIC OR PRIVATE MEDICAL, WRITE THE NAME OF THE PLACE.		
950A	Who did you see for advice or treatment? Any one else? PROBE TO IDENTIFY EACH TYPE OF PROVIDER AND CIRCLE THE APPROPRIATE CODE(S).	\qquad	
951	Husbands and wives do not always agree on everything. If a wife knows her husband has a disease that she can get during sexual intercourse, is she justified in refusing to have sex with him?		
952	If a wife knows her husband has a disease that she can get during sexual intercourse, is she justified in asking that they use a condom when they have sex?		
953	Is a wife justified in refusing to have sex with her husband when she is tired or not in the mood?		
954	Is a wife justified in refusing to have sex with her husband when she knows her husband has sex with other women?		
955	CHECK 601: CURRENTLY MARRIED/ LIVING WITH A MAN NOT IN UNION		$\rightarrow 1000 \mathrm{~A}$
956	Can you say no to your husband/partner if you do not want to have sexual intercourse?		
957	Could you ask your husband/partner to use a condom if you wanted him to?	YES . 1 NO 8 DEPENDS/NOT SURE	

SECTION 10. OTHER HEALTH ISSUES

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
1001	How is your health currently: very good, good, fair, poor, very poor?		
1002	Compared with 12 months ago, would you say that your health is now much better, somewhat better, about the same, somewhat worse, or much worse?		
1003	Do you suffer from a chronic illness or disability that has lasted more than 3 months (including severe depression)?	$\begin{aligned} & \text { YES . } 1 \\ & \text { NO } \end{aligned}$	$\rightarrow 1005$
1004	What type of illness or disability do you have? RECORD ALL MENTIONED		
1005	During the last 4 weeks have you had any sudden illness or injury, such as flu, diarrhea, a fracture, etc.?	$\begin{aligned} & \text { YES . } 1 \\ & \text { NO } \end{aligned}$	$\longrightarrow 1007$

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
1006	What type of illness or injury did you have? IF MORE THAN ONE, REFER TO THE MOST SERIOUS		
1007	In the past 12 months, have you ever gone to a health facility when you were sick or needed advice about your health?		
1008	The last time you went to a health facility when you were sick or needed advice about your health, where did you go first?		
1009	How did you get to that facility that time?		
1010	How long did it take to get to the facility by that means of transport?	MINUTES DON'T KNOW/ DON'T REMEMBER 998	
1011	How would you rate the thoroughness and carefulness of the examination and treatment you received at that time: very good, good, fair, poor, very poor?		

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
1012	CHECK 1008: OTHER FA	TY	$\longrightarrow 1014$
1013	The last time you visited (HEALTH FACILITY IN 1008) did a health worker suggest you give him or her an informal payment for the consultation, visit, medical examination or other services?		$\longrightarrow 1014$
1013A	Did you receive an invoice?		
1014	We are interested in getting information on whether people pay for medical care instead of getting it free from the public health system. In the last 12 months, have you ever directly paid for medical care, excluding drugs and dental care, that you could have obtained free of charge or at lower cost from the public health system? IF YES: How often?		$\longrightarrow 1016$ $\longrightarrow 1016$
1015	The last time you paid directly for medical care, what was the main reason you decided to pay:	```HAD NO OTHER ALTERNATIVE FOR THE SERVICES 1 TO HAVE THE SERVICES AS QUICKLY AS POSSIBLE 2 TO HAVE BETTER QUALITY SERVICES} TO CHOOSE THE DOCTOR OR HEALTH FACILTY 4 DID NOT KNOW HEALTH SERVICE COULD PROVIDE FOR FREE ... 5 OTHER``` \qquad ```6None```	
1016	During the last 12 months, have you ever avoided obtaining medical care because you could not pay for those services? IF YES: How often?		
1017	Do you believe that during the last 12 months your health has declined due to problems in paying for medical care? IF YES: Did your health decline very much, some, or a little?		
1018	Now I would like to ask you about procedures that are used to screen for cancer or to prevent illness. Mammograms use X-rays to create a picture of the breast to detect cancer. Have you ever heard of a mammogram or breast cancer screening?	YES . 2 NO	
1019	Another diagnostic procedure is a pap-smear, in which a doctor or nurse scrapes cells from inside the vagina for examination under a microscope. It is used to detect cancer and changes that may lead to cancer. Have you ever heard of a pap-smear?	YES . 2 NO	

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
1020	Do you currently smoke cigarettes?	YES . 2 NO	$\rightarrow 1022$
1021	In the last 24 hours, how many cigarettes did you smoke?	CIGARETTES $\quad \square$	
1022	Have you smoked at least 100 cigarettes in your life?	YES . 2 NO	
1023	Do you currently smoke or use any other type of tobacco?		$\longrightarrow 1025$
1024	What (other) type of tobacco do you currently smoke or use? RECORD ALL MENTIONED.		
1025		\square	$\rightarrow 1028$
1026	At what age did you start smoking (or using other tobacco) regularly? IF AGE NOT KNOWN, PROBE FOR APPROXIMATE AGE.	AGE STARTED SMOKING ... $\quad \square$	
1027	Have you tried to stop smoking in the past 12 months?		
1028	In what ways do you believe smoking can cause health problems? PROBE: Any others? RECORD ALL MENTIONED.		
1029	Have you ever consumed a drink that contains alcohol such as beer, wine, raki, or other spirits?	$\begin{aligned} & \text { YES . } 1 \\ & \text { NO } \end{aligned}$	\rightarrow 1032A
1030	Was this within the last 12 months?	$\begin{aligned} & \text { YES . } 1 \\ & \text { NO } \end{aligned}$	$\longrightarrow 1032 \mathrm{~A}$
1031	In the last 12 months, how frequently have you had at least one drink?	5 OR MORE DAYS PER WEEK \ldots 1 1-4 DAYS PER WEEK $\ldots \ldots . .$. .. 2 1-3 DAYS PER MONTH $\ldots \ldots . .$. 3 LESS THAN ONCE A MONTH $\ldots .$. 4	
1032	When you drink alcohol, on average, how many drinks do you have each day?	DRINKS \qquad \square DON'T KNOW	

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES		SKIP
1032A	Have you ever been told by a doctor or other health professional that you had hypertension or high blood pressure?	YES NO DON'T KNOW	$\begin{aligned} & 1 \\ & 2 \\ & 8 \end{aligned}$	$\xrightarrow{\longrightarrow} 1033$
1032B	Were you told on more than one different occasion by a doctor or other health professional that you had hypertension or high blood pressure?	$\begin{aligned} & \text { YES } \\ & \text { NO } \\ & \text { DON'T KNOW } \end{aligned}$	$\begin{array}{r} 1 \\ 2 \\ 8 \end{array}$	
1032C	To lower your hypertension or high blood pressure, are you now: a. Taking prescribed medicine? b. Controlling your weight or losing weight? c. Cutting down on salt in your diet? d. Exercising? e. Stopping smoking?	TAKE MEDICINE CONTROL WEIGHT CUT DOWN SALT EXERCISE STOP SMOKING	YES NO N/A $\ldots \ldots$ 1 2 3 \ldots 1 2 3 \ldots. 1 2 3 \ldots 1 2 3 \ldots 1 2 3	
1033	Many different factors can prevent women from getting medical advice or treatment for themselves. When you are sick and want to get medical advice or treatment, is each of the following a big problem or not? Getting permission to go? Getting money needed for treatment? The distance to the health facility? Having to take transport? Not wanting to go alone? Concern that there may not be a female health provider? Concern that there may not be any health provider? Concern that there may be no drugs available? Concern that there may be no supplies or equipment available?	PERMISSION TO GO GETTING MONEY DISTANCE \qquad TAKING TRANSPORT GO ALONE \qquad NO FEMALE PROV. NO PROVIDER NO DRUGS \qquad NO SUPPLIES/EQUIPM	BIG PROB- LEM NOT A BIG PROB- LEM 1 2 \ldots 1 1 2	
1034	Are you covered by any health insurance?	$\begin{aligned} & \text { YES } \\ & \text { NO } \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	\rightarrow 1036X
1035	What type of health insurance? RECORD ALL MENTIONED.	STATE HEALTH INSUR STATE SOCIAL INSURA VOLUNTARY HEALTH PRIVATELY PURCHASE COMMERCIAL HEAL OTHER \qquad		

INTERVIEWER'S OBSERVATIONS

TO BE FILLED IN AFTER COMPLETING INTERVIEW

COMMENTS ABOUT RESPONDENT:
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

COMMENTS ON SPECIFIC QUESTIONS:
\qquad
\qquad
\qquad
\qquad
\qquad

ANY OTHER COMMENTS:
\qquad
\qquad
\qquad
\qquad
\qquad

SUPERVISOR'S OBSERVATIONS
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
NAME OF SUPERVISOR: DATE: \qquad

EDITOR'S OBSERVATIONS
\qquad
\qquad
\qquad
\qquad
\qquad
NAME OF EDITOR: \qquad DATE: \qquad

INSTRUCTIONS:
ONLY ONE CODE SHOULD APPEAR IN ANY BOX ALL MONTHS SHOULD BE FILLED IN

INFORMATION TO BE CODED FOR EACH COLUMN

BIRTHS, PREGNANCIES, CONTRACEPTIVE USE		
B	BIRTHS	
S	STILLBIRTHS	
C	MISCARRIAGES	
A	INDUCED ABORTIONS	
P	PREGNANCIES	
0	NO METHOD	
1	FEMALE STERILIZATION	
2	MALE STERILIZATION	
3	PILL	
4	IUD	
5	INJECTABLES	
6	IMPLANTS	
7	CONDOM	
8	FEMALE CONDOM	
9	DIAPHRAGM	
J	FOAM OR JELLY	
K	LACTATIONAL AMENORRHEA METHOD	
L	RHYTHM METHOD	
M	WITHDRAWAL	
X	OTHER	

ALBANIA
THE NATIONAL INSTITUTE OF STATISTICS (INSTAT) AND THE INSTITUTE FOR PUBLIC HEALTH (IPH)

INTRODUCTION AND CONSENT

INFORMED CONSENT

Hello. My name is \qquad and I am working with the National Institute of Statistics and the Institute for Public Health. We are conducting a national survey that asks women and men about various health issues. We would very much appreciate your participation in this survey. As part of this survey, we are asking people throughout the country to have their blood pressure and pulse read. This information will help the government to plan health services.
The survey usually takes about 20 minutes to complete. During the interview, I would like to measure your blood pressure and pulse. This will be done three times. This is a harmless procedure although you may feel a slight discomfort when the blood pressure cuff is applied to your arm. Your answers to the questions and the blood pressure and pulse measurements will be kept strictly confidential and will not be shared with anyone other than members of our survey team.

Participation in this survey is voluntary, and if we should come to any question you don't want to answer, just let me know and I will go on to the next question; you can choose not to have your blood pressure taken; or you can stop the interview at any time. However, we hope that you will participate in this survey since your views are important.

The results of this blood pressure and pulse measurement will be given to you orally and in writing after the interview with an explanation of the meaning of your blood pressure and pulse numbers. Elevated blood pressure or pulse is dangerous to your health, and it is important to know your numbers. Although we will give you the results of this test, we can not provide you with any counseling, further testing or treatment if your blood pressure is elevated.
At this time, do you want to ask me anything about the survey?
May we take your blood pressure? May I begin the interview now?
Signature of interviewer: \qquad Date: \qquad

| RESPONDENT AGREES TO BE INTERVIEWED $\ldots . .$. | 1 | RESPONDENT DOES NOT AGREE TO BE INTERVIEWED ... | $2 \rightarrow$ END | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| RESPONDENT AGREES TO BLOOD PRESSURE | \ldots | \downarrow | 1 | RESPONDENT DOES NOT AGREE TO BLOOD PRESURE ... | 2 |

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
101	RECORD THE TIME.	HOUR MINUTES	
101A	Before taking your blood pressure, I would to ask a few questions about things that may affect these measurements. Have you done any of the following within the past 30 minutes: Eaten anything? Had coffee, tea, cola or other drink that has caffeine? Smoked any tobacco product?	YES NO EATEN $\ldots \ldots$. 1 2 HAD CAFFEINATED DRINK . 1 2 SMOKED $\quad \ldots \ldots$. 1 2	
101B	May I begin the process of measuring your blood pressure? BEFORE TAKING THE FIRST BLOOD PRESSURE READING MEASURE THE CIRCUMFERENCE OF THE RESPONDENT'S ARM MIDWAY BETWEEN THE ELBOW AND THE SHOULDER. RECORD THE MEASUREMENT IN CENTIMETERS.	ARM CIRCUMFERENCE (IN CENTIMETERS) \square	
101C	USE THE ARM CIRCUMFERENCE MEASUREMENT TO SELECT THE APPROPRIATE BLOOD PRESSURE MONITOR MODEL AND CUFF SIZE. CIRCLE THE CODE FOR THE MODEL AND CUFF SIZE.	MODEL 712C SMALL: <22 CM 1 MEDIUM/LARGE: 22 CM - 42 CM . . 2 MODEL 789 EXTRA LARGE: $42 \mathrm{CM}-60 \mathrm{CM}$. . 3	
101D	May I measure your blood pressure and pulse at this time? RECORD BLOOD PRESSURE AND PULSE MEASUREMENT IN 1ST COLUMN IN 836.	BLOOD PRESSURE TAKEN $\ldots . . .$. 1 BLOOD PRESSURE NOT TAKEN \ldots 2	

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
102	How long have you been living continuously in (NAME OF CURRENT PLACE OF RESIDENCE)? IF LESS THAN ONE YEAR, RECORD '00' YEARS.		$\xrightarrow{\longrightarrow} 106$
103	Just before you moved here, did you live in a city, in a town, or in the countryside?		
103A	Before you moved here, which district did you move from?	DISTRICT \square OUTSIDE OF ALBANIA \qquad	
106	In what month and year were you born?	MONTH \square DON'T KNOW MONTH DON'T KNOW YEAR 9998	
107	How old were you at your last birthday? COMPARE AND CORRECT 106 AND/OR 107 IF INCONSISTENT.	AGE IN COMPLETED YEARS 	
107A	CHECK 106, YEAR OF BIRTH:		$\rightarrow 108$
107B	In 1990, which district did you live in?		
108	Have you ever attended school?		$\longrightarrow 112$
109	What is the highest level of school you attended: primary 4-year, 8-year, generic secondary, professional, technical, university, post university/graduate?		
110	What is the highest class you completed at that level?	CLASS	
111	CHECK 109: PRIMARY 4-YEAR SECONDARY OR 8-YEAR OR HIGHER		$\rightarrow 115$
112	Now I would like you to read this sentence to me. SHOW CARD TO RESPONDENT. IF RESPONDENT CANNOT READ WHOLE SENTENCE, PROBE: Can you read any part of the sentence to me?		

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
115	Do you read a newspaper or magazine almost every day, at least once a week, less than once a week or not at all?		
116	Do you listen to the radio almost every day, at least once a week, less than once a week or not at all?		
117	Do you watch television almost every day, at least once a week, less than once a week or not at all?	ALMOST EVERY DAY $\ldots \ldots$. AT LEAST ONCE A WEEK $\ldots \ldots .$. 	
118	What is your religion?		
119	To what ethnic group do you belong?		

SECTION 2. REPRODUCTION

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
201	Now I would like to ask about any children you have had during your life. I am interested in all of the children that are biologically yours, even if they are not legally yours or do not have your last name. Have you ever fathered any children with any woman?	YES NO DON'T KNOW	206
202	Do you have any sons or daughters that you have fathered who are now living with you?	YES NO	$\longrightarrow 204$
203	How many sons live with you? And how many daughters live with you? IF NONE, RECORD '00'.	SONS AT HOME DAUGHTERS AT HOME	
204	Do you have any sons or daughters that you have fathered who are alive but do not live with you?	YES NO	$\longrightarrow 206$
205	How many sons are alive but do not live with you? And how many daughters are alive but do not live with you? IF NONE, RECORD ' 00 '.	SONS ELSEWHERE DAUGHTERS ELSEWHERE	
206	Have you ever fathered a son or a daughter who was born alive but later died? IF NO, PROBE: Any baby who cried or showed signs of life but did not survive?	YES NO DON'T KNOW	208
207	How many boys have died? And how many girls have died? IF NONE, RECORD '00'.	BOYS DEAD GIRLS DEAD	
208	SUM ANSWERS TO 203, 205, AND 207, AND ENTER TOTAL. IF NONE, RECORD '00'.	TOTAL CHILDREN ...	
209	CHECK 208:	$\begin{aligned} & A D \\ & \text { BEN } \end{aligned}$	$\xrightarrow{\longrightarrow} 212$
210	Did all of the children you have fathered have the same biological mother?	YES NO	$\longrightarrow 212$
211	In all, how many women have you fathered children with?	NUMBER OF WOMEN	
212	How old were you when your (first) child was born?	AGE IN YEARS	
213	CHECK 203 AND 205: AT LEAST ONE LIVING CHILD	$\begin{aligned} & \mathrm{NG} \\ & \mathrm{EN} \end{aligned}$	$\longrightarrow 301$
214	How many years old is your (youngest) child?	AGE IN YEARS	

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
215	CHECK 214: (YOUNGEST) CHILD OTHER IS AGE 0-3 YEARS		$\longrightarrow 301$
216	What is the name of your (youngest) child? WRITE NAME OF (YOUNGEST) CHILD (NAME OF (YOUNGEST) CHILD)		
217	When (NAME)'s mother was pregnant with (NAME), did she have any antenatal check-ups?		$\xrightarrow{\longrightarrow} 219$
218	Were you ever present during any of those antenatal check-ups?	PRESENT 1 NOT PRESENT	
219	Was (NAME) born in a hospital or health facility?		$\longrightarrow 221$
220	What was the main reason why (NAME)'s mother did not deliver in a hospital or health facility?		
221	When a child has diarrhea, how much should he or she be given to drink: more than usual, the same amount as usual, less than usual, or should he or she not be given anything to drink at all?		
221A	Sometimes children have severe illnesses and should be taken immediately to a health facility. What types of symptoms would cause you to take your child to a health facility right away? PROBE: Any others? RECORD ALL MENTIONED.		

SECTION 3. CONTRACEPTION

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
303	In the last few months have you: Heard about family planning on the radio? Seen about family planning on the television? Read about family planning in a newspaper or magazine?	YES RO RADIO $\ldots \ldots \ldots \ldots \ldots$ 1 2 TELEVISION $\ldots \ldots \ldots \ldots$ 1 2 NEWSPAPER OR MAGAZINE 1 2	
304	In the last few months, have you discussed the practice of family planning with a health worker or health professional?		
305	Now I would like to ask you about a woman's risk of pregnancy. From one menstrual period to the next, are there certain days when a woman is more likely to become pregnant if she has sexual relations?	YES . 1 NO . 8 DON'T KNOW	$\longrightarrow 307$
306	Is this time just before her period begins, during her period, right after her period has ended, or halfway between two periods?		
307	Do you think that a woman who is breastfeeding her baby can become pregnant?	YES . 1 NO . 2 DEPENDS 8	
308	I will now read you some statements about contraception. Please tell me if you agree or disagree with each one. a) Contraception is women's business and a man should not have to worry about it. b) Women who use contraception may become promiscuous.	DIS- AGREE AGREE DK	
309	CHECK 301 (07) KNOWS MALE CONDOM YES \square NO		$\rightarrow 401$
310	Do you know of a place where a person can get condoms?		$\longrightarrow 401$

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
311	Where is that? Any other place? PROBE TO IDENTIFY EACH TYPE OF SOURCE AND CIRCLE THE APPROPRIATE CODE. IF UNABLE TO DETERMINE IF HOSPITAL, HEALTH CENTER OR CLINIC IS PUBLIC OR PRIVATE MEDICAL, WRITE THE NAME OF THE PLACE.	PUBLIC SECTOR PUBLIC HOSPITAL/MATERNITY. A	
312	If you wanted to, could you yourself get a condom?		

SECTION 4. MARRIAGE AND SEXUAL ACTIVITY

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
401	Are you currently married or living together with a woman as if married?	YES, CURRENTLY MARRIED $\ldots . .$. 1 YES, LIVING WITH A WOMAN $\ldots .$. 2 NO, NOT IN UNION 3	$\xrightarrow{\longrightarrow} 404$
402	Have you ever been married or lived together with a woman as if married?	YES, FORMERLY MARRIED $\ldots . .$. 1 YES, LIVED WITH A WOMAN \ldots . . NO . 3	$\rightarrow 413$
403	What is your marital status now: are you widowed, divorced, or separated?		410
404	Is your wife/partner living with you now or is she staying elsewhere?	LIVING WITH HIM $\ldots . ~$ 1 STAYING ELSEWHERE	
407	Please tell me the name of your wife/the woman you are living with as if married RECORD THE WIFE'S/PARTNER'S NAME AND LINE NUMBER FROM THE HOUSEHOLD QUESTIONNAIRE. IF SHE IS NOT LISTED IN THE HOUSEHOLD, RECORD '00'.	NAME LINE NO. \qquad	
408	How old was (NAME) on her last birthday?	AGE	
410	Have you been married or lived with a woman only once or more than once?		$\longrightarrow 411 \mathrm{~A}$
411	In what month and year did you start living with your (wife/ partner)? Now I would like to ask a question about your first wife/partner. In what month and year did you start living with your first wife/ partner?		$\longrightarrow 413$
412	How old were you when you first started living with her?	AGE $\ldots \ldots \ldots \ldots \ldots \ldots . \square \square$	
413	CHECK FOR THE PRESENCE OF OTHERS. BEFORE CONTINUING, MAKE EVERY EFFORT TO ENSURE PRIV		
414	Now I would like to ask you some questions about sexual activity in order to gain a better understanding of some important life issues. How old were you when you had sexual intercourse for the very first time?	NEVER HAD SEXUAL INTERCOURSE \qquad AGE IN YEARS \qquad \square FIRST TIME WHEN STARTED LIVING WITH (FIRST) WIFE/PARTNER \qquad	
415			\rightarrow 500A
416	Do you intend to wait until you get married to have sexual intercourse for the first time?		500A

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES		SKIP
430	CHECK 424 (ALL COLUMNS): AT LEAST ONE PARTNER NO PARTNERS IS PROSTITUTE ARE PROSTITUTES			$\longrightarrow 432$
431	CHECK 424 AND 422 (ALL COLUMNS): OTHER			$\begin{array}{\|l} \longrightarrow 434 \\ \longrightarrow 435 \end{array}$
432	In the last 12 months, did you pay anyone in exchange for having sexual intercourse?	YES . 1NO		$\longrightarrow 435$
433	The last time you paid someone in exchange for having sexual intercourse, was a condom used?			$\rightarrow 435$
434	Was a condom used during sexual intercourse every time you paid someone in exchange for having sexual intercourse in the last 12 months?			
435	In total, with how many different people have you had sexual intercourse in your lifetime? IF NON-NUMERIC ANSWER, PROBE TO GET AN ESTIMATE. IF NUMBER OF PARTNERS IS GREATER THAN 95, WRITE '95.'	NUMBER OF PARTNERS IN LIFETIME \qquad \square DON'T KNOW \qquad 98		
436	CHECK 422, MOST RECENT PARTNER (FIRST COLUMN):			$\begin{array}{r} \longrightarrow 442 \\ \longrightarrow 442 \end{array}$
437	You told me that a condom was used the last time you had sex. May I see the package of condoms you were using at that time? RECORD NAME OF BRAND IF PACKAGE SEEN.	DOES NOT HAVE/NOT SEEN		$\rightarrow 439$
438	Do you know the brand name of the condom used at that time? RECORD NAME OF BRAND.	BRAND NAME		
439	How many condoms did you get the last time?	NUMBER OF CONDOMS \square DON'T KNOW 998		
440	The last time you obtained the condoms, how much did you pay in total, including the cost of the condom(s) and any consultation you may have had? RECORD IN NEW LEK	COST FREE DON'T KNOW		

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
441	From where did you obtain the condom the last time? PROBE TO IDENTIFY TYPE OF SOURCE AND CIRCLE THE APPROPRIATE CODE. IF UNABLE TO DETERMINE IF HOSPITAL, HEALTH CENTER OR CLINIC IS PUBLIC OR PRIVATE MEDICAL, WRITE THE NAME OF THE PLACE. (NAME OF PLACE)		
442	CHECK 302 (02): RESPONDENT EVER STERILIZED NO YES \square		500A
443	The last time you had sex did you or your partner use any method (other than a condom) to avoid or prevent a pregnancy?		$\xrightarrow{\longrightarrow} 500 \mathrm{~A}$
444	What method did you or your partner use? PROBE: Did you or your partner use any other method to prevent pregnancy? RECORD ALL MENTIONED.		

SECTION 5. FERTILITY PREFERENCES

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
500A	May I measure your blood pressure and pulse at this time? RECORD BLOOD PRESSURE AND PULSE MEASUREMENT IN 2ND COLUMN IN 836.	BLOOD PRESSURE TAKEN $\ldots . .$. 1 BLOOD PRESSURE NOT TAKEN \ldots. 2	
501	CHECK 401: NOT IN LIVING WITH A WOMAN	ON	$\longrightarrow 508$
502	CHECK 302:		$\rightarrow 508$
503	Is your wife (partner) currently pregnant?		
504			$\square \rightarrow 508$
506	CHECK 503:WIFE/PARTNERNOT PREGNANT ORDON'T KNOWWIFE/ \quadPARTNER How long would you like to Pait from now before the birth of (a/another) child?After the birth of the child you are expecting now, how long would you like to wait before the birth of another child?		
508	CHECK 203 AND 205: HAS LIVING CHILDREN If you could go back to the time you did not have any children and could choose exactly the number of children to have in your whole life, how many would that be? NO LIVING CHILDREN If you could choose exactly the number of children to have in your whole life, how many would that be? PROBE FOR A NUMERIC RESPONSE.		$\longrightarrow 601$
509	How many of these children would you like to be boys, how many would you like to be girls and for how many would the sex not matter?		

SECTION 6. EMPLOYMENT AND GENDER ROLES

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
601	Have you done any work in the last seven days?	YES . 2 NO	$\longrightarrow 604$
602	Although you did not work in the last seven days, do you have any job or business from which you were absent for leave, illness, vacation, or any other such reason?	YES . 1 NO 2 .	$\longrightarrow 604$
603	Have you done any work in the last 12 months?	YES . 2	$\rightarrow 613$
604	What is your occupation, that is, what kind of work do you mainly do?	\qquad \qquad \qquad	
605	CHECK 604: WORKS IN DOES NOT WORK AGRICULTURE IN AGRICULTURE		$\rightarrow 607$
606	Do you work mainly on your own land or on family land, or do you work on land that you rent from someone else, or do you work on someone else's land?		
607	Do you do this work for a member of your family, for someone else, or are you self-employed?	FOR FAMILY MEMBER $\ldots \ldots \ldots \ldots$ 1 FOR SOMEONE ELSE $\ldots \ldots \ldots \ldots$ 2 SELF-EMPLOYED $\ldots \ldots \ldots .$. 3	
608	Do you usually work throughout the year, or do you work seasonally, or only once in a while?	$\begin{array}{llll}\text { THROUGHOUT THE YEAR } & 1 \\ \text { SEASONALLY/PART OF THE YEAR } & . & 2 \\ \text { ONCE IN A WHILE } \ldots & 3\end{array}$	
609	Are you paid in cash or kind for this work or are you not paid at all?		
610			$\rightarrow 613$
611	CHECK 609: CODE 1 OR 2 OTHER \square CIRCLED		$\rightarrow 613$
612	Who usually decides how the money you earn will be used: mainly you, mainly your wife/partner, or you and your wife/partner jointly?		

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES					SKIP
613	In a couple, who do you think should have the greater say in each of the following decisions: the husband, the wife or both equally: a) making major household purchases? b) making purchases for daily household needs? c) deciding about visits to the wife's family or relatives? d) deciding what to do with the money she earns for her work? e) deciding how many children to have?	a) b) c) d) d)	HUS- BAND 1 1 1 1 1	WIFE 2 2 2 2 2	BOTH QUALLY 3 3 3 3 3	$\begin{gathered} \mathrm{D} \\ \mathrm{~K} \end{gathered}$	
614	I will now read you some statements about pregnancy. Please tell me if you agree or disagree with them. a) Childbearing is a woman's concern and there is no need for the father to get involved. b) It is crucial for the mother's and child's health that a woman have assistance from a doctor or nurse at delivery.			NG CONCERN RSE'S CE	REE N 1	S- REE	
615	Sometimes a husband is annoyed or angered by things that his wife does. In your opinion, is a husband justified in hitting or beating his wife in the following situations: If she goes out without telling him? If she neglects the children? If she argues with him? If she refuses to have sex with him? If she burns the food?			REN	YES . 1		
616	Do you think that if a woman refuses to have sex with her husband when he wants her to, he has the right to... a) Get angry and reprimand her? b) Refuse to give her money or other means of support? c) Use force and have sex with her even if she doesn't want to? d) Go ahead and have sex with another woman?	a) b) c) d)		YES 1 1 1 1			

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
701	Now I would like to talk about something else. Have you ever heard of an illness called AIDS?	YES . 1 NO	$\rightarrow 733$
702	Can people reduce their chances of getting the AIDS virus by having just one uninfected sex partner who has no other sex partners?		
703	Can people get the AIDS virus from mosquito bites?		
704	Can people reduce their chance of getting the AIDS virus by using a condom every time they have sex?		
705	Can people get the AIDS virus by sharing food with a person who has AIDS?		
706	Can people reduce their chance of getting the AIDS virus by not having sexual intercourse at all?		
707A	Can people get the AIDS virus by touching a person who is infected with the AIDS virus?		
708	Is it possible for a healthy-looking person to have the AIDS virus?		
709	Can the virus that causes AIDS be transmitted from a mother to her baby: During pregnancy? During delivery? By breastfeeding?	YES NO DK DURING PREG. $\ldots \ldots$ 1 2 8 DURING DELIVERY \ldots. 1 2 8 BREASTFEEDING \ldots 1 2 8	
710	CHECK 709: AT LEAST ONE 'YES'	ER	$\rightarrow 712$
711	Are there any special drugs that a doctor or a nurse can give to a woman infected with the AIDS virus to reduce the risk of transmission to the baby?		
712	Have you heard about special antiretroviral drugs that people infected with the AIDS virus can get from a doctor or a nurse to help them live longer?		
712A	CHECK FOR PRESENCE OF OTHERS. BEFORE CONTINUING,	EVERY EFFORT TO ENSURE PRIVACY.	
713	I don't want to know the results, but have you ever been tested to see if you have the AIDS virus?		$\longrightarrow 718$
714	When was the last time you were tested?	LESS THAN 12 MONTHS AGO $\quad \ldots .$. 1 $12-23$ MONTHS AGO $\ldots \ldots$. 2 2 OR MORE YEARS AGO \quad. 3	
715	The last time you had the test, did you yourself ask for the test, was it offered to you and you accepted, or was it required?		
716	I don't want to know the results, but did you get the results of the test?		

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
717	Where was the test done? PROBE TO IDENTIFY THE TYPE OF SOURCE AND CIRCLE THE APPROPRIATE CODE. IF UNABLE TO DETERMINE IF HOSPITAL, HEALTH CENTER, VCT CENTER, OR CLINIC IS PUBLIC OR PRIVATE MEDICAL, WRITE THE NAME OF THE PLACE.		$\rightarrow 720$
718	Do you know of a place where people can go to get tested for the AIDS virus?		$\rightarrow 720$
719	Where is that? Any other place? PROBE TO IDENTIFY EACH TYPE OF SOURCE AND CIRCLE THE APPROPRIATE CODE(S). IF UNABLE TO DETERMINE IF HOSPITAL, HEALTH CENTER VCT CENTER, OR CLINIC IS PUBLIC OR PRIVATE MEDICAL, WRITE THE NAME OF THE PLACE.		
720	Would you buy fresh vegetables from a shopkeeper or vendor if you knew that this person had the AIDS virus?		
721	If a member of your family got infected with the AIDS virus, would you want it to remain a secret or not?		
722	If a member of your family became sick with AIDS, would you be willing to care for her or him in your own household?		
723	In your opinion, if a female teacher has the AIDS virus but is not sick, should she be allowed to continue teaching in the school?	SHOULD BE ALLOWED $\ldots \ldots \ldots .$. 1 SHOULD NOT BE ALLOWED $\ldots \ldots .$. 2 DK/NOT SURE/DEPENDS $\ldots \ldots .$. 8	
723A	In your opinion, if a pupil has the AIDS virus but is not sick, should he/she be allowed to continue in the same class as other uninfected children?	SHOULD BE ALLOWED \ldots. 1 SHOULD NOT BE ALLOWED $\ldots . .$. 2 DK/NOT SURE/DEPENDS \ldots. 8	
731	Should children age 12-14 be taught about using a condom to avoid getting AIDS?		

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
732	Should children age 12-14 be taught to wait until they get married to have sexual intercourse in order to avoid getting AIDS?		
733		YES . 1 NO	
734	CHECK 414: HAS HAD SEXUAL HAS NOT HAD SEXUAL INTERCOURSE INTERCOURSE		$\rightarrow 742$
735	CHECK 733: HEARD ABOUT OTHER SEXUALLY TRANSMITTED	CTIONS? NO \square	$\longrightarrow 737$
736	Now I would like to ask you some questions about your health in the last 12 months. During the last 12 months, have you had a disease which you got through sexual contact?		
737	Sometimes men experience an abnormal discharge from their penis. During the last 12 months, have you had an abnormal discharge from your penis?		
738	Sometimes men have a sore or ulcer near their penis. During the last 12 months, have you had a sore or ulcer near your penis?	YES . 1 NO . 8 DON'T KNOW	
738A	Sometimes men experience pain or burning during urination. During the last 12 months, have you experienced pain or burning during urination?		
738B	Sometimes men find sexual intercourse painful. During the last 12 months, have you ever found sexual intercourse painful?		
739	CHECK 736, 737, 738, 738A AND 738B: HAS HAD AN HAS NOT HAD AN INFECTION INFECTION OR (ANY 'YES') DOES NOT KNOW		$\rightarrow 742$
740	The last time you had (PROBLEM FROM 736/737/738/738A/738B), did you seek any kind of advice or treatment?		$\longrightarrow 742$

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
741	Where did you go? Any other place? PROBE TO IDENTIFY EACH TYPE OF SOURCE AND CIRCLE THE APPROPRIATE CODE(S). IF UNABLE TO DETERMINE IF HOSPITAL, HEALTH CENTER VCT CENTER, OR CLINIC IS PUBLIC OR PRIVATE MEDICAL, WRITE THE NAME OF THE PLACE.		
741A	Who did you see for advice or treatment? Any one else? PROBE TO IDENTIFY EACH TYPE OF PROVIDER AND CIRCLE THE APPROPRIATE CODE(S).		
742	Husband and wives do not always agree in everything. If a wife knows her husband has a disease that she can get during sexual intercourse, is she justified in refusing to have sex with him?		
743	If a wife knows her husband has a disease that she can get during sexual intercourse, is she justified in asking that they use a condom when they have sex?		
744	Is a wife justified in refusing to have sex with her husband when she is tired or not in the mood?		
745	Is a wife justified in refusing to have sex with her husband when she knows her husband has sex with other women?		

SECTION 8. OTHER HEALTH ISSUES

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
801	How is your health currently: very good, good, fair, poor, very poor?		
802	Compared with 12 months ago, would you say that your health is now much better, somewhat better, about the same, somewhat worse, or much worse?		
803	Do you suffer from a chronic illness or disability that has lasted more than 3 months (including severe depression)?	$\begin{aligned} & \text { YES . } 2 \\ & \text { NO } \end{aligned}$	$\longrightarrow 805$
804	What type of illness or disability do you have? RECORD ALL MENTIONED		
805	During the last 4 weeks have you had any sudden illness or injury, such as flu, diarrhea, a fracture, etc.?		$\longrightarrow 807$

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
806	What type of illness or injury did you have? IF MORE THAN ONE, REFER TO THE MOST SERIOUS		
807	In the past 12 months, have you ever gone to a health facility when you were sick or needed advice about your health?		$\xrightarrow{\longmapsto^{\prime}}$
808	The last time you went to a health facility when you were sick or needed advice about your health, where did you go first?		
809	How did you get to that facility that time?		
810	How long did it take to get to the facility by that means of transport?	MINUTES \qquad DON'T KNOW/ DON'T REMEMBER 998	
811	How would you rate the thoroughness and carefulness of the examination and treatment you received at that time: very good, good, fair, poor, very poor?		

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES	SKIP
812		TY	$\rightarrow 814$
813	The last time you visited (HEALTH FACILITY IN 808) did a health worker suggest you give him or her an informal payment for the consultation, visit, medical examination or other services?		$\xrightarrow{\longrightarrow} 814$
813A	Did you receive an invoice?		
814	We are interested in getting information on whether people pay for medical care instead of getting it free from the public health system. In the last 12 months, have you ever directly paid for medical care, excluding drugs and dental care, that you could have obtained free of charge or at lower cost from the public health system? IF YES: How often?		
815	The last time you paid directly for medical care, what was the main reason you decided to pay:	```HAD NO OTHER ALTERNATIVE FOR THE SERVICES 1 TO HAVE THE SERVICES AS QUICKLY AS POSSIBLE 2 TO HAVE BETTER QUALITY SERVICES 3 TO CHOOSE THE DOCTOR OR HEALTH FACILTY 4 DID NOT KNOW HEALTH SERVICE COULD PROVIDE FOR FREE ... 5 OTHER``` \qquad ```6``` \qquad ```DON'T REMEMBER/REFUSENone```	
816	During the last 12 months, have you ever avoided obtaining medical care because you could not pay for those services? IF YES: How often?		
817	Do you believe that during the last 12 months your health has declined due to problems in paying for medical care? IF YES: Did your health decline very much, some, or a little?		
818	Some men are circumcised. Are you circumcised?		
820	Do you currently smoke cigarettes?	YES $\ldots \ldots$. 2 NO	$\longrightarrow 822$
821	In the last 24 hours, how many cigarettes did you smoke?	CIGARETTES \square	
822	Have you smoked at least 100 cigarettes in your life?	YES . 2 NO	
823	Do you currently smoke or use any other type of tobacco?	YES . 1 NO .	$\longrightarrow 825$

NO.	QUESTIONS AND FILTERS	CODING CATEGORIES		SKIP
824	What (other) type of tobacco do you currently smoke or use? RECORD ALL MENTIONED.	$\begin{array}{ll} \text { PIPE } \ldots \ldots \ldots \ldots \\ \text { OTHER } & \\ \end{array}$	$\begin{array}{cc} \ldots . & A \\ & x \\ \hline \end{array}$	
825	CHECK 820 AND 823: AT LEAST BOTH 'NO' ONE 'YES'			828
826	At what age did you start smoking (or using other tobacco) regularly? IF AGE NOT KNOWN, PROBE FOR APPROXIMATE AGE.	AGE STARTED SMOKING ... \square		
827	Have you tried to stop smoking in the past 12 months?			
828	In what ways do you believe smoking can cause health problems? PROBE: Any others? RECORD ALL MENTIONED.			
829	Have you ever consumed a drink that contains alcohol such as beer, wine, raki, or other spirits?	YES . 1NO		$\longrightarrow 832 \mathrm{~A}$
830	Was this within the last 12 months?			$\rightarrow 832 \mathrm{~A}$
831	In the last 12 months, how frequently have you had at least one drink?			
832	When you drink alcohol, on average, how many drinks do you have each day?	DRINKS DON'T KNOW		
832A	Have you ever been told by a doctor or other health professional that you had hypertension or high blood pressure?	YES NO DON'T KNOW		$\xrightarrow{\square} 833$
832B	Were you told on two or more different occasions by a doctor or other health professional that you had hypertension or high blood pressure?	YES NO DON'T KNOW	$\begin{array}{ll} \ldots . & 1 \\ \ldots \ldots & 2 \\ \ldots . . & 8 \end{array}$	
832C	To lower your hypertension or high blood pressure, are you now: a. Taking prescribed medicine? b. Controlling your weight or losing weight? c. Cutting down on salt in your diet? d. Exercising? e. Stopping smoking?		NO N / A 2 3	

COMMENTS ABOUT RESPONDENT:
\qquad
\qquad
\longrightarrow
\qquad
\qquad
\qquad

COMMENTS ON SPECIFIC QUESTIONS:
\qquad
\qquad
\qquad
\qquad
\qquad

ANY OTHER COMMENTS:
\qquad
\qquad
\qquad
\qquad
\qquad

SUPERVISOR'S OBSERVATIONS
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
NAME OF SUPERVISOR
DATE: \qquad

EDITOR'S OBSERVATIONS
\qquad
\qquad
\qquad
\qquad
\qquad
NAME OF EDITOR:
DATE: \qquad

PSU	MBER	HOUSEHOLD NUMBER	MOTHER'S NAME AND LINE NO.	
501	ENTER IN THE TABLE THE LINE NUMBER, NAME, AND SURVIVAL STATUS OF EACH BIRTH IN 2003 OR LATER. COMPLETE THE TOP HALF OF THIS FORM FOR ALL OF THESE BIRTHS. BEGIN WITH THE LAST BIRTH. (IF THERE ARE MORE THAN 3 BIRTHS, USE ADDITIONAL FORMS).			
502	LINE NUMBER FROM 212	LAST BIRTH LINE NUMBER \square	NEXT-TO-LAST BIRTH LINE NUMBER \square	SECOND-FROM-LAST BIRTH LINE NUMBER NU.......
503	FIRST NAME FATHER'S NAME LAST NAME FROM 212 AND 216	FIRSTFATHER'SLASTLIVING\squareDEAD \square IN NEXT TOLUMN 503	FIRST FATHER'S LAST $\begin{array}{r}\text { LIVING }\end{array}$ \square IN NEXT COLUMN OR, IF NO MORE (GIRTHS, END FORM)	
503A	RECORD MONTH AND YEAR OF BIRTH FROM 215 AND ASK DAY OF BIRTH	DAY MONTH YEAR 	DAY MONTHYEAR 	
503B	RECORD NAME OF HEALTH CENTRE AT WHICH VACCINATION RECORD IS KEPT	HEALTH CENTRE	HEALTH CENTRE	HEALTH CENTRE

HEALTH CENTRE VISIT

[^0]: ${ }^{1}$ Source: INSTAT http://instat.gov.al/. The long life expectancy at birth of the Albanian population has been linked to the consumption of a Mediterranean diet, largely considered to be a very healthy diet (Arjan Gjonca and Martin Bobak, 1997).

[^1]: ${ }^{2}$ These indicators do not take into account children who live outside the household-for example, in institutions or on the street-because the ADHS sample includes only households and the household population.

[^2]: Note: An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
 ${ }^{1}$ Completed 8 years at the primary level
 ${ }^{2}$ Completed 4 years at the secondary level

[^3]: ${ }^{3}$ Students who are over age for a given level of schooling may have started school over age, may have repeated one or more grades in school, or may have dropped out of school and later returned.

[^4]: ${ }^{1}$ Includes children whose birth certificate was seen by the interviewer and children whose mother/caretaker says the child has a birth certificate.
 ${ }^{2}$ Includes children who have no birth certificate, but whose mother or caretaker says the birth has been registered with the civil authority.

[^5]: ${ }^{1}$ Education categories refer to the highest level of education attended, whether or not that level was completed.

[^6]: ${ }^{1}$ Completed 8 years at the primary level
 ${ }^{2}$ Completed 4 years at the secondary level

[^7]: ${ }^{2}$ The measurement of women's employment can be especially difficult because some of the activities that women do, especially work on family farms, in family businesses, or in the informal sector, are often not perceived by women themselves as employment and hence are not reported as such. To avoid underestimating women's employment, therefore, the questions relating to employment in the woman's questionnaire encouraged women to report such activities. First, women were asked, "Aside from your own housework, have you done any work in the past seven days?" Women who answered "No" to this question were then asked, "As you know, some women take up jobs for which they are paid in cash or kind. Others sell things, have a small business, or work on the family farm or in the family business. In the past seven days, have you done any of these things or any other work?"

[^8]: Note: An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
 1 "Currently employed" is defined as having done work in the past seven days. Includes persons who did not work in the past seven days but who are regularly employed and were absent from work for leave, illness, vacation, or other such reason.

[^9]: Note: Total includes 4 men with information missing on type of employment who are not shown separately. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed. Figures in parentheses are based on 25-49 unweighted cases.

[^10]: Note: Figures in parentheses are based on 25-49 unweighted cases. An asterisk indicates that a figure is
 based on fewer than 25 unweighted cases and has been suppressed.
 ${ }^{1}$ Female sterilization, male sterilization, pill, IUD, injectables, implants, male condom, female condom, diaphragm, foam or jelly, lactational amenorrhoea method (LAM), and emergency contraception

[^11]: ${ }^{1}$ The 2002 ARHS data refer to married women age 15-44; consequently the data from the 2008-09 ADHS were re-computed for the same age group.

[^12]: ${ }^{2}$ The discontinuation rates presented here include only those segments of contraceptive use that began since January 2003. The rates apply to the period 3-62 months preceding the survey; exposure during the month of interview and the two months prior are excluded to avoid biases that may be introduced by unrecognized pregnancies. These cumulative discontinuation rates represent the proportion of users discontinuing a method within 12 months after the start of use. The rates are calculated by dividing the number of women discontinuing a method by the number exposed at that duration. The single-month rates are then cumulated to produce a oneyear rate.

[^13]: ${ }^{1}$ The ARHS estimates were not discussed here because they are based on a different approach (life-table approach) and slightly different age groups than the ADHS.

[^14]: ${ }^{2}$ The ARHS estimates were not discussed here because they are based on a different approach (life-table approach) and slightly different age groups than the ADHS.

[^15]: Note: Figures in parentheses are based on 25-49 unweighted cases. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
 $a=$ Omitted because less than 50 percent of men had intercourse for the first time before reaching the beginning of the age group

[^16]: Note: Figures in parentheses are based on 25-49 unweighted cases.
 ${ }^{1}$ The number of living children includes current pregnancy for women
 ${ }^{2}$ Wants next birth within 2 years
 ${ }^{3}$ Wants to delay next birth for 2 or more years
 ${ }^{4}$ Includes both female and male sterilization
 ${ }^{5}$ The number of living children includes one additional child if respondent's wife is pregnant.

[^17]: Note: Figures in parentheses are based on 25-49 unweighted cases.
 ${ }^{1}$ The number of living children includes current pregnancy for women
 ${ }^{2}$ Means are calculated excluding respondents who gave non-numeric responses.
 ${ }^{3}$ The number of living children includes one additional child if respondent's wife is pregnant.

[^18]: ${ }^{1}$ The UN Population Division estimates under-five mortality rates for countries in the Balkans as follows: Bosnia Herzegovina (17), Bulgaria (16), Croatia (8), Greece (5), Montenegro (13), FYROM (19), Serbia (13). The infant mortality rates were estimated as follows: Bosnia Herzegovina (14), Bulgaria (13), Croatia (7), Greece (.4), Montenegro (12), FYROM (17), Serbia(13). (UNPD, 2008).

[^19]: ${ }^{1}$ The 2005 MICS results refer to the last birth in the past two years.

[^20]: Note: Figures in parentheses are based on 25-49 unweighted cases.
 ${ }^{1}$ Includes women who received a check-up after 41 days.

[^21]: Note: Figures in parentheses are based on 25-49 unweighted cases.
 ${ }^{1}$ From written record or mother's recall

[^22]: Note: Figures in parentheses are based on 25-49 unweighted cases.
 ${ }^{1}$ Non-shared facilities of the following types: flush or pour flush into a piped sewer system/septic tank/pit latrine; ventilated, improved pit (VIP) latrine; pit latrine with a slab; and a composting toilet.

[^23]: Note: Only household members age 16 and older are considered in this table; only activities that took place in the

[^24]: Note: Figures in parentheses are based on 25-49 unweighted cases. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed. \quad in vitamin A Includes meat (and organ meat), fish, poultry, eggs
 ${ }^{4}$ Salt containing 15 ppm of iodine or more. Excludes women in households where salt was not tested.

[^25]: ${ }^{1}$ WHO Multicentre Growth Reference Study Group. 2006. WHO child growth standards: Length/height-forage, weight-for-age, weight-for-length, weight-for-height and body mass index-for-age: Methods and development. Geneva, Switzerland: World Health Organization.

[^26]: Note: An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed
 na $=$ Not applicable

[^27]: ${ }^{1}$ The percentages for those willing to care for a family member with the AIDS virus in the respondent's home are believed to be underestimated due to a problem in understanding the question in one interviewing team based in Urban Tirana.

[^28]: Note: Figures in parentheses are based on 25-49 unweighted cases. An asterisk indicates that a
 figure is based on fewer than 25 unweighted cases and has been suppressed.
 ${ }^{1}$ Friends, family members, and home are not considered sources for condoms.

[^29]: ${ }^{1}$ Sexual intercourse with a non-marital, non-cohabiting partner

[^30]: Note: Figures in parentheses are based on 25-49 unweighted cases. An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.
 ${ }^{1}$ Friends, family members, and home are not considered sources for condoms.

[^31]: ${ }^{1}$ The average number of drinks is based on the number of drinks consumed on the days that the woman drank alcohol, for women who had a drink in the past 12 months.

[^32]: ${ }^{1}$ For the rest of this chapter the term 'husband' refers to both the current/most recent husband (for currently/formerly [legally] married women) and to the current/most recent partner (for women currently living with/or who formerly lived with a partner in an informal union).
 ${ }^{2}$ 'Currently employed' is defined as having done work in the past seven days; includes persons who did not work in the past seven days but who are regularly employed and were absent from work for leave, illness, vacation, or other such reason.

[^33]: Note: An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed.

[^34]: ${ }^{1}$ Five years for national sample and 10 years for urban/rural and regional sample

[^35]: Note: An asterisk indicates that the denominator for the calculation was zero.
 na $=$ Not applicable
 ${ }^{1}$ Both year and month of birth given
 ${ }^{2}(\mathrm{Bm} / \mathrm{Bf}) \times 100$, where Bm and Bf are the numbers of male and female births, respectively
 ${ }^{3}[2 B x /(B x-1+B x+1)] x 100$, where $B x$ is the number of births in calendar year x

